arithmoi: Efficient basic number-theoretic functions. Primes, powers, integer logarithms.

[ algorithms, library, math, mit, number-theory ] [ Propose Tags ] [ Report a vulnerability ]

A library of basic functionality needed for number-theoretic calculations. The aim of this library is to provide efficient implementations of the functions. Primes and related things (totients, factorisation), powers (integer roots and tests, modular exponentiation), integer logarithms.

Flags

Manual Flags

NameDescriptionDefault
check-bounds

Replace unsafe array operations with safe ones

Disabled

Use -f <flag> to enable a flag, or -f -<flag> to disable that flag. More info

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

  • No Candidates
Versions [RSS] 0.1.0.0, 0.1.0.1, 0.1.0.2, 0.2.0.0, 0.2.0.1, 0.2.0.2, 0.2.0.3, 0.2.0.4, 0.2.0.5, 0.2.0.6, 0.3.0.0, 0.4.0.0, 0.4.0.1, 0.4.0.2, 0.4.0.3, 0.4.0.4, 0.4.1.0, 0.4.1.1, 0.4.1.2, 0.4.1.3, 0.4.2.0, 0.4.3.0, 0.5.0.0, 0.5.0.1, 0.6.0.0, 0.6.0.1, 0.7.0.0, 0.8.0.0, 0.9.0.0, 0.10.0.0, 0.11.0.0, 0.11.0.1, 0.12.0.0, 0.12.0.1, 0.12.0.2, 0.12.1.0, 0.13.0.0 (info)
Change log Changes
Dependencies array (>=0.5 && <0.6), base (>=4.6 && <5), containers (>=0.5 && <0.6), ghc-prim (<0.6), integer-gmp (<1.1), mtl (>=2.0 && <2.3), nats (>=1 && <1.2), random (>=1.0 && <1.2), semigroups (>=0.8) [details]
Tested with ghc ==7.6.3, ghc ==7.8.4, ghc ==7.10.3, ghc ==8.0.1
License MIT
Copyright (c) 2011 Daniel Fischer
Author Daniel Fischer
Maintainer Carter Schonwald carter at wellposed dot com
Category Math, Algorithms, Number Theory
Home page https://github.com/cartazio/arithmoi
Bug tracker https://github.com/cartazio/arithmoi/issues
Source repo head: git clone https://github.com/cartazio/arithmoi
Uploaded by Bodigrim at 2016-09-14T20:45:56Z
Distributions Arch:0.13.0.0, LTSHaskell:0.13.0.0, NixOS:0.13.0.0, Stackage:0.13.0.0
Reverse Dependencies 24 direct, 7876 indirect [details]
Downloads 42100 total (274 in the last 30 days)
Rating 2.0 (votes: 4) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs available [build log]
Last success reported on 2016-10-26 [all 1 reports]