Copyright | (C) 2013 Richard Eisenberg |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | Ryan Scott |
Stability | experimental |
Portability | non-portable |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
This module contains everything you need to derive your own singletons via
Template Haskell, exporting both Template Haskell functionality and
definitions that are likely to be mentioned in promoted or singled code.
For a version of this module that only contains the Template Haskell
functionality and nothing else, see Data.Singletons.TH from the
singletons-th
library.
Synopsis
- singletons :: OptionsMonad q => q [Dec] -> q [Dec]
- singletonsOnly :: OptionsMonad q => q [Dec] -> q [Dec]
- genSingletons :: OptionsMonad q => [Name] -> q [Dec]
- promote :: OptionsMonad q => q [Dec] -> q [Dec]
- promoteOnly :: OptionsMonad q => q [Dec] -> q [Dec]
- genDefunSymbols :: OptionsMonad q => [Name] -> q [Dec]
- genPromotions :: OptionsMonad q => [Name] -> q [Dec]
- promoteEqInstances :: OptionsMonad q => [Name] -> q [Dec]
- promoteEqInstance :: OptionsMonad q => Name -> q [Dec]
- singEqInstances :: OptionsMonad q => [Name] -> q [Dec]
- singEqInstance :: OptionsMonad q => Name -> q [Dec]
- singDecideInstances :: OptionsMonad q => [Name] -> q [Dec]
- singDecideInstance :: OptionsMonad q => Name -> q [Dec]
- promoteOrdInstances :: OptionsMonad q => [Name] -> q [Dec]
- promoteOrdInstance :: OptionsMonad q => Name -> q [Dec]
- singOrdInstances :: OptionsMonad q => [Name] -> q [Dec]
- singOrdInstance :: OptionsMonad q => Name -> q [Dec]
- promoteBoundedInstances :: OptionsMonad q => [Name] -> q [Dec]
- promoteBoundedInstance :: OptionsMonad q => Name -> q [Dec]
- singBoundedInstances :: OptionsMonad q => [Name] -> q [Dec]
- singBoundedInstance :: OptionsMonad q => Name -> q [Dec]
- promoteEnumInstances :: OptionsMonad q => [Name] -> q [Dec]
- promoteEnumInstance :: OptionsMonad q => Name -> q [Dec]
- singEnumInstances :: OptionsMonad q => [Name] -> q [Dec]
- singEnumInstance :: OptionsMonad q => Name -> q [Dec]
- promoteShowInstances :: OptionsMonad q => [Name] -> q [Dec]
- promoteShowInstance :: OptionsMonad q => Name -> q [Dec]
- singShowInstances :: OptionsMonad q => [Name] -> q [Dec]
- singShowInstance :: OptionsMonad q => Name -> q [Dec]
- showSingInstances :: OptionsMonad q => [Name] -> q [Dec]
- showSingInstance :: OptionsMonad q => Name -> q [Dec]
- singITyConInstances :: DsMonad q => [Int] -> q [Dec]
- singITyConInstance :: DsMonad q => Int -> q Dec
- cases :: DsMonad q => Name -> q Exp -> q Exp -> q Exp
- sCases :: OptionsMonad q => Name -> q Exp -> q Exp -> q Exp
- data SList :: forall (a :: Type). [a] -> Type where
- data SBool :: Bool -> Type where
- data STuple0 :: () -> Type where
- data STuple2 :: forall (a :: Type) (b :: Type). (a, b) -> Type where
- data STuple3 :: forall (a :: Type) (b :: Type) (c :: Type). (a, b, c) -> Type where
- data STuple4 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type). (a, b, c, d) -> Type where
- data STuple5 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type). (a, b, c, d, e) -> Type where
- data STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type). (a, b, c, d, e, f) -> Type where
- STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple6 ('(n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))
- data STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type). (a, b, c, d, e, f, g) -> Type where
- STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f) (n :: g). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple7 ('(n, n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))
- data SOrdering :: Ordering -> Type where
- class PEq a where
- type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ...
- sIf :: Sing a -> Sing b -> Sing c -> Sing (If a b c)
- type family (a :: Bool) && (b :: Bool) :: Bool where ...
- (%&&) :: Sing a -> Sing b -> Sing (a && b)
- class SEq a where
- class POrd a where
- class SEq a => SOrd a where
- sCompare :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering)
- (%<) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool)
- (%<=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool)
- (%>) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool)
- (%>=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool)
- sMax :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a)
- sMin :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t :: a)
- type family ThenCmp (a :: Ordering) (a :: Ordering) :: Ordering where ...
- sThenCmp :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply ThenCmpSym0 t) t :: Ordering)
- class SDecide k where
- data (a :: k) :~: (b :: k) where
- data Void
- type Refuted a = a -> Void
- data Decision a
- class PBounded a where
- class SBounded a where
- sMinBound :: Sing (MinBoundSym0 :: a)
- sMaxBound :: Sing (MaxBoundSym0 :: a)
- class PEnum a where
- class SEnum a where
- sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t :: a)
- sFromEnum :: forall (t :: a). Sing t -> Sing (Apply FromEnumSym0 t :: Natural)
- class PShow a where
- class SShow a where
- sShowsPrec :: forall (t :: Natural) (t :: a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol)
- sShow_ :: forall (t :: a). Sing t -> Sing (Apply Show_Sym0 t :: Symbol)
- sShowList :: forall (t :: [a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t :: Symbol)
- class PIsString a where
- type FromString (arg :: Symbol) :: a
- class SIsString a where
- sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t :: a)
- type family ShowString (a :: Symbol) (a :: Symbol) :: Symbol where ...
- sShowString :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowStringSym0 t) t :: Symbol)
- type family ShowParen (a :: Bool) (a :: (~>) Symbol Symbol) (a :: Symbol) :: Symbol where ...
- sShowParen :: forall (t :: Bool) (t :: (~>) Symbol Symbol) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowParenSym0 t) t) t :: Symbol)
- type family ShowSpace (a :: Symbol) :: Symbol where ...
- sShowSpace :: forall (t :: Symbol). Sing t -> Sing (Apply ShowSpaceSym0 t :: Symbol)
- type family ShowChar (a :: Char) (a :: Symbol) :: Symbol where ...
- sShowChar :: forall (t :: Char) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowCharSym0 t) t :: Symbol)
- type family ShowCommaSpace (a :: Symbol) :: Symbol where ...
- sShowCommaSpace :: forall (t :: Symbol). Sing t -> Sing (Apply ShowCommaSpaceSym0 t :: Symbol)
- type family FromInteger (arg :: Natural) :: a
- sFromInteger :: forall (t :: Natural). SNum a => Sing t -> Sing (Apply FromIntegerSym0 t :: a)
- type family Negate (arg :: a) :: a
- sNegate :: forall (t :: a). SNum a => Sing t -> Sing (Apply NegateSym0 t :: a)
- class PFunctor f where
- class SFunctor f where
- class PFoldable t where
- type Fold (arg :: t m) :: m
- type FoldMap (arg :: (~>) a m) (arg :: t a) :: m
- type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b
- type Foldr' (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b
- type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b
- type Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b
- type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
- type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
- type ToList (arg :: t a) :: [a]
- type Null (arg :: t a) :: Bool
- type Length (arg :: t a) :: Natural
- type Elem (arg :: a) (arg :: t a) :: Bool
- type Maximum (arg :: t a) :: a
- type Minimum (arg :: t a) :: a
- type Sum (arg :: t a) :: a
- type Product (arg :: t a) :: a
- class SFoldable t where
- sFold :: forall m (t :: t m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t :: m)
- sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m)
- sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b)
- sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b)
- sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b)
- sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b)
- sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a)
- sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a)
- sToList :: forall a (t :: t a). Sing t -> Sing (Apply ToListSym0 t :: [a])
- sNull :: forall a (t :: t a). Sing t -> Sing (Apply NullSym0 t :: Bool)
- sLength :: forall a (t :: t a). Sing t -> Sing (Apply LengthSym0 t :: Natural)
- sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool)
- sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a)
- sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a)
- sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a)
- sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a)
- class PMonoid a where
- class SSemigroup a => SMonoid a where
- sMempty :: Sing (MemptySym0 :: a)
- sMappend :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t :: a)
- sMconcat :: forall (t :: [a]). Sing t -> Sing (Apply MconcatSym0 t :: a)
- class PTraversable t where
- class (SFunctor t, SFoldable t) => STraversable t where
- sTraverse :: forall a f b (t :: (~>) a (f b)) (t :: t a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t :: f (t b))
- sSequenceA :: forall f a (t :: t (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t :: f (t a))
- sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b))
- sSequence :: forall m a (t :: t (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t :: m (t a))
- class PApplicative f where
- class SFunctor f => SApplicative f where
- sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t :: f a)
- (%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b)
- sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c)
- (%*>) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b)
- (%<*) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a)
- type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ...
- (%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c)
- type family Error (str :: k0) :: k where ...
- sError :: HasCallStack => Sing (str :: Symbol) -> a
- data ErrorSym0 :: (~>) k0 k
- type family ErrorSym1 (a6989586621679545715 :: k0) :: k where ...
- type family Undefined :: k where ...
- sUndefined :: HasCallStack => a
- type family UndefinedSym0 :: k where ...
- type family TrueSym0 :: Bool where ...
- type family FalseSym0 :: Bool where ...
- data (==@#@$) :: (~>) a ((~>) a Bool)
- data (==@#@$$) (a6989586621679146321 :: a) :: (~>) a Bool
- type family (a6989586621679146321 :: a) ==@#@$$$ (a6989586621679146322 :: a) :: Bool where ...
- data (>@#@$) :: (~>) a ((~>) a Bool)
- data (>@#@$$) (a6989586621679185027 :: a) :: (~>) a Bool
- type family (a6989586621679185027 :: a) >@#@$$$ (a6989586621679185028 :: a) :: Bool where ...
- data IfSym0 :: (~>) Bool ((~>) k ((~>) k k))
- data IfSym1 (a6989586621679141394 :: Bool) :: (~>) k ((~>) k k)
- data IfSym2 (a6989586621679141394 :: Bool) (a6989586621679141395 :: k) :: (~>) k k
- type family IfSym3 (a6989586621679141394 :: Bool) (a6989586621679141395 :: k) (a6989586621679141396 :: k) :: k where ...
- data (&&@#@$) :: (~>) Bool ((~>) Bool Bool)
- data (&&@#@$$) (a6989586621679140549 :: Bool) :: (~>) Bool Bool
- type family (a6989586621679140549 :: Bool) &&@#@$$$ (a6989586621679140550 :: Bool) :: Bool where ...
- type family LTSym0 :: Ordering where ...
- type family EQSym0 :: Ordering where ...
- type family GTSym0 :: Ordering where ...
- type family Tuple0Sym0 :: () where ...
- data Tuple2Sym0 :: (~>) a ((~>) b (a :: Type, b :: Type))
- data Tuple2Sym1 (a6989586621679042597 :: a) :: (~>) b (a :: Type, b :: Type)
- type family Tuple2Sym2 (a6989586621679042597 :: a) (a6989586621679042598 :: b) :: (a :: Type, b :: Type) where ...
- data Tuple3Sym0 :: (~>) a ((~>) b ((~>) c (a :: Type, b :: Type, c :: Type)))
- data Tuple3Sym1 (a6989586621679042628 :: a) :: (~>) b ((~>) c (a :: Type, b :: Type, c :: Type))
- data Tuple3Sym2 (a6989586621679042628 :: a) (a6989586621679042629 :: b) :: (~>) c (a :: Type, b :: Type, c :: Type)
- type family Tuple3Sym3 (a6989586621679042628 :: a) (a6989586621679042629 :: b) (a6989586621679042630 :: c) :: (a :: Type, b :: Type, c :: Type) where ...
- data Tuple4Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type))))
- data Tuple4Sym1 (a6989586621679042677 :: a) :: (~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type)))
- data Tuple4Sym2 (a6989586621679042677 :: a) (a6989586621679042678 :: b) :: (~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type))
- data Tuple4Sym3 (a6989586621679042677 :: a) (a6989586621679042678 :: b) (a6989586621679042679 :: c) :: (~>) d (a :: Type, b :: Type, c :: Type, d :: Type)
- type family Tuple4Sym4 (a6989586621679042677 :: a) (a6989586621679042678 :: b) (a6989586621679042679 :: c) (a6989586621679042680 :: d) :: (a :: Type, b :: Type, c :: Type, d :: Type) where ...
- data Tuple5Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)))))
- data Tuple5Sym1 (a6989586621679042746 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))))
- data Tuple5Sym2 (a6989586621679042746 :: a) (a6989586621679042747 :: b) :: (~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)))
- data Tuple5Sym3 (a6989586621679042746 :: a) (a6989586621679042747 :: b) (a6989586621679042748 :: c) :: (~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))
- data Tuple5Sym4 (a6989586621679042746 :: a) (a6989586621679042747 :: b) (a6989586621679042748 :: c) (a6989586621679042749 :: d) :: (~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)
- type family Tuple5Sym5 (a6989586621679042746 :: a) (a6989586621679042747 :: b) (a6989586621679042748 :: c) (a6989586621679042749 :: d) (a6989586621679042750 :: e) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type) where ...
- data Tuple6Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))))))
- data Tuple6Sym1 (a6989586621679042837 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))))
- data Tuple6Sym2 (a6989586621679042837 :: a) (a6989586621679042838 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))))
- data Tuple6Sym3 (a6989586621679042837 :: a) (a6989586621679042838 :: b) (a6989586621679042839 :: c) :: (~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))
- data Tuple6Sym4 (a6989586621679042837 :: a) (a6989586621679042838 :: b) (a6989586621679042839 :: c) (a6989586621679042840 :: d) :: (~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))
- data Tuple6Sym5 (a6989586621679042837 :: a) (a6989586621679042838 :: b) (a6989586621679042839 :: c) (a6989586621679042840 :: d) (a6989586621679042841 :: e) :: (~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)
- type family Tuple6Sym6 (a6989586621679042837 :: a) (a6989586621679042838 :: b) (a6989586621679042839 :: c) (a6989586621679042840 :: d) (a6989586621679042841 :: e) (a6989586621679042842 :: f) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type) where ...
- data Tuple7Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))))))
- data Tuple7Sym1 (a6989586621679042952 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))))
- data Tuple7Sym2 (a6989586621679042952 :: a) (a6989586621679042953 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))))
- data Tuple7Sym3 (a6989586621679042952 :: a) (a6989586621679042953 :: b) (a6989586621679042954 :: c) :: (~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))
- data Tuple7Sym4 (a6989586621679042952 :: a) (a6989586621679042953 :: b) (a6989586621679042954 :: c) (a6989586621679042955 :: d) :: (~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))
- data Tuple7Sym5 (a6989586621679042952 :: a) (a6989586621679042953 :: b) (a6989586621679042954 :: c) (a6989586621679042955 :: d) (a6989586621679042956 :: e) :: (~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))
- data Tuple7Sym6 (a6989586621679042952 :: a) (a6989586621679042953 :: b) (a6989586621679042954 :: c) (a6989586621679042955 :: d) (a6989586621679042956 :: e) (a6989586621679042957 :: f) :: (~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)
- type family Tuple7Sym7 (a6989586621679042952 :: a) (a6989586621679042953 :: b) (a6989586621679042954 :: c) (a6989586621679042955 :: d) (a6989586621679042956 :: e) (a6989586621679042957 :: f) (a6989586621679042958 :: g) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type) where ...
- data CompareSym0 :: (~>) a ((~>) a Ordering)
- data CompareSym1 (a6989586621679185012 :: a) :: (~>) a Ordering
- type family CompareSym2 (a6989586621679185012 :: a) (a6989586621679185013 :: a) :: Ordering where ...
- data ThenCmpSym0 :: (~>) Ordering ((~>) Ordering Ordering)
- data ThenCmpSym1 (a6989586621679184996 :: Ordering) :: (~>) Ordering Ordering
- type family ThenCmpSym2 (a6989586621679184996 :: Ordering) (a6989586621679184997 :: Ordering) :: Ordering where ...
- data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b))
- data FoldlSym1 (a6989586621680427254 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b)
- data FoldlSym2 (a6989586621680427254 :: (~>) b ((~>) a b)) (a6989586621680427255 :: b) :: (~>) (t a) b
- type family FoldlSym3 (a6989586621680427254 :: (~>) b ((~>) a b)) (a6989586621680427255 :: b) (a6989586621680427256 :: t a) :: b where ...
- type family MinBoundSym0 :: a where ...
- type family MaxBoundSym0 :: a where ...
- data ShowsPrecSym0 :: (~>) Natural ((~>) a ((~>) Symbol Symbol))
- data ShowsPrecSym1 (a6989586621680243312 :: Natural) :: (~>) a ((~>) Symbol Symbol)
- data ShowsPrecSym2 (a6989586621680243312 :: Natural) (a6989586621680243313 :: a) :: (~>) Symbol Symbol
- type family ShowsPrecSym3 (a6989586621680243312 :: Natural) (a6989586621680243313 :: a) (a6989586621680243314 :: Symbol) :: Symbol where ...
- data ShowStringSym0 :: (~>) Symbol ((~>) Symbol Symbol)
- data ShowStringSym1 (a6989586621680243267 :: Symbol) :: (~>) Symbol Symbol
- type family ShowStringSym2 (a6989586621680243267 :: Symbol) (a6989586621680243268 :: Symbol) :: Symbol where ...
- data ShowParenSym0 :: (~>) Bool ((~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol))
- data ShowParenSym1 (a6989586621680243251 :: Bool) :: (~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol)
- data ShowParenSym2 (a6989586621680243251 :: Bool) (a6989586621680243252 :: (~>) Symbol Symbol) :: (~>) Symbol Symbol
- data ShowSpaceSym0 :: (~>) Symbol Symbol
- type family ShowSpaceSym1 (a6989586621680243239 :: Symbol) :: Symbol where ...
- data ShowCharSym0 :: (~>) Char ((~>) Symbol Symbol)
- data ShowCharSym1 (a6989586621680243278 :: Char) :: (~>) Symbol Symbol
- type family ShowCharSym2 (a6989586621680243278 :: Char) (a6989586621680243279 :: Symbol) :: Symbol where ...
- data ShowCommaSpaceSym0 :: (~>) Symbol Symbol
- type family ShowCommaSpaceSym1 (a6989586621680243233 :: Symbol) :: Symbol where ...
- data FromIntegerSym0 :: (~>) Natural a
- type family FromIntegerSym1 (a6989586621679582951 :: Natural) :: a where ...
- data NegateSym0 :: (~>) a a
- type family NegateSym1 (a6989586621679582942 :: a) :: a where ...
- data FromStringSym0 :: (~>) Symbol a
- type family FromStringSym1 (a6989586621681291725 :: Symbol) :: a where ...
- data FmapSym0 :: (~>) ((~>) a b) ((~>) (f a) (f b))
- data FmapSym1 (a6989586621679337015 :: (~>) a b) :: (~>) (f a) (f b)
- type family FmapSym2 (a6989586621679337015 :: (~>) a b) (a6989586621679337016 :: f a) :: f b where ...
- data (<$@#@$) :: (~>) a ((~>) (f b) (f a))
- data (<$@#@$$) (a6989586621679337020 :: a) :: (~>) (f b) (f a)
- type family (a6989586621679337020 :: a) <$@#@$$$ (a6989586621679337021 :: f b) :: f a where ...
- data FoldMapSym0 :: (~>) ((~>) a m) ((~>) (t a) m)
- data FoldMapSym1 (a6989586621680427234 :: (~>) a m) :: (~>) (t a) m
- type family FoldMapSym2 (a6989586621680427234 :: (~>) a m) (a6989586621680427235 :: t a) :: m where ...
- type family MemptySym0 :: a where ...
- data MappendSym0 :: (~>) a ((~>) a a)
- data MappendSym1 (a6989586621680329555 :: a) :: (~>) a a
- type family MappendSym2 (a6989586621680329555 :: a) (a6989586621680329556 :: a) :: a where ...
- data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b))
- data FoldrSym1 (a6989586621680427240 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b)
- data FoldrSym2 (a6989586621680427240 :: (~>) a ((~>) b b)) (a6989586621680427241 :: b) :: (~>) (t a) b
- type family FoldrSym3 (a6989586621680427240 :: (~>) a ((~>) b b)) (a6989586621680427241 :: b) (a6989586621680427242 :: t a) :: b where ...
- data TraverseSym0 :: (~>) ((~>) a (f b)) ((~>) (t a) (f (t b)))
- data TraverseSym1 (a6989586621680777174 :: (~>) a (f b)) :: (~>) (t a) (f (t b))
- type family TraverseSym2 (a6989586621680777174 :: (~>) a (f b)) (a6989586621680777175 :: t a) :: f (t b) where ...
- data PureSym0 :: (~>) a (f a)
- type family PureSym1 (a6989586621679337039 :: a) :: f a where ...
- data (<*>@#@$) :: (~>) (f ((~>) a b)) ((~>) (f a) (f b))
- data (<*>@#@$$) (a6989586621679337043 :: f ((~>) a b)) :: (~>) (f a) (f b)
- type family (a6989586621679337043 :: f ((~>) a b)) <*>@#@$$$ (a6989586621679337044 :: f a) :: f b where ...
- data LiftA2Sym0 :: (~>) ((~>) a ((~>) b c)) ((~>) (f a) ((~>) (f b) (f c)))
- data LiftA2Sym1 (a6989586621679337049 :: (~>) a ((~>) b c)) :: (~>) (f a) ((~>) (f b) (f c))
- data LiftA2Sym2 (a6989586621679337049 :: (~>) a ((~>) b c)) (a6989586621679337050 :: f a) :: (~>) (f b) (f c)
- type family LiftA2Sym3 (a6989586621679337049 :: (~>) a ((~>) b c)) (a6989586621679337050 :: f a) (a6989586621679337051 :: f b) :: f c where ...
- data (.@#@$) :: (~>) ((~>) b c) ((~>) ((~>) a b) ((~>) a c))
- data (.@#@$$) (a6989586621679287749 :: (~>) b c) :: (~>) ((~>) a b) ((~>) a c)
- data (a6989586621679287749 :: (~>) b c) .@#@$$$ (a6989586621679287750 :: (~>) a b) :: (~>) a c
- type family ((a6989586621679287749 :: (~>) b c) .@#@$$$$ (a6989586621679287750 :: (~>) a b)) (a6989586621679287751 :: a) :: c where ...
- type family NilSym0 :: [a :: Type] where ...
- data (:@#@$) :: (~>) a ((~>) [a] [a :: Type])
- data (:@#@$$) (a6989586621679042108 :: a) :: (~>) [a] [a :: Type]
- type family (a6989586621679042108 :: a) :@#@$$$ (a6989586621679042109 :: [a]) :: [a :: Type] where ...
- class SuppressUnusedWarnings (t :: k) where
- suppressUnusedWarnings :: ()
Primary Template Haskell generation functions
singletons :: OptionsMonad q => q [Dec] -> q [Dec] #
singletonsOnly :: OptionsMonad q => q [Dec] -> q [Dec] #
genSingletons :: OptionsMonad q => [Name] -> q [Dec] #
promoteOnly :: OptionsMonad q => q [Dec] -> q [Dec] #
genDefunSymbols :: OptionsMonad q => [Name] -> q [Dec] #
genPromotions :: OptionsMonad q => [Name] -> q [Dec] #
Functions to generate equality instances
promoteEqInstances :: OptionsMonad q => [Name] -> q [Dec] #
promoteEqInstance :: OptionsMonad q => Name -> q [Dec] #
singEqInstances :: OptionsMonad q => [Name] -> q [Dec] #
singEqInstance :: OptionsMonad q => Name -> q [Dec] #
singDecideInstances :: OptionsMonad q => [Name] -> q [Dec] #
singDecideInstance :: OptionsMonad q => Name -> q [Dec] #
Functions to generate Ord
instances
promoteOrdInstances :: OptionsMonad q => [Name] -> q [Dec] #
promoteOrdInstance :: OptionsMonad q => Name -> q [Dec] #
singOrdInstances :: OptionsMonad q => [Name] -> q [Dec] #
singOrdInstance :: OptionsMonad q => Name -> q [Dec] #
Functions to generate Bounded
instances
promoteBoundedInstances :: OptionsMonad q => [Name] -> q [Dec] #
promoteBoundedInstance :: OptionsMonad q => Name -> q [Dec] #
singBoundedInstances :: OptionsMonad q => [Name] -> q [Dec] #
singBoundedInstance :: OptionsMonad q => Name -> q [Dec] #
Functions to generate Enum
instances
promoteEnumInstances :: OptionsMonad q => [Name] -> q [Dec] #
promoteEnumInstance :: OptionsMonad q => Name -> q [Dec] #
singEnumInstances :: OptionsMonad q => [Name] -> q [Dec] #
singEnumInstance :: OptionsMonad q => Name -> q [Dec] #
Functions to generate Show
instances
promoteShowInstances :: OptionsMonad q => [Name] -> q [Dec] #
promoteShowInstance :: OptionsMonad q => Name -> q [Dec] #
singShowInstances :: OptionsMonad q => [Name] -> q [Dec] #
singShowInstance :: OptionsMonad q => Name -> q [Dec] #
showSingInstances :: OptionsMonad q => [Name] -> q [Dec] #
showSingInstance :: OptionsMonad q => Name -> q [Dec] #
Utility functions
singITyConInstances :: DsMonad q => [Int] -> q [Dec] #
singITyConInstance :: DsMonad q => Int -> q Dec #
Basic singleton definitions
data SList :: forall (a :: Type). [a] -> Type where Source #
SNil :: forall (a :: Type). SList ('[] :: [a :: Type]) | |
SCons :: forall (a :: Type) (n :: a) (n :: [a]). (Sing n) -> (Sing n) -> SList ('(:) n n :: [a :: Type]) infixr 5 |
Instances
(SDecide a, SDecide [a]) => TestCoercion (SList :: [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide [a]) => TestEquality (SList :: [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing [a]) => Show (SList z) Source # | |
data SBool :: Bool -> Type where Source #
Instances
TestCoercion SBool Source # | |
Defined in Data.Singletons.Base.Instances | |
TestEquality SBool Source # | |
Defined in Data.Singletons.Base.Instances | |
Show (SBool z) Source # | |
data STuple0 :: () -> Type where Source #
Instances
TestCoercion STuple0 Source # | |
Defined in Data.Singletons.Base.Instances | |
TestEquality STuple0 Source # | |
Defined in Data.Singletons.Base.Instances | |
Show (STuple0 z) Source # | |
data STuple2 :: forall (a :: Type) (b :: Type). (a, b) -> Type where Source #
STuple2 :: forall (a :: Type) (b :: Type) (n :: a) (n :: b). (Sing n) -> (Sing n) -> STuple2 ('(n, n) :: (a :: Type, b :: Type)) |
Instances
(SDecide a, SDecide b) => TestCoercion (STuple2 :: (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b) => TestEquality (STuple2 :: (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b) => Show (STuple2 z) Source # | |
data STuple3 :: forall (a :: Type) (b :: Type) (c :: Type). (a, b, c) -> Type where Source #
STuple3 :: forall (a :: Type) (b :: Type) (c :: Type) (n :: a) (n :: b) (n :: c). (Sing n) -> (Sing n) -> (Sing n) -> STuple3 ('(n, n, n) :: (a :: Type, b :: Type, c :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c) => TestCoercion (STuple3 :: (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c) => TestEquality (STuple3 :: (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c) => Show (STuple3 z) Source # | |
data STuple4 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type). (a, b, c, d) -> Type where Source #
STuple4 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (n :: a) (n :: b) (n :: c) (n :: d). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple4 ('(n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d) => TestCoercion (STuple4 :: (a, b, c, d) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d) => TestEquality (STuple4 :: (a, b, c, d) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d) => Show (STuple4 z) Source # | |
data STuple5 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type). (a, b, c, d, e) -> Type where Source #
STuple5 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple5 ('(n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e) => TestCoercion (STuple5 :: (a, b, c, d, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e) => TestEquality (STuple5 :: (a, b, c, d, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e) => Show (STuple5 z) Source # | |
data STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type). (a, b, c, d, e, f) -> Type where Source #
STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple6 ('(n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f) => TestCoercion (STuple6 :: (a, b, c, d, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f) => TestEquality (STuple6 :: (a, b, c, d, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f) => Show (STuple6 z) Source # | |
data STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type). (a, b, c, d, e, f, g) -> Type where Source #
STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f) (n :: g). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple7 ('(n, n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f, SDecide g) => TestCoercion (STuple7 :: (a, b, c, d, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f, SDecide g) => TestEquality (STuple7 :: (a, b, c, d, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f, ShowSing g) => Show (STuple7 z) Source # | |
data SOrdering :: Ordering -> Type where Source #
SLT :: SOrdering ('LT :: Ordering) | |
SEQ :: SOrdering ('EQ :: Ordering) | |
SGT :: SOrdering ('GT :: Ordering) |
Instances
TestCoercion SOrdering Source # | |
Defined in Data.Singletons.Base.Instances | |
TestEquality SOrdering Source # | |
Defined in Data.Singletons.Base.Instances | |
Show (SOrdering z) Source # | |
Auxiliary definitions
These definitions might be mentioned in code generated by Template Haskell, so they must be in scope.
type (arg :: a) == (arg :: a) :: Bool infix 4 Source #
type a == a = Apply (Apply TFHelper_6989586621679146341Sym0 a) a
type (arg :: a) /= (arg :: a) :: Bool infix 4 Source #
type a /= a = Apply (Apply TFHelper_6989586621679146330Sym0 a) a
Instances
PEq All Source # | |
PEq Any Source # | |
PEq Void Source # | |
PEq Ordering Source # | |
PEq Natural Source # | |
PEq () Source # | |
PEq Bool Source # | |
PEq Char Source # | |
PEq Symbol Source # | |
PEq (Identity a) Source # | |
PEq (First a) Source # | |
PEq (Last a) Source # | |
PEq (Down a) Source # | |
PEq (First a) Source # | |
PEq (Last a) Source # | |
PEq (Max a) Source # | |
PEq (Min a) Source # | |
PEq (WrappedMonoid m) Source # | |
PEq (Dual a) Source # | |
PEq (Product a) Source # | |
PEq (Sum a) Source # | |
PEq (NonEmpty a) Source # | |
PEq (Maybe a) Source # | |
PEq (TYPE rep) Source # | |
PEq [a] Source # | |
PEq (Either a b) Source # | |
PEq (Proxy s) Source # | |
PEq (Arg a b) Source # | |
PEq (a, b) Source # | |
PEq (Const a b) Source # | |
PEq (a, b, c) Source # | |
PEq (a, b, c, d) Source # | |
PEq (a, b, c, d, e) Source # | |
PEq (a, b, c, d, e, f) Source # | |
PEq (a, b, c, d, e, f, g) Source # | |
type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ... #
Type-level If. If True a b
==> a
; If False a b
==> b
Nothing
(%==) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (==@#@$) t) t :: Bool) infix 4 Source #
default (%==) :: forall (t :: a) (t :: a). (Apply (Apply (==@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679146341Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (==@#@$) t) t :: Bool) Source #
(%/=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (/=@#@$) t) t :: Bool) infix 4 Source #
Instances
type Compare (arg :: a) (arg :: a) :: Ordering Source #
type Compare a a = Apply (Apply Compare_6989586621679185046Sym0 a) a
type (arg :: a) < (arg :: a) :: Bool infix 4 Source #
type a < a = Apply (Apply TFHelper_6989586621679185067Sym0 a) a
type (arg :: a) <= (arg :: a) :: Bool infix 4 Source #
type a <= a = Apply (Apply TFHelper_6989586621679185083Sym0 a) a
type (arg :: a) > (arg :: a) :: Bool infix 4 Source #
type a > a = Apply (Apply TFHelper_6989586621679185099Sym0 a) a
type (arg :: a) >= (arg :: a) :: Bool infix 4 Source #
type a >= a = Apply (Apply TFHelper_6989586621679185115Sym0 a) a
type Max (arg :: a) (arg :: a) :: a Source #
type Max a a = Apply (Apply Max_6989586621679185131Sym0 a) a
type Min (arg :: a) (arg :: a) :: a Source #
type Min a a = Apply (Apply Min_6989586621679185147Sym0 a) a
Instances
POrd All Source # | |
POrd Any Source # | |
POrd Void Source # | |
POrd Ordering Source # | |
POrd Natural Source # | |
POrd () Source # | |
POrd Bool Source # | |
POrd Char Source # | |
POrd Symbol Source # | |
POrd (Identity a) Source # | |
POrd (First a) Source # | |
POrd (Last a) Source # | |
POrd (Down a) Source # | |
POrd (First a) Source # | |
POrd (Last a) Source # | |
POrd (Max a) Source # | |
POrd (Min a) Source # | |
POrd (WrappedMonoid m) Source # | |
POrd (Dual a) Source # | |
POrd (Product a) Source # | |
POrd (Sum a) Source # | |
POrd (NonEmpty a) Source # | |
POrd (Maybe a) Source # | |
POrd [a] Source # | |
POrd (Either a b) Source # | |
POrd (Proxy s) Source # | |
POrd (Arg a b) Source # | |
POrd (a, b) Source # | |
POrd (Const a b) Source # | |
POrd (a, b, c) Source # | |
POrd (a, b, c, d) Source # | |
POrd (a, b, c, d, e) Source # | |
POrd (a, b, c, d, e, f) Source # | |
POrd (a, b, c, d, e, f, g) Source # | |
class SEq a => SOrd a where Source #
Nothing
sCompare :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering) Source #
default sCompare :: forall (t :: a) (t :: a). (Apply (Apply CompareSym0 t) t :: Ordering) ~ Apply (Apply Compare_6989586621679185046Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering) Source #
(%<) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool) infix 4 Source #
default (%<) :: forall (t :: a) (t :: a). (Apply (Apply (<@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679185067Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool) Source #
(%<=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool) infix 4 Source #
default (%<=) :: forall (t :: a) (t :: a). (Apply (Apply (<=@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679185083Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool) Source #
(%>) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool) infix 4 Source #
default (%>) :: forall (t :: a) (t :: a). (Apply (Apply (>@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679185099Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool) Source #
(%>=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool) infix 4 Source #
default (%>=) :: forall (t :: a) (t :: a). (Apply (Apply (>=@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679185115Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool) Source #
sMax :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a) Source #
default sMax :: forall (t :: a) (t :: a). (Apply (Apply MaxSym0 t) t :: a) ~ Apply (Apply Max_6989586621679185131Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a) Source #
sMin :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t :: a) Source #
Instances
SOrd Bool => SOrd All Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd Bool => SOrd Any Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd Void Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd Ordering Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd Natural Source # | |
Defined in GHC.TypeLits.Singletons.Internal sCompare :: forall (t :: Natural) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Natural) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Natural) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Natural) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Natural) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Natural) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Natural) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd () Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd Bool Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd Char Source # | |
Defined in GHC.TypeLits.Singletons.Internal sCompare :: forall (t :: Char) (t :: Char). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Char) (t :: Char). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Char) (t :: Char). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Char) (t :: Char). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Char) (t :: Char). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Char) (t :: Char). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Char) (t :: Char). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd Symbol Source # | |
Defined in GHC.TypeLits.Singletons.Internal sCompare :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (Identity a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd (Maybe a) => SOrd (First a) Source # | |
Defined in Data.Monoid.Singletons sCompare :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd (Maybe a) => SOrd (Last a) Source # | |
Defined in Data.Monoid.Singletons sCompare :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (Down a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (First a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (Last a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (Max a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (Min a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd m => SOrd (WrappedMonoid m) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (Dual a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (Product a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (Sum a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
(SOrd a, SOrd [a]) => SOrd (NonEmpty a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (Maybe a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
(SOrd a, SOrd [a]) => SOrd [a] Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
(SOrd a, SOrd b) => SOrd (Either a b) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd (Proxy s) Source # | |
Defined in Data.Proxy.Singletons sCompare :: forall (t :: Proxy s) (t :: Proxy s). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Proxy s) (t :: Proxy s). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Proxy s) (t :: Proxy s). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Proxy s) (t :: Proxy s). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Proxy s) (t :: Proxy s). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Proxy s) (t :: Proxy s). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Proxy s) (t :: Proxy s). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (Arg a b) Source # | |
Defined in Data.Semigroup.Singletons sCompare :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
(SOrd a, SOrd b) => SOrd (a, b) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
SOrd a => SOrd (Const a b) Source # | |
Defined in Data.Functor.Const.Singletons sCompare :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
(SOrd a, SOrd b, SOrd c) => SOrd (a, b, c) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d) => SOrd (a, b, c, d) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e) => SOrd (a, b, c, d, e) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f) => SOrd (a, b, c, d, e, f) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f, SOrd g) => SOrd (a, b, c, d, e, f, g) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # |
sThenCmp :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply ThenCmpSym0 t) t :: Ordering) Source #
Instances
data (a :: k) :~: (b :: k) where infix 4 #
Propositional equality. If a :~: b
is inhabited by some terminating
value, then the type a
is the same as the type b
. To use this equality
in practice, pattern-match on the a :~: b
to get out the Refl
constructor;
in the body of the pattern-match, the compiler knows that a ~ b
.
Since: base-4.7.0.0
Instances
TestCoercion ((:~:) a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
TestEquality ((:~:) a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
a ~ b => Enum (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
Show (a :~: b) | Since: base-4.7.0.0 |
Eq (a :~: b) | Since: base-4.7.0.0 |
Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality |
Uninhabited data type
Since: base-4.8.0.0
Instances
Data Void | Since: base-4.8.0.0 |
Defined in Data.Void gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Semigroup Void | Since: base-4.9.0.0 |
Exception Void | Since: base-4.8.0.0 |
Defined in Data.Void toException :: Void -> SomeException # fromException :: SomeException -> Maybe Void # displayException :: Void -> String # | |
Generic Void | |
Ix Void | Since: base-4.8.0.0 |
Read Void | Reading a Since: base-4.8.0.0 |
Show Void | Since: base-4.8.0.0 |
Eq Void | Since: base-4.8.0.0 |
Ord Void | Since: base-4.8.0.0 |
SingKind Void | |
SDecide Void Source # | |
PEq Void Source # | |
SEq Void Source # | |
POrd Void Source # | |
SOrd Void Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source # (%<) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source # (%<=) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source # (%>) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source # (%>=) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source # sMax :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source # sMin :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source # | |
PSemigroup Void Source # | |
SSemigroup Void Source # | |
PShow Void Source # | |
SShow Void Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: Void) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Void). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Void]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
TestCoercion SVoid Source # | |
Defined in Data.Singletons.Base.Instances | |
TestEquality SVoid Source # | |
Defined in Data.Singletons.Base.Instances | |
Lift Void | Since: template-haskell-2.15.0.0 |
SingI (AbsurdSym0 :: TyFun Void a -> Type) | |
Defined in Data.Void.Singletons sing :: Sing AbsurdSym0 | |
SuppressUnusedWarnings (AbsurdSym0 :: TyFun Void a -> Type) Source # | |
Defined in Data.Void.Singletons suppressUnusedWarnings :: () # | |
type Rep Void | Since: base-4.8.0.0 |
type Demote Void | |
Defined in Data.Singletons.Base.Instances | |
type Sing Source # | |
Defined in Data.Singletons.Base.Instances | |
type Sconcat (arg :: NonEmpty Void) Source # | |
Defined in Data.Semigroup.Singletons.Internal | |
type Show_ (arg :: Void) Source # | |
Defined in Text.Show.Singletons | |
type (arg1 :: Void) /= (arg2 :: Void) Source # | |
Defined in Data.Eq.Singletons | |
type (a1 :: Void) == (a2 :: Void) Source # | |
Defined in Data.Eq.Singletons | |
type (arg1 :: Void) < (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type (arg1 :: Void) <= (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type (arg1 :: Void) > (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type (arg1 :: Void) >= (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type Compare (a1 :: Void) (a2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type Max (arg1 :: Void) (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type Min (arg1 :: Void) (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type (a1 :: Void) <> (a2 :: Void) Source # | |
Defined in Data.Semigroup.Singletons.Internal | |
type ShowList (arg1 :: [Void]) arg2 Source # | |
Defined in Text.Show.Singletons | |
type ShowsPrec a1 (a2 :: Void) a3 Source # | |
Defined in Text.Show.Singletons | |
type Apply (AbsurdSym0 :: TyFun Void k2 -> Type) (a6989586621679286143 :: Void) | |
Defined in Data.Void.Singletons type Apply (AbsurdSym0 :: TyFun Void k2 -> Type) (a6989586621679286143 :: Void) = Absurd a6989586621679286143 :: k2 |
Instances
PBounded All Source # | |
PBounded Any Source # | |
PBounded Ordering Source # | |
PBounded () Source # | |
PBounded Bool Source # | |
PBounded Char Source # | |
PBounded (Identity a) Source # | |
PBounded (First a) Source # | |
PBounded (Last a) Source # | |
PBounded (Max a) Source # | |
PBounded (Min a) Source # | |
PBounded (WrappedMonoid m) Source # | |
PBounded (Dual a) Source # | |
PBounded (Product a) Source # | |
PBounded (Sum a) Source # | |
PBounded (Proxy s) Source # | |
PBounded (a, b) Source # | |
PBounded (Const a b) Source # | |
PBounded (a, b, c) Source # | |
PBounded (a, b, c, d) Source # | |
PBounded (a, b, c, d, e) Source # | |
PBounded (a, b, c, d, e, f) Source # | |
PBounded (a, b, c, d, e, f, g) Source # | |
class SBounded a where Source #
sMinBound :: Sing (MinBoundSym0 :: a) Source #
sMaxBound :: Sing (MaxBoundSym0 :: a) Source #
Instances
Instances
PEnum Ordering Source # | |
PEnum Natural Source # | |
PEnum () Source # | |
PEnum Bool Source # | |
PEnum Char Source # | |
PEnum (Identity a) Source # | |
PEnum (First a) Source # | |
PEnum (Last a) Source # | |
PEnum (Max a) Source # | |
PEnum (Min a) Source # | |
PEnum (WrappedMonoid a) Source # | |
PEnum (Proxy s) Source # | |
PEnum (Const a b) Source # | |
sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t :: a) Source #
sFromEnum :: forall (t :: a). Sing t -> Sing (Apply FromEnumSym0 t :: Natural) Source #
Instances
SEnum Ordering Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Ordering). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Ordering). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Ordering). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: Ordering) (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum Natural Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Natural). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Natural). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Natural). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: Natural) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: Natural) (t :: Natural) (t :: Natural). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum () Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: ()). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: ()). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: ()). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: ()) (t :: ()) (t :: ()). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum Bool Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Bool). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Bool). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Bool). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: Bool) (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum Char Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Char). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Char). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Char). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: Char) (t :: Char). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: Char) (t :: Char) (t :: Char). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum a => SEnum (Identity a) Source # | |
Defined in Data.Functor.Identity.Singletons sSucc :: forall (t :: Identity a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Identity a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Identity a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: Identity a) (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum a => SEnum (First a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: First a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: First a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: First a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: First a) (t :: First a) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum a => SEnum (Last a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: Last a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Last a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Last a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: Last a) (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum a => SEnum (Max a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: Max a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Max a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Max a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: Max a) (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum a => SEnum (Min a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: Min a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Min a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Min a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: Min a) (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum a => SEnum (WrappedMonoid a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: WrappedMonoid a) (t :: WrappedMonoid a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: WrappedMonoid a) (t :: WrappedMonoid a) (t :: WrappedMonoid a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum (Proxy s) Source # | |
Defined in Data.Proxy.Singletons sSucc :: forall (t :: Proxy s). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Proxy s). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Proxy s). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: Proxy s) (t :: Proxy s). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: Proxy s) (t :: Proxy s) (t :: Proxy s). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # | |
SEnum a => SEnum (Const a b) Source # | |
Defined in Data.Functor.Const.Singletons sSucc :: forall (t :: Const a b). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Const a b). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Const a b). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source # sEnumFromThenTo :: forall (t :: Const a b) (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source # |
type ShowsPrec (arg :: Natural) (arg :: a) (arg :: Symbol) :: Symbol Source #
type ShowsPrec a a a = Apply (Apply (Apply ShowsPrec_6989586621680243326Sym0 a) a) a
type Show_ (arg :: a) :: Symbol Source #
type Show_ a = Apply Show__6989586621680243338Sym0 a
type ShowList (arg :: [a]) (arg :: Symbol) :: Symbol Source #
type ShowList a a = Apply (Apply ShowList_6989586621680243346Sym0 a) a
Instances
PShow All Source # | |
PShow Any Source # | |
PShow Void Source # | |
PShow Ordering Source # | |
PShow Natural Source # | |
PShow () Source # | |
PShow Bool Source # | |
PShow Char Source # | |
PShow Symbol Source # | |
PShow (Identity a) Source # | |
PShow (First a) Source # | |
PShow (Last a) Source # | |
PShow (First a) Source # | |
PShow (Last a) Source # | |
PShow (Max a) Source # | |
PShow (Min a) Source # | |
PShow (WrappedMonoid m) Source # | |
PShow (Dual a) Source # | |
PShow (Product a) Source # | |
PShow (Sum a) Source # | |
PShow (NonEmpty a) Source # | |
PShow (Maybe a) Source # | |
PShow [a] Source # | |
PShow (Either a b) Source # | |
PShow (Proxy s) Source # | |
PShow (Arg a b) Source # | |
PShow (a, b) Source # | |
PShow (Const a b) Source # | |
PShow (a, b, c) Source # | |
PShow (a, b, c, d) Source # | |
PShow (a, b, c, d, e) Source # | |
PShow (a, b, c, d, e, f) Source # | |
PShow (a, b, c, d, e, f, g) Source # | |
Nothing
sShowsPrec :: forall (t :: Natural) (t :: a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) Source #
default sShowsPrec :: forall (t :: Natural) (t :: a) (t :: Symbol). (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) ~ Apply (Apply (Apply ShowsPrec_6989586621680243326Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) Source #
sShow_ :: forall (t :: a). Sing t -> Sing (Apply Show_Sym0 t :: Symbol) Source #
default sShow_ :: forall (t :: a). (Apply Show_Sym0 t :: Symbol) ~ Apply Show__6989586621680243338Sym0 t => Sing t -> Sing (Apply Show_Sym0 t :: Symbol) Source #
sShowList :: forall (t :: [a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t :: Symbol) Source #
Instances
SShow Bool => SShow All Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t :: Natural) (t :: All) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: All). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [All]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow Bool => SShow Any Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t :: Natural) (t :: Any) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Any). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Any]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow Void Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: Void) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Void). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Void]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow Ordering Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: Ordering) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Ordering). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Ordering]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow Natural Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: Natural) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Natural). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Natural]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow () Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: ()) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: ()). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [()]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow Bool Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: Bool) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Bool). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Bool]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow Char Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: Char) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Char). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Char]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow Symbol Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Symbol). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Symbol]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow a => SShow (Identity a) Source # | |
Defined in Data.Functor.Identity.Singletons sShowsPrec :: forall (t :: Natural) (t :: Identity a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Identity a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Identity a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow (Maybe a) => SShow (First a) Source # | |
Defined in Data.Monoid.Singletons sShowsPrec :: forall (t :: Natural) (t :: First a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: First a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [First a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow (Maybe a) => SShow (Last a) Source # | |
Defined in Data.Monoid.Singletons sShowsPrec :: forall (t :: Natural) (t :: Last a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Last a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Last a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow a => SShow (First a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t :: Natural) (t :: First a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: First a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [First a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow a => SShow (Last a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t :: Natural) (t :: Last a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Last a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Last a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow a => SShow (Max a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t :: Natural) (t :: Max a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Max a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Max a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow a => SShow (Min a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t :: Natural) (t :: Min a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Min a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Min a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow m => SShow (WrappedMonoid m) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t :: Natural) (t :: WrappedMonoid m) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: WrappedMonoid m). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [WrappedMonoid m]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow a => SShow (Dual a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t :: Natural) (t :: Dual a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Dual a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Dual a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow a => SShow (Product a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t :: Natural) (t :: Product a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Product a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Product a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow a => SShow (Sum a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t :: Natural) (t :: Sum a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Sum a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Sum a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
(SShow a, SShow [a]) => SShow (NonEmpty a) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: NonEmpty a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: NonEmpty a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [NonEmpty a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow a => SShow (Maybe a) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: Maybe a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Maybe a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Maybe a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow a => SShow [a] Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: [a]) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: [a]). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [[a]]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
(SShow a, SShow b) => SShow (Either a b) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: Either a b) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Either a b). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Either a b]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow (Proxy s) Source # | |
Defined in Data.Proxy.Singletons sShowsPrec :: forall (t :: Natural) (t :: Proxy s) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Proxy s). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Proxy s]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
(SShow a, SShow b) => SShow (Arg a b) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t :: Natural) (t :: Arg a b) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Arg a b). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Arg a b]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
(SShow a, SShow b) => SShow (a, b) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: (a, b)) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: (a, b)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [(a, b)]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
SShow a => SShow (Const a b) Source # | |
Defined in Data.Functor.Const.Singletons sShowsPrec :: forall (t :: Natural) (t :: Const a b) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: Const a b). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [Const a b]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
(SShow a, SShow b, SShow c) => SShow (a, b, c) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: (a, b, c)) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: (a, b, c)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [(a, b, c)]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
(SShow a, SShow b, SShow c, SShow d) => SShow (a, b, c, d) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: (a, b, c, d)) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: (a, b, c, d)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [(a, b, c, d)]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
(SShow a, SShow b, SShow c, SShow d, SShow e) => SShow (a, b, c, d, e) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: (a, b, c, d, e)) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: (a, b, c, d, e)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [(a, b, c, d, e)]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
(SShow a, SShow b, SShow c, SShow d, SShow e, SShow f) => SShow (a, b, c, d, e, f) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: (a, b, c, d, e, f)) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: (a, b, c, d, e, f)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [(a, b, c, d, e, f)]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # | |
(SShow a, SShow b, SShow c, SShow d, SShow e, SShow f, SShow g) => SShow (a, b, c, d, e, f, g) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t :: Natural) (t :: (a, b, c, d, e, f, g)) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source # sShow_ :: forall (t :: (a, b, c, d, e, f, g)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t :: [(a, b, c, d, e, f, g)]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source # |
type FromString (arg :: Symbol) :: a Source #
Instances
PIsString Symbol Source # | |
Defined in Data.String.Singletons type FromString arg :: a Source # | |
PIsString (Identity a) Source # | |
Defined in Data.String.Singletons type FromString arg :: a Source # | |
PIsString (Const a b) Source # | |
Defined in Data.String.Singletons type FromString arg :: a Source # |
class SIsString a where Source #
sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t :: a) Source #
Instances
SIsString Symbol Source # | |
Defined in Data.String.Singletons sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t) Source # | |
SIsString a => SIsString (Identity a) Source # | |
Defined in Data.String.Singletons sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t) Source # | |
SIsString a => SIsString (Const a b) Source # | |
Defined in Data.String.Singletons sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t) Source # |
type family ShowString (a :: Symbol) (a :: Symbol) :: Symbol where ... Source #
ShowString a_6989586621680243260 a_6989586621680243262 = Apply (Apply (<>@#@$) a_6989586621680243260) a_6989586621680243262 |
sShowString :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowStringSym0 t) t :: Symbol) Source #
type family ShowParen (a :: Bool) (a :: (~>) Symbol Symbol) (a :: Symbol) :: Symbol where ... Source #
ShowParen b p a_6989586621680243245 = Apply (Case_6989586621680243257 b p a_6989586621680243245 b) a_6989586621680243245 |
sShowParen :: forall (t :: Bool) (t :: (~>) Symbol Symbol) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowParenSym0 t) t) t :: Symbol) Source #
type family ShowSpace (a :: Symbol) :: Symbol where ... Source #
ShowSpace a_6989586621680243235 = Apply (Apply Lambda_6989586621680243241Sym0 a_6989586621680243235) a_6989586621680243235 |
sShowSpace :: forall (t :: Symbol). Sing t -> Sing (Apply ShowSpaceSym0 t :: Symbol) Source #
type family ShowChar (a :: Char) (a :: Symbol) :: Symbol where ... Source #
ShowChar a_6989586621680243271 a_6989586621680243273 = Apply (Apply ConsSymbolSym0 a_6989586621680243271) a_6989586621680243273 |
sShowChar :: forall (t :: Char) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowCharSym0 t) t :: Symbol) Source #
type family ShowCommaSpace (a :: Symbol) :: Symbol where ... Source #
ShowCommaSpace a_6989586621680243229 = Apply (Apply ShowStringSym0 ", ") a_6989586621680243229 |
sShowCommaSpace :: forall (t :: Symbol). Sing t -> Sing (Apply ShowCommaSpaceSym0 t :: Symbol) Source #
type family FromInteger (arg :: Natural) :: a Source #
Instances
type FromInteger a Source # | |
Defined in GHC.Num.Singletons type FromInteger a = a | |
type FromInteger a2 Source # | |
Defined in Data.Functor.Identity.Singletons type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in GHC.Num.Singletons type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in Data.Semigroup.Singletons type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in Data.Semigroup.Singletons type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in Data.Semigroup.Singletons.Internal type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in Data.Semigroup.Singletons.Internal type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in Data.Functor.Const.Singletons type FromInteger a2 |
sFromInteger :: forall (t :: Natural). SNum a => Sing t -> Sing (Apply FromIntegerSym0 t :: a) Source #
type family Negate (arg :: a) :: a Source #
Instances
type Negate (a :: Natural) Source # | |
Defined in GHC.Num.Singletons | |
type Negate (a2 :: Identity a1) Source # | |
Defined in Data.Functor.Identity.Singletons | |
type Negate (a2 :: Down a1) Source # | |
Defined in GHC.Num.Singletons | |
type Negate (a2 :: Max a1) Source # | |
Defined in Data.Semigroup.Singletons | |
type Negate (a2 :: Min a1) Source # | |
Defined in Data.Semigroup.Singletons | |
type Negate (a2 :: Product a1) Source # | |
Defined in Data.Semigroup.Singletons.Internal | |
type Negate (a2 :: Sum a1) Source # | |
Defined in Data.Semigroup.Singletons.Internal | |
type Negate (a2 :: Const a1 b) Source # | |
Defined in Data.Functor.Const.Singletons |
type Fmap (arg :: (~>) a b) (arg :: f a) :: f b Source #
type (arg :: a) <$ (arg :: f b) :: f a infixl 4 Source #
type a <$ a = Apply (Apply TFHelper_6989586621679337024Sym0 a) a
Instances
PFunctor Identity Source # | |
PFunctor First Source # | |
PFunctor Last Source # | |
PFunctor Down Source # | |
PFunctor First Source # | |
PFunctor Last Source # | |
PFunctor Max Source # | |
PFunctor Min Source # | |
PFunctor Dual Source # | |
PFunctor Product Source # | |
PFunctor Sum Source # | |
PFunctor NonEmpty Source # | |
PFunctor Maybe Source # | |
PFunctor [] Source # | |
PFunctor (Either a) Source # | |
PFunctor (Proxy :: Type -> Type) Source # | |
PFunctor (Arg a) Source # | |
PFunctor ((,) a) Source # | |
PFunctor (Const m :: Type -> Type) Source # | |
PFunctor (Product f g) Source # | |
PFunctor (Sum f g) Source # | |
PFunctor (Compose f g) Source # | |
class SFunctor f where Source #
sFmap :: forall a b (t :: (~>) a b) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t :: f b) Source #
(%<$) :: forall a b (t :: a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a) infixl 4 Source #
Instances
SFunctor Identity Source # | |
SFunctor First Source # | |
SFunctor Last Source # | |
SFunctor Down Source # | |
SFunctor First Source # | |
SFunctor Last Source # | |
SFunctor Max Source # | |
SFunctor Min Source # | |
SFunctor Dual Source # | |
SFunctor Product Source # | |
SFunctor Sum Source # | |
SFunctor NonEmpty Source # | |
SFunctor Maybe Source # | |
SFunctor [] Source # | |
SFunctor (Either a) Source # | |
SFunctor (Proxy :: Type -> Type) Source # | |
SFunctor (Arg a) Source # | |
SFunctor ((,) a) Source # | |
SFunctor (Const m :: Type -> Type) Source # | |
(SFunctor f, SFunctor g) => SFunctor (Product f g) Source # | |
(SFunctor f, SFunctor g) => SFunctor (Sum f g) Source # | |
(SFunctor f, SFunctor g) => SFunctor (Compose f g) Source # | |
type Fold (arg :: t m) :: m Source #
type Fold a = Apply Fold_6989586621680427301Sym0 a
type FoldMap (arg :: (~>) a m) (arg :: t a) :: m Source #
type FoldMap a a = Apply (Apply FoldMap_6989586621680427311Sym0 a) a
type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #
type Foldr a a a = Apply (Apply (Apply Foldr_6989586621680427325Sym0 a) a) a
type Foldr' (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #
type Foldr' a a a = Apply (Apply (Apply Foldr'_6989586621680427340Sym0 a) a) a
type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #
type Foldl a a a = Apply (Apply (Apply Foldl_6989586621680427363Sym0 a) a) a
type Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #
type Foldl' a a a = Apply (Apply (Apply Foldl'_6989586621680427378Sym0 a) a) a
type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #
type Foldr1 a a = Apply (Apply Foldr1_6989586621680427400Sym0 a) a
type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #
type Foldl1 a a = Apply (Apply Foldl1_6989586621680427421Sym0 a) a
type ToList (arg :: t a) :: [a] Source #
type ToList a = Apply ToList_6989586621680427441Sym0 a
type Null (arg :: t a) :: Bool Source #
type Null a = Apply Null_6989586621680427450Sym0 a
type Length (arg :: t a) :: Natural Source #
type Length a = Apply Length_6989586621680427467Sym0 a
type Elem (arg :: a) (arg :: t a) :: Bool Source #
type Elem a a = Apply (Apply Elem_6989586621680427486Sym0 a) a
type Maximum (arg :: t a) :: a Source #
type Maximum a = Apply Maximum_6989586621680427500Sym0 a
type Minimum (arg :: t a) :: a Source #
type Minimum a = Apply Minimum_6989586621680427515Sym0 a
type Sum (arg :: t a) :: a Source #
type Sum a = Apply Sum_6989586621680427530Sym0 a
type Product (arg :: t a) :: a Source #
type Product a = Apply Product_6989586621680427539Sym0 a
Instances
PFoldable Identity Source # | |
Defined in Data.Functor.Identity.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable First Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Last Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable First Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Last Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Max Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Min Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Dual Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Product Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Sum Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable NonEmpty Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Maybe Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable [] Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Either a) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Proxy :: Type -> Type) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Arg a) Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable ((,) a) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Const m :: Type -> Type) Source # | |
Defined in Data.Functor.Const.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Sum f g) Source # | |
Defined in Data.Functor.Sum.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # |
class SFoldable t where Source #
Nothing
sFold :: forall m (t :: t m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t :: m) Source #
default sFold :: forall m (t :: t m). ((Apply FoldSym0 t :: m) ~ Apply Fold_6989586621680427301Sym0 t, SMonoid m) => Sing t -> Sing (Apply FoldSym0 t :: m) Source #
sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #
default sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). ((Apply (Apply FoldMapSym0 t) t :: m) ~ Apply (Apply FoldMap_6989586621680427311Sym0 t) t, SMonoid m) => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #
sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #
default sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldrSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr_6989586621680427325Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #
sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #
default sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr'_6989586621680427340Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #
sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #
default sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldlSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl_6989586621680427363Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #
sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #
default sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl'_6989586621680427378Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #
sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #
default sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldr1Sym0 t) t :: a) ~ Apply (Apply Foldr1_6989586621680427400Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #
sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #
default sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldl1Sym0 t) t :: a) ~ Apply (Apply Foldl1_6989586621680427421Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #
sToList :: forall a (t :: t a). Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #
default sToList :: forall a (t :: t a). (Apply ToListSym0 t :: [a]) ~ Apply ToList_6989586621680427441Sym0 t => Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #
sNull :: forall a (t :: t a). Sing t -> Sing (Apply NullSym0 t :: Bool) Source #
default sNull :: forall a (t :: t a). (Apply NullSym0 t :: Bool) ~ Apply Null_6989586621680427450Sym0 t => Sing t -> Sing (Apply NullSym0 t :: Bool) Source #
sLength :: forall a (t :: t a). Sing t -> Sing (Apply LengthSym0 t :: Natural) Source #
default sLength :: forall a (t :: t a). (Apply LengthSym0 t :: Natural) ~ Apply Length_6989586621680427467Sym0 t => Sing t -> Sing (Apply LengthSym0 t :: Natural) Source #
sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #
default sElem :: forall a (t :: a) (t :: t a). ((Apply (Apply ElemSym0 t) t :: Bool) ~ Apply (Apply Elem_6989586621680427486Sym0 t) t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #
sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #
default sMaximum :: forall a (t :: t a). ((Apply MaximumSym0 t :: a) ~ Apply Maximum_6989586621680427500Sym0 t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #
sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #
default sMinimum :: forall a (t :: t a). ((Apply MinimumSym0 t :: a) ~ Apply Minimum_6989586621680427515Sym0 t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #
sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a) Source #
default sSum :: forall a (t :: t a). ((Apply SumSym0 t :: a) ~ Apply Sum_6989586621680427530Sym0 t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a) Source #
sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a) Source #
default sProduct :: forall a (t :: t a). ((Apply ProductSym0 t :: a) ~ Apply Product_6989586621680427539Sym0 t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a) Source #
Instances
SFoldable Identity Source # | |
Defined in Data.Functor.Identity.Singletons sFold :: forall m (t :: Identity m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Identity a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Identity a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Identity a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Identity a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Identity a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable First Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Last Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable First Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Last Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Max Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t :: Max m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Max a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Max a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Max a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Max a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Max a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Min Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t :: Min m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Min a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Min a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Min a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Min a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Min a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Dual Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Dual m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Dual a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Dual a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Dual a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Dual a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Dual a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Product Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Product m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Product a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Product a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Product a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Product a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Product a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Sum Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Sum m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Sum a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Sum a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Sum a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Sum a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Sum a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable NonEmpty Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: NonEmpty m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: NonEmpty a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: NonEmpty a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Maybe Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Maybe m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Maybe a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Maybe a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Maybe a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Maybe a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Maybe a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable [] Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: [m]). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: [a]). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: [a]). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: [a]). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: [a]). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable (Either a) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Either a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Either a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a0 (t :: a0) (t :: Either a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable (Proxy :: Type -> Type) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Proxy m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Proxy a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Proxy a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Proxy a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Proxy a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Proxy a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Proxy a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Proxy a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Proxy a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Proxy a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Proxy a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Proxy a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable (Arg a) Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t :: Arg a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Arg a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a0 (t :: a0) (t :: Arg a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable ((,) a) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: (a, m)). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: (a, a0)). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a0 (t :: a0) (t :: (a, a0)). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable (Const m :: Type -> Type) Source # | |
Defined in Data.Functor.Const.Singletons sFold :: forall m0 (t :: Const m m0). SMonoid m0 => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m0 (t :: a ~> m0) (t :: Const m a). SMonoid m0 => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Const m a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Const m a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Const m a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Const m a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
(SFoldable f, SFoldable g) => SFoldable (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons sFold :: forall m (t :: Product f g m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Product f g a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Product f g a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Product f g a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Product f g a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Product f g a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Product f g a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Product f g a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Product f g a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Product f g a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Product f g a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Product f g a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
(SFoldable f, SFoldable g) => SFoldable (Sum f g) Source # | |
Defined in Data.Functor.Sum.Singletons sFold :: forall m (t :: Sum f g m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Sum f g a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum f g a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum f g a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Sum f g a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Sum f g a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Sum f g a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Sum f g a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Sum f g a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Sum f g a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Sum f g a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Sum f g a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
(SFoldable f, SFoldable g) => SFoldable (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons sFold :: forall m (t :: Compose f g m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Compose f g a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Compose f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Compose f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Compose f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Compose f g a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Compose f g a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Compose f g a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Compose f g a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Compose f g a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Compose f g a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Compose f g a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Compose f g a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Compose f g a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Compose f g a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Compose f g a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # |
type Mappend (arg :: a) (arg :: a) :: a Source #
type Mappend a a = Apply (Apply Mappend_6989586621680329562Sym0 a) a
type Mconcat (arg :: [a]) :: a Source #
type Mconcat a = Apply Mconcat_6989586621680329576Sym0 a
Instances
PMonoid All Source # | |
PMonoid Any Source # | |
PMonoid Ordering Source # | |
PMonoid () Source # | |
PMonoid Symbol Source # | |
PMonoid (Identity a) Source # | |
PMonoid (First a) Source # | |
PMonoid (Last a) Source # | |
PMonoid (Down a) Source # | |
PMonoid (Max a) Source # | |
PMonoid (Min a) Source # | |
PMonoid (WrappedMonoid m) Source # | |
PMonoid (Dual a) Source # | |
PMonoid (Product a) Source # | |
PMonoid (Sum a) Source # | |
PMonoid (Maybe a) Source # | |
PMonoid [a] Source # | |
PMonoid (Proxy s) Source # | |
PMonoid (a ~> b) Source # | |
PMonoid (a, b) Source # | |
PMonoid (Const a b) Source # | |
PMonoid (a, b, c) Source # | |
PMonoid (a, b, c, d) Source # | |
PMonoid (a, b, c, d, e) Source # | |
class SSemigroup a => SMonoid a where Source #
sMempty :: Sing (MemptySym0 :: a) Source #
sMappend :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t :: a) Source #
default sMappend :: forall (t :: a) (t :: a). (Apply (Apply MappendSym0 t) t :: a) ~ Apply (Apply Mappend_6989586621680329562Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t :: a) Source #
sMconcat :: forall (t :: [a]). Sing t -> Sing (Apply MconcatSym0 t :: a) Source #
default sMconcat :: forall (t :: [a]). (Apply MconcatSym0 t :: a) ~ Apply Mconcat_6989586621680329576Sym0 t => Sing t -> Sing (Apply MconcatSym0 t :: a) Source #
Instances
class PTraversable t Source #
type Traverse (arg :: (~>) a (f b)) (arg :: t a) :: f (t b) Source #
type Traverse a a = Apply (Apply Traverse_6989586621680777189Sym0 a) a
type SequenceA (arg :: t (f a)) :: f (t a) Source #
type SequenceA a = Apply SequenceA_6989586621680777201Sym0 a
type MapM (arg :: (~>) a (m b)) (arg :: t a) :: m (t b) Source #
type MapM a a = Apply (Apply MapM_6989586621680777211Sym0 a) a
type Sequence (arg :: t (m a)) :: m (t a) Source #
type Sequence a = Apply Sequence_6989586621680777225Sym0 a
Instances
PTraversable Identity Source # | |
PTraversable First Source # | |
PTraversable Last Source # | |
PTraversable First Source # | |
PTraversable Last Source # | |
PTraversable Max Source # | |
PTraversable Min Source # | |
PTraversable Dual Source # | |
PTraversable Product Source # | |
PTraversable Sum Source # | |
PTraversable NonEmpty Source # | |
PTraversable Maybe Source # | |
PTraversable [] Source # | |
PTraversable (Either a) Source # | |
PTraversable (Proxy :: Type -> Type) Source # | |
PTraversable (Arg a) Source # | |
PTraversable ((,) a) Source # | |
PTraversable (Const m :: Type -> Type) Source # | |
PTraversable (Product f g) Source # | |
PTraversable (Sum f g) Source # | |
PTraversable (Compose f g) Source # | |
class (SFunctor t, SFoldable t) => STraversable t where Source #
Nothing
sTraverse :: forall a f b (t :: (~>) a (f b)) (t :: t a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t :: f (t b)) Source #
default sTraverse :: forall a f b (t :: (~>) a (f b)) (t :: t a). ((Apply (Apply TraverseSym0 t) t :: f (t b)) ~ Apply (Apply Traverse_6989586621680777189Sym0 t) t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t :: f (t b)) Source #
sSequenceA :: forall f a (t :: t (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t :: f (t a)) Source #
default sSequenceA :: forall f a (t :: t (f a)). ((Apply SequenceASym0 t :: f (t a)) ~ Apply SequenceA_6989586621680777201Sym0 t, SApplicative f) => Sing t -> Sing (Apply SequenceASym0 t :: f (t a)) Source #
sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b)) Source #
default sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). ((Apply (Apply MapMSym0 t) t :: m (t b)) ~ Apply (Apply MapM_6989586621680777211Sym0 t) t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b)) Source #
sSequence :: forall m a (t :: t (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t :: m (t a)) Source #
default sSequence :: forall m a (t :: t (m a)). ((Apply SequenceSym0 t :: m (t a)) ~ Apply Sequence_6989586621680777225Sym0 t, SMonad m) => Sing t -> Sing (Apply SequenceSym0 t :: m (t a)) Source #
Instances
STraversable Identity Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Identity a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: Identity (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Identity a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Identity (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable First Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: First a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: First (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: First a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: First (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable Last Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Last a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: Last (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Last a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Last (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable First Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: First a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: First (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: First a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: First (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable Last Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Last a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: Last (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Last a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Last (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable Max Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Max a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: Max (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Max a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Max (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable Min Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Min a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: Min (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Min a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Min (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable Dual Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Dual a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: Dual (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Dual a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Dual (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable Product Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Product a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: Product (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Product a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Product (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable Sum Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Sum a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: Sum (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Sum a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Sum (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable NonEmpty Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: NonEmpty a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: NonEmpty (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: NonEmpty a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: NonEmpty (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable Maybe Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Maybe a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: Maybe (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Maybe a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Maybe (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable [] Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: [a]). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: [f a]). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: [a]). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: [m a]). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable (Either a) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a0 (f :: Type -> Type) b (t :: a0 ~> f b) (t :: Either a a0). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a0 (t :: Either a (f a0)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a0 (m :: Type -> Type) b (t :: a0 ~> m b) (t :: Either a a0). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a0 (t :: Either a (m a0)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable (Proxy :: Type -> Type) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Proxy a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: Proxy (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Proxy a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Proxy (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable (Arg a) Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a0 (f :: Type -> Type) b (t :: a0 ~> f b) (t :: Arg a a0). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a0 (t :: Arg a (f a0)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a0 (m :: Type -> Type) b (t :: a0 ~> m b) (t :: Arg a a0). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a0 (t :: Arg a (m a0)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable ((,) a) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a0 (f :: Type -> Type) b (t :: a0 ~> f b) (t :: (a, a0)). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a0 (t :: (a, f a0)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a0 (m :: Type -> Type) b (t :: a0 ~> m b) (t :: (a, a0)). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a0 (t :: (a, m a0)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
STraversable (Const m :: Type -> Type) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Const m a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f :: Type -> Type) a (t :: Const m (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m0 :: Type -> Type) b (t :: a ~> m0 b) (t :: Const m a). SMonad m0 => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m0 :: Type -> Type) a (t :: Const m (m0 a)). SMonad m0 => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
(STraversable f, STraversable g) => STraversable (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons sTraverse :: forall a (f0 :: Type -> Type) b (t :: a ~> f0 b) (t :: Product f g a). SApplicative f0 => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f0 :: Type -> Type) a (t :: Product f g (f0 a)). SApplicative f0 => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Product f g a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Product f g (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
(STraversable f, STraversable g) => STraversable (Sum f g) Source # | |
Defined in Data.Functor.Sum.Singletons sTraverse :: forall a (f0 :: Type -> Type) b (t :: a ~> f0 b) (t :: Sum f g a). SApplicative f0 => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f0 :: Type -> Type) a (t :: Sum f g (f0 a)). SApplicative f0 => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Sum f g a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Sum f g (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # | |
(STraversable f, STraversable g) => STraversable (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons sTraverse :: forall a (f0 :: Type -> Type) b (t :: a ~> f0 b) (t :: Compose f g a). SApplicative f0 => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source # sSequenceA :: forall (f0 :: Type -> Type) a (t :: Compose f g (f0 a)). SApplicative f0 => Sing t -> Sing (Apply SequenceASym0 t) Source # sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Compose f g a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source # sSequence :: forall (m :: Type -> Type) a (t :: Compose f g (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source # |
class PApplicative f Source #
type Pure (arg :: a) :: f a Source #
type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b infixl 4 Source #
type a <*> a = Apply (Apply TFHelper_6989586621679337064Sym0 a) a
type LiftA2 (arg :: (~>) a ((~>) b c)) (arg :: f a) (arg :: f b) :: f c Source #
type LiftA2 a a a = Apply (Apply (Apply LiftA2_6989586621679337080Sym0 a) a) a
type (arg :: f a) *> (arg :: f b) :: f b infixl 4 Source #
type a *> a = Apply (Apply TFHelper_6989586621679337096Sym0 a) a
type (arg :: f a) <* (arg :: f b) :: f a infixl 4 Source #
type a <* a = Apply (Apply TFHelper_6989586621679337107Sym0 a) a
Instances
PApplicative Identity Source # | |
PApplicative First Source # | |
PApplicative Last Source # | |
PApplicative Down Source # | |
PApplicative First Source # | |
PApplicative Last Source # | |
PApplicative Max Source # | |
PApplicative Min Source # | |
PApplicative Dual Source # | |
PApplicative Product Source # | |
PApplicative Sum Source # | |
PApplicative NonEmpty Source # | |
PApplicative Maybe Source # | |
PApplicative [] Source # | |
PApplicative (Either e) Source # | |
PApplicative (Proxy :: Type -> Type) Source # | |
PApplicative ((,) a) Source # | |
PApplicative (Const m :: Type -> Type) Source # | |
PApplicative (Product f g) Source # | |
PApplicative (Compose f g) Source # | |
class SFunctor f => SApplicative f where Source #
sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t :: f a) Source #
(%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) infixl 4 Source #
default (%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). (Apply (Apply (<*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679337064Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) Source #
sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) Source #
default sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) ~ Apply (Apply (Apply LiftA2_6989586621679337080Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) Source #
(%*>) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) infixl 4 Source #
default (%*>) :: forall a b (t :: f a) (t :: f b). (Apply (Apply (*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679337096Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) Source #
(%<*) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) infixl 4 Source #
Instances
SApplicative Identity Source # | |
Defined in Data.Functor.Identity.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Identity (a ~> b)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative First Source # | |
Defined in Data.Monoid.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: First (a ~> b)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: First a) (t :: First b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative Last Source # | |
Defined in Data.Monoid.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Last (a ~> b)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative Down Source # | |
Defined in Control.Applicative.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Down (a ~> b)) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative First Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: First (a ~> b)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: First a) (t :: First b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative Last Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Last (a ~> b)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative Max Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Max (a ~> b)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative Min Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Min (a ~> b)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative Dual Source # | |
Defined in Data.Semigroup.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Dual (a ~> b)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative Product Source # | |
Defined in Data.Semigroup.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Product (a ~> b)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative Sum Source # | |
Defined in Data.Semigroup.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Sum (a ~> b)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative NonEmpty Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: NonEmpty (a ~> b)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative Maybe Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Maybe (a ~> b)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative [] Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: [a ~> b]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative (Either e) Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Either e (a ~> b)) (t :: Either e a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SApplicative (Proxy :: Type -> Type) Source # | |
Defined in Data.Proxy.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Proxy (a ~> b)) (t :: Proxy a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Proxy a) (t :: Proxy b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Proxy a) (t :: Proxy b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Proxy a) (t :: Proxy b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SMonoid a => SApplicative ((,) a) Source # | |
Defined in Control.Applicative.Singletons sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a0 b (t :: (a, a0 ~> b)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a0 b c (t :: a0 ~> (b ~> c)) (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
SMonoid m => SApplicative (Const m :: Type -> Type) Source # | |
Defined in Data.Functor.Const.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Const m (a ~> b)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
(SApplicative f, SApplicative g) => SApplicative (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Product f g (a ~> b)) (t :: Product f g a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Product f g a) (t :: Product f g b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Product f g a) (t :: Product f g b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Product f g a) (t :: Product f g b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # | |
(SApplicative f, SApplicative g) => SApplicative (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t :: Compose f g (a ~> b)) (t :: Compose f g a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source # sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Compose f g a) (t :: Compose f g b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source # (%*>) :: forall a b (t :: Compose f g a) (t :: Compose f g b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source # (%<*) :: forall a b (t :: Compose f g a) (t :: Compose f g b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source # |
type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ... infixr 9 Source #
(f . g) a_6989586621679287743 = Apply (Apply (Apply (Apply Lambda_6989586621679287755Sym0 f) g) a_6989586621679287743) a_6989586621679287743 |
(%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c) infixr 9 Source #
type family Error (str :: k0) :: k where ... Source #
The promotion of error
. This version is more poly-kinded for
easier use.
data ErrorSym0 :: (~>) k0 k Source #
Instances
SingI (ErrorSym0 :: TyFun Symbol a -> Type) Source # | |
Defined in GHC.TypeLits.Singletons.Internal | |
SuppressUnusedWarnings (ErrorSym0 :: TyFun k0 k -> Type) Source # | |
Defined in GHC.TypeLits.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ErrorSym0 :: TyFun k0 k2 -> Type) (a6989586621679545715 :: k0) Source # | |
Defined in GHC.TypeLits.Singletons.Internal |
sUndefined :: HasCallStack => a Source #
The singleton for undefined
.
type family UndefinedSym0 :: k where ... Source #
data (==@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #
Instances
SEq a => SingI ((==@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Eq.Singletons | |
SuppressUnusedWarnings ((==@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Eq.Singletons suppressUnusedWarnings :: () # | |
type Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679146321 :: a) Source # | |
Defined in Data.Eq.Singletons |
data (==@#@$$) (a6989586621679146321 :: a) :: (~>) a Bool infix 4 Source #
Instances
SEq a => SingI1 ((==@#@$$) :: a -> TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons | |
(SEq a, SingI d) => SingI ((==@#@$$) d :: TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons | |
SuppressUnusedWarnings ((==@#@$$) a6989586621679146321 :: TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons suppressUnusedWarnings :: () # | |
type Apply ((==@#@$$) a6989586621679146321 :: TyFun a Bool -> Type) (a6989586621679146322 :: a) Source # | |
Defined in Data.Eq.Singletons |
type family (a6989586621679146321 :: a) ==@#@$$$ (a6989586621679146322 :: a) :: Bool where ... infix 4 Source #
data (>@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #
Instances
SOrd a => SingI ((>@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((>@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679185027 :: a) Source # | |
Defined in Data.Ord.Singletons |
data (>@#@$$) (a6989586621679185027 :: a) :: (~>) a Bool infix 4 Source #
Instances
SOrd a => SingI1 ((>@#@$$) :: a -> TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
(SOrd a, SingI d) => SingI ((>@#@$$) d :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((>@#@$$) a6989586621679185027 :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((>@#@$$) a6989586621679185027 :: TyFun a Bool -> Type) (a6989586621679185028 :: a) Source # | |
Defined in Data.Ord.Singletons |
type family (a6989586621679185027 :: a) >@#@$$$ (a6989586621679185028 :: a) :: Bool where ... infix 4 Source #
data IfSym0 :: (~>) Bool ((~>) k ((~>) k k)) Source #
Instances
SingI (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) (a6989586621679141394 :: Bool) Source # | |
data IfSym1 (a6989586621679141394 :: Bool) :: (~>) k ((~>) k k) Source #
Instances
SingI1 (IfSym1 :: Bool -> TyFun k (k ~> k) -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SingI c => SingI (IfSym1 c :: TyFun k (k ~> k) -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (IfSym1 a6989586621679141394 :: TyFun k (k ~> k) -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (IfSym1 a6989586621679141394 :: TyFun k (k ~> k) -> Type) (a6989586621679141395 :: k) Source # | |
Defined in Data.Bool.Singletons |
data IfSym2 (a6989586621679141394 :: Bool) (a6989586621679141395 :: k) :: (~>) k k Source #
Instances
SingI2 (IfSym2 :: Bool -> k2 -> TyFun k2 k2 -> Type) Source # | |
SingI c => SingI1 (IfSym2 c :: k1 -> TyFun k1 k1 -> Type) Source # | |
Defined in Data.Bool.Singletons | |
(SingI c, SingI t) => SingI (IfSym2 c t :: TyFun k k -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (IfSym2 a6989586621679141394 a6989586621679141395 :: TyFun k k -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (IfSym2 a6989586621679141394 a6989586621679141395 :: TyFun k k -> Type) (a6989586621679141396 :: k) Source # | |
Defined in Data.Bool.Singletons |
type family IfSym3 (a6989586621679141394 :: Bool) (a6989586621679141395 :: k) (a6989586621679141396 :: k) :: k where ... Source #
data (&&@#@$) :: (~>) Bool ((~>) Bool Bool) infixr 3 Source #
Instances
SingI (&&@#@$) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (&&@#@$) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (&&@#@$) (a6989586621679140549 :: Bool) Source # | |
Defined in Data.Bool.Singletons |
data (&&@#@$$) (a6989586621679140549 :: Bool) :: (~>) Bool Bool infixr 3 Source #
Instances
SingI x => SingI ((&&@#@$$) x :: TyFun Bool Bool -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings ((&&@#@$$) a6989586621679140549 :: TyFun Bool Bool -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply ((&&@#@$$) a6989586621679140549 :: TyFun Bool Bool -> Type) (a6989586621679140550 :: Bool) Source # | |
type family (a6989586621679140549 :: Bool) &&@#@$$$ (a6989586621679140550 :: Bool) :: Bool where ... infixr 3 Source #
type family Tuple0Sym0 :: () where ... Source #
Tuple0Sym0 = '() |
data Tuple2Sym0 :: (~>) a ((~>) b (a :: Type, b :: Type)) Source #
Instances
SingI (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple2Sym0 | |
SuppressUnusedWarnings (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) (a6989586621679042597 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) (a6989586621679042597 :: a) = Tuple2Sym1 a6989586621679042597 :: TyFun b (a, b) -> Type |
data Tuple2Sym1 (a6989586621679042597 :: a) :: (~>) b (a :: Type, b :: Type) Source #
Instances
SingI1 (Tuple2Sym1 :: a -> TyFun b (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple2Sym1 x) | |
SingI d => SingI (Tuple2Sym1 d :: TyFun b (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple2Sym1 d) | |
SuppressUnusedWarnings (Tuple2Sym1 a6989586621679042597 :: TyFun b (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple2Sym1 a6989586621679042597 :: TyFun k1 (k2, k1) -> Type) (a6989586621679042598 :: k1) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple2Sym1 a6989586621679042597 :: TyFun k1 (k2, k1) -> Type) (a6989586621679042598 :: k1) = '(a6989586621679042597, a6989586621679042598) |
type family Tuple2Sym2 (a6989586621679042597 :: a) (a6989586621679042598 :: b) :: (a :: Type, b :: Type) where ... Source #
Tuple2Sym2 a6989586621679042597 a6989586621679042598 = '(a6989586621679042597, a6989586621679042598) |
data Tuple3Sym0 :: (~>) a ((~>) b ((~>) c (a :: Type, b :: Type, c :: Type))) Source #
Instances
SingI (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple3Sym0 | |
SuppressUnusedWarnings (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) (a6989586621679042628 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) (a6989586621679042628 :: a) = Tuple3Sym1 a6989586621679042628 :: TyFun b (c ~> (a, b, c)) -> Type |
data Tuple3Sym1 (a6989586621679042628 :: a) :: (~>) b ((~>) c (a :: Type, b :: Type, c :: Type)) Source #
Instances
SingI1 (Tuple3Sym1 :: a -> TyFun b (c ~> (a, b, c)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple3Sym1 x) | |
SingI d => SingI (Tuple3Sym1 d :: TyFun b (c ~> (a, b, c)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple3Sym1 d) | |
SuppressUnusedWarnings (Tuple3Sym1 a6989586621679042628 :: TyFun b (c ~> (a, b, c)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple3Sym1 a6989586621679042628 :: TyFun b (c ~> (a, b, c)) -> Type) (a6989586621679042629 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple3Sym1 a6989586621679042628 :: TyFun b (c ~> (a, b, c)) -> Type) (a6989586621679042629 :: b) = Tuple3Sym2 a6989586621679042628 a6989586621679042629 :: TyFun c (a, b, c) -> Type |
data Tuple3Sym2 (a6989586621679042628 :: a) (a6989586621679042629 :: b) :: (~>) c (a :: Type, b :: Type, c :: Type) Source #
Instances
SingI2 (Tuple3Sym2 :: a -> b -> TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple3Sym2 x y) | |
SingI d => SingI1 (Tuple3Sym2 d :: b -> TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple3Sym2 d x) | |
(SingI d1, SingI d2) => SingI (Tuple3Sym2 d1 d2 :: TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple3Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple3Sym2 a6989586621679042628 a6989586621679042629 :: TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple3Sym2 a6989586621679042628 a6989586621679042629 :: TyFun k1 (k2, k3, k1) -> Type) (a6989586621679042630 :: k1) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple3Sym2 a6989586621679042628 a6989586621679042629 :: TyFun k1 (k2, k3, k1) -> Type) (a6989586621679042630 :: k1) = '(a6989586621679042628, a6989586621679042629, a6989586621679042630) |
type family Tuple3Sym3 (a6989586621679042628 :: a) (a6989586621679042629 :: b) (a6989586621679042630 :: c) :: (a :: Type, b :: Type, c :: Type) where ... Source #
Tuple3Sym3 a6989586621679042628 a6989586621679042629 a6989586621679042630 = '(a6989586621679042628, a6989586621679042629, a6989586621679042630) |
data Tuple4Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type)))) Source #
Instances
SingI (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple4Sym0 | |
SuppressUnusedWarnings (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) (a6989586621679042677 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) (a6989586621679042677 :: a) = Tuple4Sym1 a6989586621679042677 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type |
data Tuple4Sym1 (a6989586621679042677 :: a) :: (~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type))) Source #
Instances
SingI1 (Tuple4Sym1 :: a -> TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym1 x) | |
SingI d1 => SingI (Tuple4Sym1 d1 :: TyFun b (c ~> (d2 ~> (a, b, c, d2))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple4Sym1 d1) | |
SuppressUnusedWarnings (Tuple4Sym1 a6989586621679042677 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym1 a6989586621679042677 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) (a6989586621679042678 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym1 a6989586621679042677 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) (a6989586621679042678 :: b) = Tuple4Sym2 a6989586621679042677 a6989586621679042678 :: TyFun c (d ~> (a, b, c, d)) -> Type |
data Tuple4Sym2 (a6989586621679042677 :: a) (a6989586621679042678 :: b) :: (~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type)) Source #
Instances
SingI2 (Tuple4Sym2 :: a -> b -> TyFun c (d ~> (a, b, c, d)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple4Sym2 x y) | |
SingI d1 => SingI1 (Tuple4Sym2 d1 :: b -> TyFun c (d2 ~> (a, b, c, d2)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple4Sym2 d1 d2 :: TyFun c (d3 ~> (a, b, c, d3)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple4Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple4Sym2 a6989586621679042677 a6989586621679042678 :: TyFun c (d ~> (a, b, c, d)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym2 a6989586621679042677 a6989586621679042678 :: TyFun c (d ~> (a, b, c, d)) -> Type) (a6989586621679042679 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym2 a6989586621679042677 a6989586621679042678 :: TyFun c (d ~> (a, b, c, d)) -> Type) (a6989586621679042679 :: c) = Tuple4Sym3 a6989586621679042677 a6989586621679042678 a6989586621679042679 :: TyFun d (a, b, c, d) -> Type |
data Tuple4Sym3 (a6989586621679042677 :: a) (a6989586621679042678 :: b) (a6989586621679042679 :: c) :: (~>) d (a :: Type, b :: Type, c :: Type, d :: Type) Source #
Instances
SingI d1 => SingI2 (Tuple4Sym3 d1 :: b -> c -> TyFun d2 (a, b, c, d2) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple4Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple4Sym3 d1 d2 :: c -> TyFun d3 (a, b, c, d3) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple4Sym3 d1 d2 d3 :: TyFun d4 (a, b, c, d4) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple4Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple4Sym3 a6989586621679042677 a6989586621679042678 a6989586621679042679 :: TyFun d (a, b, c, d) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym3 a6989586621679042677 a6989586621679042678 a6989586621679042679 :: TyFun k1 (k2, k3, k4, k1) -> Type) (a6989586621679042680 :: k1) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym3 a6989586621679042677 a6989586621679042678 a6989586621679042679 :: TyFun k1 (k2, k3, k4, k1) -> Type) (a6989586621679042680 :: k1) = '(a6989586621679042677, a6989586621679042678, a6989586621679042679, a6989586621679042680) |
type family Tuple4Sym4 (a6989586621679042677 :: a) (a6989586621679042678 :: b) (a6989586621679042679 :: c) (a6989586621679042680 :: d) :: (a :: Type, b :: Type, c :: Type, d :: Type) where ... Source #
Tuple4Sym4 a6989586621679042677 a6989586621679042678 a6989586621679042679 a6989586621679042680 = '(a6989586621679042677, a6989586621679042678, a6989586621679042679, a6989586621679042680) |
data Tuple5Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))))) Source #
Instances
SingI (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple5Sym0 | |
SuppressUnusedWarnings (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) (a6989586621679042746 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) (a6989586621679042746 :: a) = Tuple5Sym1 a6989586621679042746 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type |
data Tuple5Sym1 (a6989586621679042746 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)))) Source #
Instances
SingI1 (Tuple5Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym1 x) | |
SingI d1 => SingI (Tuple5Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (a, b, c, d2, e)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym1 d1) | |
SuppressUnusedWarnings (Tuple5Sym1 a6989586621679042746 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym1 a6989586621679042746 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) (a6989586621679042747 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym1 a6989586621679042746 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) (a6989586621679042747 :: b) = Tuple5Sym2 a6989586621679042746 a6989586621679042747 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type |
data Tuple5Sym2 (a6989586621679042746 :: a) (a6989586621679042747 :: b) :: (~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))) Source #
Instances
SingI2 (Tuple5Sym2 :: a -> b -> TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym2 x y) | |
SingI d1 => SingI1 (Tuple5Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (a, b, c, d2, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple5Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (a, b, c, d3, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple5Sym2 a6989586621679042746 a6989586621679042747 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym2 a6989586621679042746 a6989586621679042747 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) (a6989586621679042748 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym2 a6989586621679042746 a6989586621679042747 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) (a6989586621679042748 :: c) = Tuple5Sym3 a6989586621679042746 a6989586621679042747 a6989586621679042748 :: TyFun d (e ~> (a, b, c, d, e)) -> Type |
data Tuple5Sym3 (a6989586621679042746 :: a) (a6989586621679042747 :: b) (a6989586621679042748 :: c) :: (~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)) Source #
Instances
SingI d1 => SingI2 (Tuple5Sym3 d1 :: b -> c -> TyFun d2 (e ~> (a, b, c, d2, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple5Sym3 d1 d2 :: c -> TyFun d3 (e ~> (a, b, c, d3, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple5Sym3 d1 d2 d3 :: TyFun d4 (e ~> (a, b, c, d4, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple5Sym3 a6989586621679042746 a6989586621679042747 a6989586621679042748 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym3 a6989586621679042746 a6989586621679042747 a6989586621679042748 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) (a6989586621679042749 :: d) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym3 a6989586621679042746 a6989586621679042747 a6989586621679042748 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) (a6989586621679042749 :: d) = Tuple5Sym4 a6989586621679042746 a6989586621679042747 a6989586621679042748 a6989586621679042749 :: TyFun e (a, b, c, d, e) -> Type |
data Tuple5Sym4 (a6989586621679042746 :: a) (a6989586621679042747 :: b) (a6989586621679042748 :: c) (a6989586621679042749 :: d) :: (~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type) Source #
Instances
(SingI d1, SingI d2) => SingI2 (Tuple5Sym4 d1 d2 :: c -> d3 -> TyFun e (a, b, c, d3, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym4 d1 d2 x y) | |
(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple5Sym4 d1 d2 d3 :: d4 -> TyFun e (a, b, c, d4, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym4 d1 d2 d3 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple5Sym4 d1 d2 d3 d5 :: TyFun e (a, b, c, d4, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym4 d1 d2 d3 d5) | |
SuppressUnusedWarnings (Tuple5Sym4 a6989586621679042746 a6989586621679042747 a6989586621679042748 a6989586621679042749 :: TyFun e (a, b, c, d, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym4 a6989586621679042746 a6989586621679042747 a6989586621679042748 a6989586621679042749 :: TyFun k1 (k2, k3, k4, k5, k1) -> Type) (a6989586621679042750 :: k1) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym4 a6989586621679042746 a6989586621679042747 a6989586621679042748 a6989586621679042749 :: TyFun k1 (k2, k3, k4, k5, k1) -> Type) (a6989586621679042750 :: k1) = '(a6989586621679042746, a6989586621679042747, a6989586621679042748, a6989586621679042749, a6989586621679042750) |
type family Tuple5Sym5 (a6989586621679042746 :: a) (a6989586621679042747 :: b) (a6989586621679042748 :: c) (a6989586621679042749 :: d) (a6989586621679042750 :: e) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type) where ... Source #
Tuple5Sym5 a6989586621679042746 a6989586621679042747 a6989586621679042748 a6989586621679042749 a6989586621679042750 = '(a6989586621679042746, a6989586621679042747, a6989586621679042748, a6989586621679042749, a6989586621679042750) |
data Tuple6Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))))) Source #
Instances
SingI (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple6Sym0 | |
SuppressUnusedWarnings (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) (a6989586621679042837 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) (a6989586621679042837 :: a) = Tuple6Sym1 a6989586621679042837 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type |
data Tuple6Sym1 (a6989586621679042837 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))))) Source #
Instances
SingI1 (Tuple6Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym1 x) | |
SingI d1 => SingI (Tuple6Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (f ~> (a, b, c, d2, e, f))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym1 d1) | |
SuppressUnusedWarnings (Tuple6Sym1 a6989586621679042837 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym1 a6989586621679042837 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) (a6989586621679042838 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym1 a6989586621679042837 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) (a6989586621679042838 :: b) = Tuple6Sym2 a6989586621679042837 a6989586621679042838 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type |
data Tuple6Sym2 (a6989586621679042837 :: a) (a6989586621679042838 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))) Source #
Instances
SingI2 (Tuple6Sym2 :: a -> b -> TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym2 x y) | |
SingI d1 => SingI1 (Tuple6Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (f ~> (a, b, c, d2, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple6Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (f ~> (a, b, c, d3, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple6Sym2 a6989586621679042837 a6989586621679042838 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym2 a6989586621679042837 a6989586621679042838 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) (a6989586621679042839 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym2 a6989586621679042837 a6989586621679042838 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) (a6989586621679042839 :: c) = Tuple6Sym3 a6989586621679042837 a6989586621679042838 a6989586621679042839 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type |
data Tuple6Sym3 (a6989586621679042837 :: a) (a6989586621679042838 :: b) (a6989586621679042839 :: c) :: (~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))) Source #
Instances
SingI d1 => SingI2 (Tuple6Sym3 d1 :: b -> c -> TyFun d2 (e ~> (f ~> (a, b, c, d2, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple6Sym3 d1 d2 :: c -> TyFun d3 (e ~> (f ~> (a, b, c, d3, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple6Sym3 d1 d2 d3 :: TyFun d4 (e ~> (f ~> (a, b, c, d4, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple6Sym3 a6989586621679042837 a6989586621679042838 a6989586621679042839 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym3 a6989586621679042837 a6989586621679042838 a6989586621679042839 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) (a6989586621679042840 :: d) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym3 a6989586621679042837 a6989586621679042838 a6989586621679042839 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) (a6989586621679042840 :: d) = Tuple6Sym4 a6989586621679042837 a6989586621679042838 a6989586621679042839 a6989586621679042840 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type |
data Tuple6Sym4 (a6989586621679042837 :: a) (a6989586621679042838 :: b) (a6989586621679042839 :: c) (a6989586621679042840 :: d) :: (~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)) Source #
Instances
(SingI d1, SingI d2) => SingI2 (Tuple6Sym4 d1 d2 :: c -> d3 -> TyFun e (f ~> (a, b, c, d3, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym4 d1 d2 x y) | |
(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple6Sym4 d1 d2 d3 :: d4 -> TyFun e (f ~> (a, b, c, d4, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym4 d1 d2 d3 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple6Sym4 d1 d2 d3 d5 :: TyFun e (f ~> (a, b, c, d4, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym4 d1 d2 d3 d5) | |
SuppressUnusedWarnings (Tuple6Sym4 a6989586621679042837 a6989586621679042838 a6989586621679042839 a6989586621679042840 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym4 a6989586621679042837 a6989586621679042838 a6989586621679042839 a6989586621679042840 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) (a6989586621679042841 :: e) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym4 a6989586621679042837 a6989586621679042838 a6989586621679042839 a6989586621679042840 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) (a6989586621679042841 :: e) = Tuple6Sym5 a6989586621679042837 a6989586621679042838 a6989586621679042839 a6989586621679042840 a6989586621679042841 :: TyFun f (a, b, c, d, e, f) -> Type |
data Tuple6Sym5 (a6989586621679042837 :: a) (a6989586621679042838 :: b) (a6989586621679042839 :: c) (a6989586621679042840 :: d) (a6989586621679042841 :: e) :: (~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type) Source #
Instances
(SingI d1, SingI d2, SingI d3) => SingI2 (Tuple6Sym5 d1 d2 d3 :: d4 -> e -> TyFun f (a, b, c, d4, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym5 d1 d2 d3 x y) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI1 (Tuple6Sym5 d1 d2 d3 d5 :: e -> TyFun f (a, b, c, d4, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym5 d1 d2 d3 d5 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI (Tuple6Sym5 d1 d2 d3 d5 d6 :: TyFun f (a, b, c, d4, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym5 d1 d2 d3 d5 d6) | |
SuppressUnusedWarnings (Tuple6Sym5 a6989586621679042837 a6989586621679042838 a6989586621679042839 a6989586621679042840 a6989586621679042841 :: TyFun f (a, b, c, d, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym5 a6989586621679042837 a6989586621679042838 a6989586621679042839 a6989586621679042840 a6989586621679042841 :: TyFun k1 (k2, k3, k4, k5, k6, k1) -> Type) (a6989586621679042842 :: k1) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym5 a6989586621679042837 a6989586621679042838 a6989586621679042839 a6989586621679042840 a6989586621679042841 :: TyFun k1 (k2, k3, k4, k5, k6, k1) -> Type) (a6989586621679042842 :: k1) = '(a6989586621679042837, a6989586621679042838, a6989586621679042839, a6989586621679042840, a6989586621679042841, a6989586621679042842) |
type family Tuple6Sym6 (a6989586621679042837 :: a) (a6989586621679042838 :: b) (a6989586621679042839 :: c) (a6989586621679042840 :: d) (a6989586621679042841 :: e) (a6989586621679042842 :: f) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type) where ... Source #
Tuple6Sym6 a6989586621679042837 a6989586621679042838 a6989586621679042839 a6989586621679042840 a6989586621679042841 a6989586621679042842 = '(a6989586621679042837, a6989586621679042838, a6989586621679042839, a6989586621679042840, a6989586621679042841, a6989586621679042842) |
data Tuple7Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))))) Source #
Instances
SingI (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple7Sym0 | |
SuppressUnusedWarnings (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) (a6989586621679042952 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) (a6989586621679042952 :: a) = Tuple7Sym1 a6989586621679042952 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type |
data Tuple7Sym1 (a6989586621679042952 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))))) Source #
Instances
SingI1 (Tuple7Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym1 x) | |
SingI d1 => SingI (Tuple7Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym1 d1) | |
SuppressUnusedWarnings (Tuple7Sym1 a6989586621679042952 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym1 a6989586621679042952 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) (a6989586621679042953 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym1 a6989586621679042952 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) (a6989586621679042953 :: b) = Tuple7Sym2 a6989586621679042952 a6989586621679042953 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type |
data Tuple7Sym2 (a6989586621679042952 :: a) (a6989586621679042953 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))) Source #
Instances
SingI2 (Tuple7Sym2 :: a -> b -> TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym2 x y) | |
SingI d1 => SingI1 (Tuple7Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple7Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (f ~> (g ~> (a, b, c, d3, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple7Sym2 a6989586621679042952 a6989586621679042953 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym2 a6989586621679042952 a6989586621679042953 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) (a6989586621679042954 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym2 a6989586621679042952 a6989586621679042953 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) (a6989586621679042954 :: c) = Tuple7Sym3 a6989586621679042952 a6989586621679042953 a6989586621679042954 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type |
data Tuple7Sym3 (a6989586621679042952 :: a) (a6989586621679042953 :: b) (a6989586621679042954 :: c) :: (~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))) Source #
Instances
SingI d1 => SingI2 (Tuple7Sym3 d1 :: b -> c -> TyFun d2 (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple7Sym3 d1 d2 :: c -> TyFun d3 (e ~> (f ~> (g ~> (a, b, c, d3, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple7Sym3 d1 d2 d3 :: TyFun d4 (e ~> (f ~> (g ~> (a, b, c, d4, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple7Sym3 a6989586621679042952 a6989586621679042953 a6989586621679042954 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym3 a6989586621679042952 a6989586621679042953 a6989586621679042954 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) (a6989586621679042955 :: d) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym3 a6989586621679042952 a6989586621679042953 a6989586621679042954 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) (a6989586621679042955 :: d) = Tuple7Sym4 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type |
data Tuple7Sym4 (a6989586621679042952 :: a) (a6989586621679042953 :: b) (a6989586621679042954 :: c) (a6989586621679042955 :: d) :: (~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))) Source #
Instances
(SingI d1, SingI d2) => SingI2 (Tuple7Sym4 d1 d2 :: c -> d3 -> TyFun e (f ~> (g ~> (a, b, c, d3, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym4 d1 d2 x y) | |
(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple7Sym4 d1 d2 d3 :: d4 -> TyFun e (f ~> (g ~> (a, b, c, d4, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym4 d1 d2 d3 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple7Sym4 d1 d2 d3 d5 :: TyFun e (f ~> (g ~> (a, b, c, d4, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym4 d1 d2 d3 d5) | |
SuppressUnusedWarnings (Tuple7Sym4 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym4 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) (a6989586621679042956 :: e) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym4 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) (a6989586621679042956 :: e) = Tuple7Sym5 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 a6989586621679042956 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type |
data Tuple7Sym5 (a6989586621679042952 :: a) (a6989586621679042953 :: b) (a6989586621679042954 :: c) (a6989586621679042955 :: d) (a6989586621679042956 :: e) :: (~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)) Source #
Instances
(SingI d1, SingI d2, SingI d3) => SingI2 (Tuple7Sym5 d1 d2 d3 :: d4 -> e -> TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym5 d1 d2 d3 x y) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI1 (Tuple7Sym5 d1 d2 d3 d5 :: e -> TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym5 d1 d2 d3 d5 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI (Tuple7Sym5 d1 d2 d3 d5 d6 :: TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym5 d1 d2 d3 d5 d6) | |
SuppressUnusedWarnings (Tuple7Sym5 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 a6989586621679042956 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym5 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 a6989586621679042956 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) (a6989586621679042957 :: f) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym5 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 a6989586621679042956 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) (a6989586621679042957 :: f) = Tuple7Sym6 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 a6989586621679042956 a6989586621679042957 :: TyFun g (a, b, c, d, e, f, g) -> Type |
data Tuple7Sym6 (a6989586621679042952 :: a) (a6989586621679042953 :: b) (a6989586621679042954 :: c) (a6989586621679042955 :: d) (a6989586621679042956 :: e) (a6989586621679042957 :: f) :: (~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type) Source #
Instances
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI2 (Tuple7Sym6 d1 d2 d3 d5 :: e -> f -> TyFun g (a, b, c, d4, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym6 d1 d2 d3 d5 x y) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI1 (Tuple7Sym6 d1 d2 d3 d5 d6 :: f -> TyFun g (a, b, c, d4, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym6 d1 d2 d3 d5 d6 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6, SingI d7) => SingI (Tuple7Sym6 d1 d2 d3 d5 d6 d7 :: TyFun g (a, b, c, d4, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym6 d1 d2 d3 d5 d6 d7) | |
SuppressUnusedWarnings (Tuple7Sym6 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 a6989586621679042956 a6989586621679042957 :: TyFun g (a, b, c, d, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym6 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 a6989586621679042956 a6989586621679042957 :: TyFun k1 (k2, k3, k4, k5, k6, k7, k1) -> Type) (a6989586621679042958 :: k1) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym6 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 a6989586621679042956 a6989586621679042957 :: TyFun k1 (k2, k3, k4, k5, k6, k7, k1) -> Type) (a6989586621679042958 :: k1) = '(a6989586621679042952, a6989586621679042953, a6989586621679042954, a6989586621679042955, a6989586621679042956, a6989586621679042957, a6989586621679042958) |
type family Tuple7Sym7 (a6989586621679042952 :: a) (a6989586621679042953 :: b) (a6989586621679042954 :: c) (a6989586621679042955 :: d) (a6989586621679042956 :: e) (a6989586621679042957 :: f) (a6989586621679042958 :: g) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type) where ... Source #
Tuple7Sym7 a6989586621679042952 a6989586621679042953 a6989586621679042954 a6989586621679042955 a6989586621679042956 a6989586621679042957 a6989586621679042958 = '(a6989586621679042952, a6989586621679042953, a6989586621679042954, a6989586621679042955, a6989586621679042956, a6989586621679042957, a6989586621679042958) |
data CompareSym0 :: (~>) a ((~>) a Ordering) Source #
Instances
SOrd a => SingI (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) Source # | |
Defined in Data.Ord.Singletons sing :: Sing CompareSym0 | |
SuppressUnusedWarnings (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) (a6989586621679185012 :: a) Source # | |
Defined in Data.Ord.Singletons type Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) (a6989586621679185012 :: a) = CompareSym1 a6989586621679185012 |
data CompareSym1 (a6989586621679185012 :: a) :: (~>) a Ordering Source #
Instances
SOrd a => SingI1 (CompareSym1 :: a -> TyFun a Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (CompareSym1 x) | |
(SOrd a, SingI d) => SingI (CompareSym1 d :: TyFun a Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons sing :: Sing (CompareSym1 d) | |
SuppressUnusedWarnings (CompareSym1 a6989586621679185012 :: TyFun a Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (CompareSym1 a6989586621679185012 :: TyFun a Ordering -> Type) (a6989586621679185013 :: a) Source # | |
Defined in Data.Ord.Singletons type Apply (CompareSym1 a6989586621679185012 :: TyFun a Ordering -> Type) (a6989586621679185013 :: a) = Compare a6989586621679185012 a6989586621679185013 |
type family CompareSym2 (a6989586621679185012 :: a) (a6989586621679185013 :: a) :: Ordering where ... Source #
CompareSym2 a6989586621679185012 a6989586621679185013 = Compare a6989586621679185012 a6989586621679185013 |
data ThenCmpSym0 :: (~>) Ordering ((~>) Ordering Ordering) Source #
Instances
SingI ThenCmpSym0 Source # | |
Defined in Data.Ord.Singletons sing :: Sing ThenCmpSym0 | |
SuppressUnusedWarnings ThenCmpSym0 Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ThenCmpSym0 (a6989586621679184996 :: Ordering) Source # | |
Defined in Data.Ord.Singletons |
data ThenCmpSym1 (a6989586621679184996 :: Ordering) :: (~>) Ordering Ordering Source #
Instances
SingI1 ThenCmpSym1 Source # | |
Defined in Data.Ord.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ThenCmpSym1 x) | |
SingI d => SingI (ThenCmpSym1 d :: TyFun Ordering Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons sing :: Sing (ThenCmpSym1 d) | |
SuppressUnusedWarnings (ThenCmpSym1 a6989586621679184996 :: TyFun Ordering Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (ThenCmpSym1 a6989586621679184996 :: TyFun Ordering Ordering -> Type) (a6989586621679184997 :: Ordering) Source # | |
Defined in Data.Ord.Singletons |
type family ThenCmpSym2 (a6989586621679184996 :: Ordering) (a6989586621679184997 :: Ordering) :: Ordering where ... Source #
ThenCmpSym2 a6989586621679184996 a6989586621679184997 = ThenCmp a6989586621679184996 a6989586621679184997 |
data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b)) Source #
Instances
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680427254 :: b ~> (a ~> b)) Source # | |
Defined in Data.Foldable.Singletons |
data FoldlSym1 (a6989586621680427254 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b) Source #
Instances
SFoldable t => SingI1 (FoldlSym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
(SFoldable t, SingI d) => SingI (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym1 a6989586621680427254 :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym1 a6989586621680427254 :: TyFun b (t a ~> b) -> Type) (a6989586621680427255 :: b) Source # | |
Defined in Data.Foldable.Singletons |
data FoldlSym2 (a6989586621680427254 :: (~>) b ((~>) a b)) (a6989586621680427255 :: b) :: (~>) (t a) b Source #
Instances
(SFoldable t, SingI d) => SingI1 (FoldlSym2 d :: b -> TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SFoldable t => SingI2 (FoldlSym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # | |
(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym2 a6989586621680427254 a6989586621680427255 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym2 a6989586621680427254 a6989586621680427255 :: TyFun (t a) b -> Type) (a6989586621680427256 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family FoldlSym3 (a6989586621680427254 :: (~>) b ((~>) a b)) (a6989586621680427255 :: b) (a6989586621680427256 :: t a) :: b where ... Source #
type family MinBoundSym0 :: a where ... Source #
type family MaxBoundSym0 :: a where ... Source #
data ShowsPrecSym0 :: (~>) Natural ((~>) a ((~>) Symbol Symbol)) Source #
Instances
SShow a => SingI (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) (a6989586621680243312 :: Natural) Source # | |
Defined in Text.Show.Singletons type Apply (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) (a6989586621680243312 :: Natural) = ShowsPrecSym1 a6989586621680243312 :: TyFun a (Symbol ~> Symbol) -> Type |
data ShowsPrecSym1 (a6989586621680243312 :: Natural) :: (~>) a ((~>) Symbol Symbol) Source #
Instances
SShow a => SingI1 (ShowsPrecSym1 :: Natural -> TyFun a (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowsPrecSym1 x) | |
(SShow a, SingI d) => SingI (ShowsPrecSym1 d :: TyFun a (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowsPrecSym1 d) | |
SuppressUnusedWarnings (ShowsPrecSym1 a6989586621680243312 :: TyFun a (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowsPrecSym1 a6989586621680243312 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680243313 :: a) Source # | |
Defined in Text.Show.Singletons type Apply (ShowsPrecSym1 a6989586621680243312 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680243313 :: a) = ShowsPrecSym2 a6989586621680243312 a6989586621680243313 |
data ShowsPrecSym2 (a6989586621680243312 :: Natural) (a6989586621680243313 :: a) :: (~>) Symbol Symbol Source #
Instances
SShow a => SingI2 (ShowsPrecSym2 :: Natural -> a -> TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ShowsPrecSym2 x y) | |
(SShow a, SingI d) => SingI1 (ShowsPrecSym2 d :: a -> TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowsPrecSym2 d x) | |
(SShow a, SingI d1, SingI d2) => SingI (ShowsPrecSym2 d1 d2 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowsPrecSym2 d1 d2) | |
SuppressUnusedWarnings (ShowsPrecSym2 a6989586621680243312 a6989586621680243313 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowsPrecSym2 a6989586621680243312 a6989586621680243313 :: TyFun Symbol Symbol -> Type) (a6989586621680243314 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
type family ShowsPrecSym3 (a6989586621680243312 :: Natural) (a6989586621680243313 :: a) (a6989586621680243314 :: Symbol) :: Symbol where ... Source #
ShowsPrecSym3 a6989586621680243312 a6989586621680243313 a6989586621680243314 = ShowsPrec a6989586621680243312 a6989586621680243313 a6989586621680243314 |
data ShowStringSym0 :: (~>) Symbol ((~>) Symbol Symbol) Source #
Instances
SingI ShowStringSym0 Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings ShowStringSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowStringSym0 (a6989586621680243267 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
data ShowStringSym1 (a6989586621680243267 :: Symbol) :: (~>) Symbol Symbol Source #
Instances
SingI1 ShowStringSym1 Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowStringSym1 x) | |
SingI d => SingI (ShowStringSym1 d :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowStringSym1 d) | |
SuppressUnusedWarnings (ShowStringSym1 a6989586621680243267 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowStringSym1 a6989586621680243267 :: TyFun Symbol Symbol -> Type) (a6989586621680243268 :: Symbol) Source # | |
Defined in Text.Show.Singletons type Apply (ShowStringSym1 a6989586621680243267 :: TyFun Symbol Symbol -> Type) (a6989586621680243268 :: Symbol) = ShowString a6989586621680243267 a6989586621680243268 |
type family ShowStringSym2 (a6989586621680243267 :: Symbol) (a6989586621680243268 :: Symbol) :: Symbol where ... Source #
ShowStringSym2 a6989586621680243267 a6989586621680243268 = ShowString a6989586621680243267 a6989586621680243268 |
data ShowParenSym0 :: (~>) Bool ((~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol)) Source #
Instances
SingI ShowParenSym0 Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings ShowParenSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowParenSym0 (a6989586621680243251 :: Bool) Source # | |
Defined in Text.Show.Singletons |
data ShowParenSym1 (a6989586621680243251 :: Bool) :: (~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol) Source #
Instances
SingI1 ShowParenSym1 Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowParenSym1 x) | |
SingI d => SingI (ShowParenSym1 d :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowParenSym1 d) | |
SuppressUnusedWarnings (ShowParenSym1 a6989586621680243251 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowParenSym1 a6989586621680243251 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) (a6989586621680243252 :: Symbol ~> Symbol) Source # | |
Defined in Text.Show.Singletons type Apply (ShowParenSym1 a6989586621680243251 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) (a6989586621680243252 :: Symbol ~> Symbol) = ShowParenSym2 a6989586621680243251 a6989586621680243252 |
data ShowParenSym2 (a6989586621680243251 :: Bool) (a6989586621680243252 :: (~>) Symbol Symbol) :: (~>) Symbol Symbol Source #
Instances
SingI2 ShowParenSym2 Source # | |
Defined in Text.Show.Singletons liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ShowParenSym2 x y) | |
(SingI d1, SingI d2) => SingI (ShowParenSym2 d1 d2 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowParenSym2 d1 d2) | |
SuppressUnusedWarnings (ShowParenSym2 a6989586621680243251 a6989586621680243252 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
SingI d => SingI1 (ShowParenSym2 d :: (Symbol ~> Symbol) -> TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowParenSym2 d x) | |
type Apply (ShowParenSym2 a6989586621680243251 a6989586621680243252 :: TyFun Symbol Symbol -> Type) (a6989586621680243253 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
data ShowSpaceSym0 :: (~>) Symbol Symbol Source #
Instances
SingI ShowSpaceSym0 Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings ShowSpaceSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowSpaceSym0 (a6989586621680243239 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
type family ShowSpaceSym1 (a6989586621680243239 :: Symbol) :: Symbol where ... Source #
ShowSpaceSym1 a6989586621680243239 = ShowSpace a6989586621680243239 |
data ShowCharSym0 :: (~>) Char ((~>) Symbol Symbol) Source #
Instances
SingI ShowCharSym0 Source # | |
Defined in Text.Show.Singletons sing :: Sing ShowCharSym0 | |
SuppressUnusedWarnings ShowCharSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowCharSym0 (a6989586621680243278 :: Char) Source # | |
Defined in Text.Show.Singletons |
data ShowCharSym1 (a6989586621680243278 :: Char) :: (~>) Symbol Symbol Source #
Instances
SingI1 ShowCharSym1 Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowCharSym1 x) | |
SingI d => SingI (ShowCharSym1 d :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowCharSym1 d) | |
SuppressUnusedWarnings (ShowCharSym1 a6989586621680243278 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowCharSym1 a6989586621680243278 :: TyFun Symbol Symbol -> Type) (a6989586621680243279 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
type family ShowCharSym2 (a6989586621680243278 :: Char) (a6989586621680243279 :: Symbol) :: Symbol where ... Source #
ShowCharSym2 a6989586621680243278 a6989586621680243279 = ShowChar a6989586621680243278 a6989586621680243279 |
data ShowCommaSpaceSym0 :: (~>) Symbol Symbol Source #
Instances
SingI ShowCommaSpaceSym0 Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings ShowCommaSpaceSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowCommaSpaceSym0 (a6989586621680243233 :: Symbol) Source # | |
Defined in Text.Show.Singletons type Apply ShowCommaSpaceSym0 (a6989586621680243233 :: Symbol) = ShowCommaSpace a6989586621680243233 |
type family ShowCommaSpaceSym1 (a6989586621680243233 :: Symbol) :: Symbol where ... Source #
ShowCommaSpaceSym1 a6989586621680243233 = ShowCommaSpace a6989586621680243233 |
data FromIntegerSym0 :: (~>) Natural a Source #
Instances
SNum a => SingI (FromIntegerSym0 :: TyFun Natural a -> Type) Source # | |
Defined in GHC.Num.Singletons | |
SuppressUnusedWarnings (FromIntegerSym0 :: TyFun Natural a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply (FromIntegerSym0 :: TyFun Natural k2 -> Type) (a6989586621679582951 :: Natural) Source # | |
Defined in GHC.Num.Singletons type Apply (FromIntegerSym0 :: TyFun Natural k2 -> Type) (a6989586621679582951 :: Natural) = FromInteger a6989586621679582951 :: k2 |
type family FromIntegerSym1 (a6989586621679582951 :: Natural) :: a where ... Source #
FromIntegerSym1 a6989586621679582951 = FromInteger a6989586621679582951 |
data NegateSym0 :: (~>) a a Source #
Instances
SNum a => SingI (NegateSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons sing :: Sing NegateSym0 | |
SuppressUnusedWarnings (NegateSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply (NegateSym0 :: TyFun a a -> Type) (a6989586621679582942 :: a) Source # | |
Defined in GHC.Num.Singletons type Apply (NegateSym0 :: TyFun a a -> Type) (a6989586621679582942 :: a) = Negate a6989586621679582942 |
type family NegateSym1 (a6989586621679582942 :: a) :: a where ... Source #
NegateSym1 a6989586621679582942 = Negate a6989586621679582942 |
data FromStringSym0 :: (~>) Symbol a Source #
Instances
SIsString a => SingI (FromStringSym0 :: TyFun Symbol a -> Type) Source # | |
Defined in Data.String.Singletons | |
SuppressUnusedWarnings (FromStringSym0 :: TyFun Symbol a -> Type) Source # | |
Defined in Data.String.Singletons suppressUnusedWarnings :: () # | |
type Apply (FromStringSym0 :: TyFun Symbol k2 -> Type) (a6989586621681291725 :: Symbol) Source # | |
Defined in Data.String.Singletons type Apply (FromStringSym0 :: TyFun Symbol k2 -> Type) (a6989586621681291725 :: Symbol) = FromString a6989586621681291725 :: k2 |
type family FromStringSym1 (a6989586621681291725 :: Symbol) :: a where ... Source #
FromStringSym1 a6989586621681291725 = FromString a6989586621681291725 |
data FmapSym0 :: (~>) ((~>) a b) ((~>) (f a) (f b)) Source #
Instances
SFunctor f => SingI (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679337015 :: a ~> b) Source # | |
Defined in Control.Monad.Singletons.Internal |
data FmapSym1 (a6989586621679337015 :: (~>) a b) :: (~>) (f a) (f b) Source #
Instances
SFunctor f => SingI1 (FmapSym1 :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
(SFunctor f, SingI d) => SingI (FmapSym1 d :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings (FmapSym1 a6989586621679337015 :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (FmapSym1 a6989586621679337015 :: TyFun (f a) (f b) -> Type) (a6989586621679337016 :: f a) Source # | |
Defined in Control.Monad.Singletons.Internal |
type family FmapSym2 (a6989586621679337015 :: (~>) a b) (a6989586621679337016 :: f a) :: f b where ... Source #
data (<$@#@$) :: (~>) a ((~>) (f b) (f a)) infixl 4 Source #
Instances
SFunctor f => SingI ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) (a6989586621679337020 :: a) Source # | |
Defined in Control.Monad.Singletons.Internal |
data (<$@#@$$) (a6989586621679337020 :: a) :: (~>) (f b) (f a) infixl 4 Source #
Instances
SFunctor f => SingI1 ((<$@#@$$) :: a -> TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
(SFunctor f, SingI d) => SingI ((<$@#@$$) d :: TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((<$@#@$$) a6989586621679337020 :: TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<$@#@$$) a6989586621679337020 :: TyFun (f b) (f a) -> Type) (a6989586621679337021 :: f b) Source # | |
Defined in Control.Monad.Singletons.Internal |
type family (a6989586621679337020 :: a) <$@#@$$$ (a6989586621679337021 :: f b) :: f a where ... infixl 4 Source #
data FoldMapSym0 :: (~>) ((~>) a m) ((~>) (t a) m) Source #
Instances
(SFoldable t, SMonoid m) => SingI (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing FoldMapSym0 | |
SuppressUnusedWarnings (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680427234 :: a ~> m) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680427234 :: a ~> m) = FoldMapSym1 a6989586621680427234 :: TyFun (t a) m -> Type |
data FoldMapSym1 (a6989586621680427234 :: (~>) a m) :: (~>) (t a) m Source #
Instances
(SFoldable t, SMonoid m) => SingI1 (FoldMapSym1 :: (a ~> m) -> TyFun (t a) m -> Type) Source # | |
Defined in Data.Foldable.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (FoldMapSym1 x) | |
(SFoldable t, SMonoid m, SingI d) => SingI (FoldMapSym1 d :: TyFun (t a) m -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (FoldMapSym1 d) | |
SuppressUnusedWarnings (FoldMapSym1 a6989586621680427234 :: TyFun (t a) m -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldMapSym1 a6989586621680427234 :: TyFun (t a) m -> Type) (a6989586621680427235 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldMapSym1 a6989586621680427234 :: TyFun (t a) m -> Type) (a6989586621680427235 :: t a) = FoldMap a6989586621680427234 a6989586621680427235 |
type family FoldMapSym2 (a6989586621680427234 :: (~>) a m) (a6989586621680427235 :: t a) :: m where ... Source #
FoldMapSym2 a6989586621680427234 a6989586621680427235 = FoldMap a6989586621680427234 a6989586621680427235 |
type family MemptySym0 :: a where ... Source #
data MappendSym0 :: (~>) a ((~>) a a) Source #
Instances
SMonoid a => SingI (MappendSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Monoid.Singletons sing :: Sing MappendSym0 | |
SuppressUnusedWarnings (MappendSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Monoid.Singletons suppressUnusedWarnings :: () # | |
type Apply (MappendSym0 :: TyFun a (a ~> a) -> Type) (a6989586621680329555 :: a) Source # | |
Defined in Data.Monoid.Singletons type Apply (MappendSym0 :: TyFun a (a ~> a) -> Type) (a6989586621680329555 :: a) = MappendSym1 a6989586621680329555 |
data MappendSym1 (a6989586621680329555 :: a) :: (~>) a a Source #
Instances
SMonoid a => SingI1 (MappendSym1 :: a -> TyFun a a -> Type) Source # | |
Defined in Data.Monoid.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (MappendSym1 x) | |
(SMonoid a, SingI d) => SingI (MappendSym1 d :: TyFun a a -> Type) Source # | |
Defined in Data.Monoid.Singletons sing :: Sing (MappendSym1 d) | |
SuppressUnusedWarnings (MappendSym1 a6989586621680329555 :: TyFun a a -> Type) Source # | |
Defined in Data.Monoid.Singletons suppressUnusedWarnings :: () # | |
type Apply (MappendSym1 a6989586621680329555 :: TyFun a a -> Type) (a6989586621680329556 :: a) Source # | |
Defined in Data.Monoid.Singletons type Apply (MappendSym1 a6989586621680329555 :: TyFun a a -> Type) (a6989586621680329556 :: a) = Mappend a6989586621680329555 a6989586621680329556 |
type family MappendSym2 (a6989586621680329555 :: a) (a6989586621680329556 :: a) :: a where ... Source #
MappendSym2 a6989586621680329555 a6989586621680329556 = Mappend a6989586621680329555 a6989586621680329556 |
data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b)) Source #
Instances
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680427240 :: a ~> (b ~> b)) Source # | |
Defined in Data.Foldable.Singletons |
data FoldrSym1 (a6989586621680427240 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b) Source #
Instances
SFoldable t => SingI1 (FoldrSym1 :: (a ~> (b ~> b)) -> TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
(SFoldable t, SingI d) => SingI (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym1 a6989586621680427240 :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym1 a6989586621680427240 :: TyFun b (t a ~> b) -> Type) (a6989586621680427241 :: b) Source # | |
Defined in Data.Foldable.Singletons |
data FoldrSym2 (a6989586621680427240 :: (~>) a ((~>) b b)) (a6989586621680427241 :: b) :: (~>) (t a) b Source #
Instances
(SFoldable t, SingI d) => SingI1 (FoldrSym2 d :: b -> TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SFoldable t => SingI2 (FoldrSym2 :: (a ~> (b ~> b)) -> b -> TyFun (t a) b -> Type) Source # | |
(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym2 a6989586621680427240 a6989586621680427241 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym2 a6989586621680427240 a6989586621680427241 :: TyFun (t a) b -> Type) (a6989586621680427242 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family FoldrSym3 (a6989586621680427240 :: (~>) a ((~>) b b)) (a6989586621680427241 :: b) (a6989586621680427242 :: t a) :: b where ... Source #
data TraverseSym0 :: (~>) ((~>) a (f b)) ((~>) (t a) (f (t b))) Source #
Instances
(STraversable t, SApplicative f) => SingI (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons sing :: Sing TraverseSym0 | |
SuppressUnusedWarnings (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons suppressUnusedWarnings :: () # | |
type Apply (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) (a6989586621680777174 :: a ~> f b) Source # | |
Defined in Data.Traversable.Singletons type Apply (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) (a6989586621680777174 :: a ~> f b) = TraverseSym1 a6989586621680777174 :: TyFun (t a) (f (t b)) -> Type |
data TraverseSym1 (a6989586621680777174 :: (~>) a (f b)) :: (~>) (t a) (f (t b)) Source #
Instances
(STraversable t, SApplicative f) => SingI1 (TraverseSym1 :: (a ~> f b) -> TyFun (t a) (f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (TraverseSym1 x) | |
(STraversable t, SApplicative f, SingI d) => SingI (TraverseSym1 d :: TyFun (t a) (f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons sing :: Sing (TraverseSym1 d) | |
SuppressUnusedWarnings (TraverseSym1 a6989586621680777174 :: TyFun (t a) (f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons suppressUnusedWarnings :: () # | |
type Apply (TraverseSym1 a6989586621680777174 :: TyFun (t a) (f (t b)) -> Type) (a6989586621680777175 :: t a) Source # | |
Defined in Data.Traversable.Singletons type Apply (TraverseSym1 a6989586621680777174 :: TyFun (t a) (f (t b)) -> Type) (a6989586621680777175 :: t a) = Traverse a6989586621680777174 a6989586621680777175 |
type family TraverseSym2 (a6989586621680777174 :: (~>) a (f b)) (a6989586621680777175 :: t a) :: f (t b) where ... Source #
TraverseSym2 a6989586621680777174 a6989586621680777175 = Traverse a6989586621680777174 a6989586621680777175 |
data PureSym0 :: (~>) a (f a) Source #
Instances
SApplicative f => SingI (PureSym0 :: TyFun a (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings (PureSym0 :: TyFun a (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (PureSym0 :: TyFun a (f a) -> Type) (a6989586621679337039 :: a) Source # | |
Defined in Control.Monad.Singletons.Internal |
data (<*>@#@$) :: (~>) (f ((~>) a b)) ((~>) (f a) (f b)) infixl 4 Source #
Instances
SApplicative f => SingI ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679337043 :: f (a ~> b)) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679337043 :: f (a ~> b)) = (<*>@#@$$) a6989586621679337043 |
data (<*>@#@$$) (a6989586621679337043 :: f ((~>) a b)) :: (~>) (f a) (f b) infixl 4 Source #
Instances
SApplicative f => SingI1 ((<*>@#@$$) :: f (a ~> b) -> TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing ((<*>@#@$$) x) | |
(SApplicative f, SingI d) => SingI ((<*>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing ((<*>@#@$$) d) | |
SuppressUnusedWarnings ((<*>@#@$$) a6989586621679337043 :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<*>@#@$$) a6989586621679337043 :: TyFun (f a) (f b) -> Type) (a6989586621679337044 :: f a) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply ((<*>@#@$$) a6989586621679337043 :: TyFun (f a) (f b) -> Type) (a6989586621679337044 :: f a) = a6989586621679337043 <*> a6989586621679337044 |
type family (a6989586621679337043 :: f ((~>) a b)) <*>@#@$$$ (a6989586621679337044 :: f a) :: f b where ... infixl 4 Source #
data LiftA2Sym0 :: (~>) ((~>) a ((~>) b c)) ((~>) (f a) ((~>) (f b) (f c))) Source #
Instances
SApplicative f => SingI (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing LiftA2Sym0 | |
SuppressUnusedWarnings (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) (a6989586621679337049 :: a ~> (b ~> c)) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) (a6989586621679337049 :: a ~> (b ~> c)) = LiftA2Sym1 a6989586621679337049 :: TyFun (f a) (f b ~> f c) -> Type |
data LiftA2Sym1 (a6989586621679337049 :: (~>) a ((~>) b c)) :: (~>) (f a) ((~>) (f b) (f c)) Source #
Instances
SApplicative f => SingI1 (LiftA2Sym1 :: (a ~> (b ~> c)) -> TyFun (f a) (f b ~> f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (LiftA2Sym1 x) | |
(SApplicative f, SingI d) => SingI (LiftA2Sym1 d :: TyFun (f a) (f b ~> f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing (LiftA2Sym1 d) | |
SuppressUnusedWarnings (LiftA2Sym1 a6989586621679337049 :: TyFun (f a) (f b ~> f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (LiftA2Sym1 a6989586621679337049 :: TyFun (f a) (f b ~> f c) -> Type) (a6989586621679337050 :: f a) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply (LiftA2Sym1 a6989586621679337049 :: TyFun (f a) (f b ~> f c) -> Type) (a6989586621679337050 :: f a) = LiftA2Sym2 a6989586621679337049 a6989586621679337050 |
data LiftA2Sym2 (a6989586621679337049 :: (~>) a ((~>) b c)) (a6989586621679337050 :: f a) :: (~>) (f b) (f c) Source #
Instances
(SApplicative f, SingI d) => SingI1 (LiftA2Sym2 d :: f a -> TyFun (f b) (f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (LiftA2Sym2 d x) | |
SApplicative f => SingI2 (LiftA2Sym2 :: (a ~> (b ~> c)) -> f a -> TyFun (f b) (f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftA2Sym2 x y) | |
(SApplicative f, SingI d1, SingI d2) => SingI (LiftA2Sym2 d1 d2 :: TyFun (f b) (f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing (LiftA2Sym2 d1 d2) | |
SuppressUnusedWarnings (LiftA2Sym2 a6989586621679337049 a6989586621679337050 :: TyFun (f b) (f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (LiftA2Sym2 a6989586621679337049 a6989586621679337050 :: TyFun (f b) (f c) -> Type) (a6989586621679337051 :: f b) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply (LiftA2Sym2 a6989586621679337049 a6989586621679337050 :: TyFun (f b) (f c) -> Type) (a6989586621679337051 :: f b) = LiftA2 a6989586621679337049 a6989586621679337050 a6989586621679337051 |
type family LiftA2Sym3 (a6989586621679337049 :: (~>) a ((~>) b c)) (a6989586621679337050 :: f a) (a6989586621679337051 :: f b) :: f c where ... Source #
LiftA2Sym3 a6989586621679337049 a6989586621679337050 a6989586621679337051 = LiftA2 a6989586621679337049 a6989586621679337050 a6989586621679337051 |
data (.@#@$) :: (~>) ((~>) b c) ((~>) ((~>) a b) ((~>) a c)) infixr 9 Source #
Instances
SingI ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) (a6989586621679287749 :: b ~> c) Source # | |
Defined in GHC.Base.Singletons |
data (.@#@$$) (a6989586621679287749 :: (~>) b c) :: (~>) ((~>) a b) ((~>) a c) infixr 9 Source #
Instances
SingI1 ((.@#@$$) :: (b ~> c) -> TyFun (a ~> b) (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI d => SingI ((.@#@$$) d :: TyFun (a ~> b) (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings ((.@#@$$) a6989586621679287749 :: TyFun (a ~> b) (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply ((.@#@$$) a6989586621679287749 :: TyFun (a ~> b) (a ~> c) -> Type) (a6989586621679287750 :: a ~> b) Source # | |
Defined in GHC.Base.Singletons |
data (a6989586621679287749 :: (~>) b c) .@#@$$$ (a6989586621679287750 :: (~>) a b) :: (~>) a c infixr 9 Source #
Instances
SingI2 ((.@#@$$$) :: (b ~> c) -> (a ~> b) -> TyFun a c -> Type) Source # | |
SingI d => SingI1 ((.@#@$$$) d :: (a ~> b) -> TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons | |
(SingI d1, SingI d2) => SingI (d1 .@#@$$$ d2 :: TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (a6989586621679287749 .@#@$$$ a6989586621679287750 :: TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (a6989586621679287749 .@#@$$$ a6989586621679287750 :: TyFun a c -> Type) (a6989586621679287751 :: a) Source # | |
Defined in GHC.Base.Singletons |
type family ((a6989586621679287749 :: (~>) b c) .@#@$$$$ (a6989586621679287750 :: (~>) a b)) (a6989586621679287751 :: a) :: c where ... infixr 9 Source #
data (:@#@$) :: (~>) a ((~>) [a] [a :: Type]) infixr 5 Source #
Instances
SingI ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SuppressUnusedWarnings ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679042108 :: a) Source # | |
Defined in Data.Singletons.Base.Instances |
data (:@#@$$) (a6989586621679042108 :: a) :: (~>) [a] [a :: Type] infixr 5 Source #
Instances
SingI1 ((:@#@$$) :: a -> TyFun [a] [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SingI d => SingI ((:@#@$$) d :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SuppressUnusedWarnings ((:@#@$$) a6989586621679042108 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply ((:@#@$$) a6989586621679042108 :: TyFun [a] [a] -> Type) (a6989586621679042109 :: [a]) Source # | |
Defined in Data.Singletons.Base.Instances |
type family (a6989586621679042108 :: a) :@#@$$$ (a6989586621679042109 :: [a]) :: [a :: Type] where ... infixr 5 Source #
a6989586621679042108 :@#@$$$ a6989586621679042109 = '(:) a6989586621679042108 a6989586621679042109 |
class SuppressUnusedWarnings (t :: k) where #
suppressUnusedWarnings :: () #