datasets: Classical data sets for statistics and machine learning
Classical machine learning and statistics datasets from the UCI Machine Learning Repository and other sources.
The datasets
package defines two different kinds of datasets:
small data sets which are directly (or indirectly with `file-embed`) embedded in the package as pure values and do not require network or IO to download the data set. This includes Iris, Anscombe and OldFaithful.
other data sets which need to be fetched over the network with
Numeric.Datasets.getDataset
and are cached in a local temporary directory.
The datafiles/
directory of this package includes copies of a few famous datasets, such as Titanic, Nightingale and Michelson.
Example :
import Numeric.Datasets (getDataset) import Numeric.Datasets.Iris (iris) import Numeric.Datasets.Abalone (abalone) main = do -- The Iris data set is embedded print (length iris) print (head iris) -- The Abalone dataset is fetched abas <- getDataset abalone print (length abas) print (head abas)
Modules
[Index] [Quick Jump]
- Numeric
- Numeric.Dataloader
- Numeric.Datasets
- Numeric.Datasets.Abalone
- Numeric.Datasets.Adult
- Numeric.Datasets.Anscombe
- Numeric.Datasets.BostonHousing
- Numeric.Datasets.BreastCancerWisconsin
- Numeric.Datasets.CIFAR10
- Numeric.Datasets.CO2
- Numeric.Datasets.Car
- Numeric.Datasets.Coal
- Numeric.Datasets.Gapminder
- Internal
- Numeric.Datasets.Iris
- Numeric.Datasets.Michelson
- Numeric.Datasets.Mushroom
- Numeric.Datasets.Netflix
- Numeric.Datasets.Nightingale
- Numeric.Datasets.OldFaithful
- Numeric.Datasets.Quakes
- Numeric.Datasets.States
- Numeric.Datasets.Sunspots
- Numeric.Datasets.Titanic
- Numeric.Datasets.UN
- Numeric.Datasets.Vocabulary
- Numeric.Datasets.Wine
- Numeric.Datasets.WineQuality
Downloads
- datasets-0.4.0.tar.gz [browse] (Cabal source package)
- Package description (as included in the package)
Maintainer's Corner
For package maintainers and hackage trustees
Candidates
- No Candidates
Versions [RSS] | 0.1.0, 0.1.0.1, 0.2, 0.2.0.1, 0.2.0.2, 0.2.0.3, 0.2.1, 0.2.2, 0.2.3, 0.2.4, 0.2.5, 0.3.0, 0.4.0 |
---|---|
Change log | changelog.md |
Dependencies | aeson (>=1.4.2.0), attoparsec (>=0.13), base (>=4.6 && <5), bytestring (>=0.10.8.2), cassava (>=0.5.1.0), deepseq (>=1.4.4.0), directory (>=1.3.3.0), exceptions (>=0.10.0), file-embed (>=0.0.11), filepath (>=1.4.2.1), hashable (>=1.2.7.0), JuicyPixels (>=3.3.3), microlens (>=0.4.10), mtl (>=2.2.2), mwc-random (>=0.14.0.0), parallel (>=3.2.2.0), req (>=2.0.0), safe-exceptions (>=0.1.7.0), streaming (>=0.2.2.0), streaming-attoparsec (>=1.0.0), streaming-bytestring (>=0.1.6), streaming-cassava (>=0.1.0.1), streaming-commons (>=0.2.1.0), stringsearch (>=0.3.6.6), tar (>=0.5.1.0), text (>=1.2.3.1), time (>=1.8.0.2), transformers (>=0.5.5.0), vector (>=0.12.0.2), zlib (>=0.6.2) [details] |
Tested with | ghc ==7.10.2, ghc ==7.10.3, ghc ==8.0.1, ghc ==8.4.3 |
License | MIT |
Author | Tom Nielsen <tanielsen@gmail.com> |
Maintainer | Marco Zocca <ocramz fripost org> |
Category | Statistics, Machine Learning, Data Mining, Data |
Home page | https://github.com/DataHaskell/dh-core |
Bug tracker | https://github.com/DataHaskell/dh-core/issues |
Source repo | head: git clone https://github.com/DataHaskell/dh-core/datasets |
Uploaded | by ocramz at 2019-02-12T21:11:06Z |
Distributions | |
Reverse Dependencies | 1 direct, 1 indirect [details] |
Downloads | 10164 total (25 in the last 30 days) |
Rating | 2.0 (votes: 1) [estimated by Bayesian average] |
Your Rating | |
Status | Docs available [build log] Last success reported on 2019-02-12 [all 1 reports] |