Megaparsec
This is an industrial-strength monadic parser combinator library. Megaparsec
is a feature-rich package that strikes a nice balance between speed,
flexibility, and quality of parse errors.
Features
The project provides flexible solutions to satisfy common parsing needs. The
section describes them shortly. If you're looking for comprehensive
documentation, see the section about documentation.
Core features
The package is built around MonadParsec
, an MTL-style monad transformer.
Most features work with all instances of MonadParsec
. One can achieve
various effects combining monad transformers, i.e. building a monadic stack.
Since the common monad transformers like WriterT
, StateT
, ReaderT
and
others are instances of the MonadParsec
type class, one can also wrap
ParsecT
in these monads, achieving, for example, backtracking state.
On the other hand ParsecT
is an instance of many type classes as well. The
most useful ones are Monad
, Applicative
, Alternative
, and
MonadParsec
.
Megaparsec includes all functionality that is typically available in
Parsec-like libraries and also features some combinators that are quite
unique to it:
failure
allows us to report a parse error with unexpected and expected
items.
fancyFailure
provides a way to report custom parse errors.
withRecovery
can be used to recover from parse errors “on-the-fly” and
continue parsing. Once parsing is finished, several parse errors may be
reported or ignored altogether.
observing
makes it possible to “observe” parse errors without ending
parsing (they are returned in Left
, while normal results are wrapped in
Right
).
In addition to that, Megaparsec features high-performance combinators
similar to those found in Attoparsec:
tokens
makes it easy to parse several tokens in a row (string
and
string'
are built on top of this primitive). This is about 100 times
faster than matching a string token by token. tokens
returns “chunk” of
original input, meaning that if you parse Text
, it'll return Text
without repacking.
takeWhile
and takeWhile1
are about 150 times faster than approaches
involving many
, manyTill
and other similar combinators.
takeP
allows us to grab n tokens from the stream and returns them as a
“chunk” of the stream.
Megaparsec is about as fast as Attoparsec if you write your parser carefully
(see also the section about performance).
The library can currently work with the following types of input stream
out-of-the-box:
String = [Char]
ByteString
(strict and lazy)
Text
(strict and lazy)
It's also possible to make it work with custom token streams by making them
an instance of the Stream
type class.
Error messages
Megaparsec has well-typed error messages and the ability to signal custom
parse errors to better work in user's domain of interest.
Megaparsec 7 introduced the ParseErrorBundle
data type that helps to
manage multi-error messages and pretty-print them easily and efficiently.
That version of the library also made the practice of displaying offending
line the default, similar to how recent versions of GHC do it.
Alex support
Megaparsec works well with streams of tokens produced by tools like Alex.
The design of the Stream
type class has been changed significantly in
versions 6 and 7, but user can still work with custom streams of tokens
without problems.
Character and binary parsing
Megaparsec has decent support for Unicode-aware character parsing. Functions
for character parsing live in the Text.Megaparsec.Char
module.
Similarly, there is Text.Megaparsec.Byte
module for parsing
streams of bytes.
Lexer
Text.Megaparsec.Char.Lexer
is a module that should help
you write your lexer. If you have used Parsec
in the past, this module
“fixes” its particularly inflexible Text.Parsec.Token
.
Text.Megaparsec.Char.Lexer
is intended to be imported
using a qualified import, it's not included in Text.Megaparsec
. The
module doesn't impose how you should write your parser, but certain
approaches may be more elegant than others. An especially important theme is
parsing of white space, comments, and indentation.
The design of the module allows one quickly solve simple tasks and doesn't
get in the way when the need to implement something less standard arises.
Text.Megaparsec.Byte.Lexer
is also available for users
who wish to parse binary data.
Documentation
Megaparsec is well-documented. See the current version of Megaparsec
documentation on Hackage.
Tutorials
You can find Megaparsec tutorials here. They should provide
sufficient guidance to help you start with your parsing tasks. The site also
has instructions and tips for Parsec users who decide to migrate to
Megaparsec.
Despite being flexible, Megaparsec is also fast. Here is how Megaparsec
7.0.0 compares to Attoparsec 0.13.2.2 (the fastest widely used
parsing library in the Haskell ecosystem):
Test case |
Execution time |
Allocated |
Max residency |
CSV (Attoparsec) |
76.50 μs |
397,784 |
10,544 |
CSV (Megaparsec) |
64.69 μs |
352,408 |
9,104 |
Log (Attoparsec) |
302.8 μs |
1,150,032 |
10,912 |
Log (Megaparsec) |
337.8 μs |
1,246,496 |
10,912 |
JSON (Attoparsec) |
18.20 μs |
128,368 |
9,032 |
JSON (Megaparsec) |
25.45 μs |
203,824 |
9,176 |
The benchmarks were created to guide development of Megaparsec 6 and can be
found here.
If you think your Megaparsec parser is not efficient enough, take a look at
these instructions.
Comparison with other solutions
There are quite a few libraries that can be used for parsing in Haskell,
let's compare Megaparsec with some of them.
Megaparsec vs Attoparsec
Attoparsec is another prominent Haskell library for parsing.
Although both libraries deal with parsing, it's usually easy to decide which
you will need in particular project:
-
Attoparsec is sometimes faster but not that feature-rich. It should be
used when you want to process large amounts of data where performance
matters more than quality of error messages.
-
Megaparsec is good for parsing of source code or other human-readable
texts. It has better error messages and it's implemented as monad
transformer.
So, if you work with something human-readable where size of input data is
moderate, just go with Megaparsec, otherwise Attoparsec may be a better
choice.
Megaparsec vs Parsec
Since Megaparsec is a fork of Parsec, we are bound to list the
main differences between the two libraries:
-
Better error messages. Megaparsec has well-typed error messages and custom
error messages.
-
Megaparsec can show the line on which parse error happened as part of
parse error. This makes it a lot easier to figure out where the error
happened.
-
Some quirks and “buggy features” (as well as plain bugs) of original
Parsec are fixed. There is no undocumented surprising stuff in Megaparsec.
-
Better support for Unicode parsing in Text.Megaparsec.Char
.
-
Megaparsec has more powerful combinators and can parse languages where
indentation matters out-of-the-box.
-
Better documentation.
-
Megaparsec can recover from parse errors “on the fly” and continue
parsing.
-
Megaparsec allows us to conditionally process parse errors inside your
parser before parsing is finished. In particular, it's possible to define
regions in which parse errors, should they happen, will get a “context
tag”, e.g. we could build a context stack like “in function definition
foo”, “in expression x”, etc. This is not possible with Parsec.
-
Megaparsec is faster and supports efficient operations on top of tokens
,
takeWhileP
, takeWhile1P
, takeP
like Attoparsec.
If you want to see a detailed change log, CHANGELOG.md
may be helpful.
Also see this original announcement for another
comparison.
Megaparsec vs Trifecta
Trifecta is another Haskell library featuring good error
messages. Some reasons one may question choice of Trifecta is his/her
parsing library:
-
Complicated, doesn't have any tutorials available, and documentation
doesn't help at all.
-
Trifecta can parse String
and ByteString
natively, but not Text
.
-
Trifecta's error messages may be different with their own features, but
certainly not as flexible as Megaparsec's error messages in the latest
versions.
-
Depends on lens
. This means you'll pull in half of Hackage as transitive
dependencies. Also if you're not into lens
and would like to keep your
code “vanilla”, you may not like the API.
Idris has recently switched from Trifecta to Megaparsec which
allowed it to have better error messages and fewer
dependencies.
Megaparsec vs Earley
Earley is a newer library that allows us to safely (it your code
compiles, then it probably works) parse context-free grammars (CFG).
Megaparsec is a lower-level library compared to Earley, but there are still
enough reasons to choose it:
-
Megaparsec is faster.
-
Your grammar may be not context-free or you may want introduce some sort
of state to the parsing process. Almost all non-trivial parsers require
something of this sort. Even if your grammar is context-free, state may
allow us to add some additional niceties. Earley does not support that.
-
Megaparsec's error messages are more flexible allowing to include
arbitrary data in them, return multiple error messages, mark regions that
affect any error that happens in those regions, etc.
-
The approach Earley uses differs from the conventional monadic parsing. If
you work not alone, people you work with, especially beginners, will be
much more productive with libraries taking more traditional path to
parsing like Megaparsec.
In other words, Megaparsec is less safe but also more powerful.
The following packages are designed to be used with Megaparsec (open a PR if
you want to add something to the list):
Prominent projects that use Megaparsec
Some prominent projects that use Megaparsec:
- Idris—a general-purpose
functional programming language with dependent types
- Hledger—an accounting tool
- MMark—strict markdown processor for
writers
- Stache—Mustache templates for
Haskell
- Language Puppet—library
for manipulating Puppet manifests
Links to announcements and blog posts
Here are some blog posts mainly announcing new features of the project and
describing what sort of things are now possible:
Authors
The project was started and is currently maintained by Mark Karpov. You can
find the complete list of contributors in the AUTHORS.md
file in the
official repository of the project. Thanks to all the people who propose
features and ideas, although they are not in AUTHORS.md
, without them
Megaparsec would not be so good.
Contribution
Issues (bugs, feature requests or otherwise feedback) may be reported in
the GitHub issue tracker for this project.
Pull requests are also welcome.
License
Copyright © 2015–2019 Megaparsec contributors
Copyright © 2007 Paolo Martini
Copyright © 1999–2000 Daan Leijen
Distributed under FreeBSD license.