singletons-base-3.1: A promoted and singled version of the base library
Copyright(C) 2016 Richard Eisenberg
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Function.Singletons

Description

Defines singleton versions of the definitions in Data.Function.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.Function. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis
  • type family Id (a :: a) :: a where ...
  • sId :: forall a (t :: a). Sing t -> Sing (Apply IdSym0 t :: a)
  • type family Const (a :: a) (a :: b) :: a where ...
  • sConst :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply ConstSym0 t) t :: a)
  • type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ...
  • (%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c)
  • type family Flip (a :: (~>) a ((~>) b c)) (a :: b) (a :: a) :: c where ...
  • sFlip :: forall a b c (t :: (~>) a ((~>) b c)) (t :: b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FlipSym0 t) t) t :: c)
  • type family (a :: (~>) a b) $ (a :: a) :: b where ...
  • (%$) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($@#@$) t) t :: b)
  • type family (a :: a) & (a :: (~>) a b) :: b where ...
  • (%&) :: forall a b (t :: a) (t :: (~>) a b). Sing t -> Sing t -> Sing (Apply (Apply (&@#@$) t) t :: b)
  • type family On (a :: (~>) b ((~>) b c)) (a :: (~>) a b) (a :: a) (a :: a) :: c where ...
  • sOn :: forall b c a (t :: (~>) b ((~>) b c)) (t :: (~>) a b) (t :: a) (t :: a). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply OnSym0 t) t) t) t :: c)
  • data IdSym0 :: (~>) a a
  • type family IdSym1 (a6989586621679287767 :: a) :: a where ...
  • data ConstSym0 :: (~>) a ((~>) b a)
  • data ConstSym1 (a6989586621679287762 :: a) :: (~>) b a
  • type family ConstSym2 (a6989586621679287762 :: a) (a6989586621679287763 :: b) :: a where ...
  • data (.@#@$) :: (~>) ((~>) b c) ((~>) ((~>) a b) ((~>) a c))
  • data (.@#@$$) (a6989586621679287749 :: (~>) b c) :: (~>) ((~>) a b) ((~>) a c)
  • data (a6989586621679287749 :: (~>) b c) .@#@$$$ (a6989586621679287750 :: (~>) a b) :: (~>) a c
  • type family ((a6989586621679287749 :: (~>) b c) .@#@$$$$ (a6989586621679287750 :: (~>) a b)) (a6989586621679287751 :: a) :: c where ...
  • data FlipSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) b ((~>) a c))
  • data FlipSym1 (a6989586621679287737 :: (~>) a ((~>) b c)) :: (~>) b ((~>) a c)
  • data FlipSym2 (a6989586621679287737 :: (~>) a ((~>) b c)) (a6989586621679287738 :: b) :: (~>) a c
  • type family FlipSym3 (a6989586621679287737 :: (~>) a ((~>) b c)) (a6989586621679287738 :: b) (a6989586621679287739 :: a) :: c where ...
  • data ($@#@$) :: (~>) ((~>) a b) ((~>) a b)
  • data ($@#@$$) (a6989586621679287718 :: (~>) a b) :: (~>) a b
  • type family (a6989586621679287718 :: (~>) a b) $@#@$$$ (a6989586621679287719 :: a) :: b where ...
  • data (&@#@$) :: (~>) a ((~>) ((~>) a b) b)
  • data (&@#@$$) (a6989586621679314562 :: a) :: (~>) ((~>) a b) b
  • type family (a6989586621679314562 :: a) &@#@$$$ (a6989586621679314563 :: (~>) a b) :: b where ...
  • data OnSym0 :: (~>) ((~>) b ((~>) b c)) ((~>) ((~>) a b) ((~>) a ((~>) a c)))
  • data OnSym1 (a6989586621679314575 :: (~>) b ((~>) b c)) :: (~>) ((~>) a b) ((~>) a ((~>) a c))
  • data OnSym2 (a6989586621679314575 :: (~>) b ((~>) b c)) (a6989586621679314576 :: (~>) a b) :: (~>) a ((~>) a c)
  • data OnSym3 (a6989586621679314575 :: (~>) b ((~>) b c)) (a6989586621679314576 :: (~>) a b) (a6989586621679314577 :: a) :: (~>) a c
  • type family OnSym4 (a6989586621679314575 :: (~>) b ((~>) b c)) (a6989586621679314576 :: (~>) a b) (a6989586621679314577 :: a) (a6989586621679314578 :: a) :: c where ...

Prelude re-exports

type family Id (a :: a) :: a where ... Source #

Equations

Id x = x 

sId :: forall a (t :: a). Sing t -> Sing (Apply IdSym0 t :: a) Source #

type family Const (a :: a) (a :: b) :: a where ... Source #

Equations

Const x _ = x 

sConst :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply ConstSym0 t) t :: a) Source #

type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ... infixr 9 Source #

Equations

(f . g) a_6989586621679287743 = Apply (Apply (Apply (Apply Lambda_6989586621679287755Sym0 f) g) a_6989586621679287743) a_6989586621679287743 

(%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c) infixr 9 Source #

type family Flip (a :: (~>) a ((~>) b c)) (a :: b) (a :: a) :: c where ... Source #

Equations

Flip f x y = Apply (Apply f y) x 

sFlip :: forall a b c (t :: (~>) a ((~>) b c)) (t :: b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FlipSym0 t) t) t :: c) Source #

type family (a :: (~>) a b) $ (a :: a) :: b where ... infixr 0 Source #

Equations

f $ x = Apply f x 

(%$) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($@#@$) t) t :: b) infixr 0 Source #

Other combinators

type family (a :: a) & (a :: (~>) a b) :: b where ... infixl 1 Source #

Equations

x & f = Apply f x 

(%&) :: forall a b (t :: a) (t :: (~>) a b). Sing t -> Sing t -> Sing (Apply (Apply (&@#@$) t) t :: b) infixl 1 Source #

type family On (a :: (~>) b ((~>) b c)) (a :: (~>) a b) (a :: a) (a :: a) :: c where ... infixl 0 Source #

Equations

On ty f a_6989586621679314566 a_6989586621679314568 = Apply (Apply (Apply (Apply (Apply (Apply Lambda_6989586621679314583Sym0 ty) f) a_6989586621679314566) a_6989586621679314568) a_6989586621679314566) a_6989586621679314568 

sOn :: forall b c a (t :: (~>) b ((~>) b c)) (t :: (~>) a b) (t :: a) (t :: a). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply OnSym0 t) t) t) t :: c) infixl 0 Source #

Defunctionalization symbols

data IdSym0 :: (~>) a a Source #

Instances

Instances details
SingI (IdSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing IdSym0

SuppressUnusedWarnings (IdSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (IdSym0 :: TyFun a a -> Type) (a6989586621679287767 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (IdSym0 :: TyFun a a -> Type) (a6989586621679287767 :: a) = Id a6989586621679287767

type family IdSym1 (a6989586621679287767 :: a) :: a where ... Source #

Equations

IdSym1 a6989586621679287767 = Id a6989586621679287767 

data ConstSym0 :: (~>) a ((~>) b a) Source #

Instances

Instances details
SingI (ConstSym0 :: TyFun a (b ~> a) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ConstSym0

SuppressUnusedWarnings (ConstSym0 :: TyFun a (b ~> a) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (ConstSym0 :: TyFun a (b ~> a) -> Type) (a6989586621679287762 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (ConstSym0 :: TyFun a (b ~> a) -> Type) (a6989586621679287762 :: a) = ConstSym1 a6989586621679287762 :: TyFun b a -> Type

data ConstSym1 (a6989586621679287762 :: a) :: (~>) b a Source #

Instances

Instances details
SingI1 (ConstSym1 :: a -> TyFun b a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ConstSym1 x)

SingI d => SingI (ConstSym1 d :: TyFun b a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (ConstSym1 d)

SuppressUnusedWarnings (ConstSym1 a6989586621679287762 :: TyFun b a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (ConstSym1 a6989586621679287762 :: TyFun b a -> Type) (a6989586621679287763 :: b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (ConstSym1 a6989586621679287762 :: TyFun b a -> Type) (a6989586621679287763 :: b) = Const a6989586621679287762 a6989586621679287763

type family ConstSym2 (a6989586621679287762 :: a) (a6989586621679287763 :: b) :: a where ... Source #

Equations

ConstSym2 a6989586621679287762 a6989586621679287763 = Const a6989586621679287762 a6989586621679287763 

data (.@#@$) :: (~>) ((~>) b c) ((~>) ((~>) a b) ((~>) a c)) infixr 9 Source #

Instances

Instances details
SingI ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (.@#@$)

SuppressUnusedWarnings ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) (a6989586621679287749 :: b ~> c) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) (a6989586621679287749 :: b ~> c) = (.@#@$$) a6989586621679287749 :: TyFun (a ~> b) (a ~> c) -> Type

data (.@#@$$) (a6989586621679287749 :: (~>) b c) :: (~>) ((~>) a b) ((~>) a c) infixr 9 Source #

Instances

Instances details
SingI1 ((.@#@$$) :: (b ~> c) -> TyFun (a ~> b) (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((.@#@$$) x)

SingI d => SingI ((.@#@$$) d :: TyFun (a ~> b) (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ((.@#@$$) d)

SuppressUnusedWarnings ((.@#@$$) a6989586621679287749 :: TyFun (a ~> b) (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((.@#@$$) a6989586621679287749 :: TyFun (a ~> b) (a ~> c) -> Type) (a6989586621679287750 :: a ~> b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((.@#@$$) a6989586621679287749 :: TyFun (a ~> b) (a ~> c) -> Type) (a6989586621679287750 :: a ~> b) = a6989586621679287749 .@#@$$$ a6989586621679287750

data (a6989586621679287749 :: (~>) b c) .@#@$$$ (a6989586621679287750 :: (~>) a b) :: (~>) a c infixr 9 Source #

Instances

Instances details
SingI2 ((.@#@$$$) :: (b ~> c) -> (a ~> b) -> TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (x .@#@$$$ y)

SingI d => SingI1 ((.@#@$$$) d :: (a ~> b) -> TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (d .@#@$$$ x)

(SingI d1, SingI d2) => SingI (d1 .@#@$$$ d2 :: TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (d1 .@#@$$$ d2)

SuppressUnusedWarnings (a6989586621679287749 .@#@$$$ a6989586621679287750 :: TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (a6989586621679287749 .@#@$$$ a6989586621679287750 :: TyFun a c -> Type) (a6989586621679287751 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (a6989586621679287749 .@#@$$$ a6989586621679287750 :: TyFun a c -> Type) (a6989586621679287751 :: a) = (a6989586621679287749 . a6989586621679287750) a6989586621679287751

type family ((a6989586621679287749 :: (~>) b c) .@#@$$$$ (a6989586621679287750 :: (~>) a b)) (a6989586621679287751 :: a) :: c where ... infixr 9 Source #

Equations

(a6989586621679287749 .@#@$$$$ a6989586621679287750) a6989586621679287751 = (.) a6989586621679287749 a6989586621679287750 a6989586621679287751 

data FlipSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) b ((~>) a c)) Source #

Instances

Instances details
SingI (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing FlipSym0

SuppressUnusedWarnings (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) (a6989586621679287737 :: a ~> (b ~> c)) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) (a6989586621679287737 :: a ~> (b ~> c)) = FlipSym1 a6989586621679287737

data FlipSym1 (a6989586621679287737 :: (~>) a ((~>) b c)) :: (~>) b ((~>) a c) Source #

Instances

Instances details
SingI1 (FlipSym1 :: (a ~> (b ~> c)) -> TyFun b (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FlipSym1 x)

SingI d => SingI (FlipSym1 d :: TyFun b (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (FlipSym1 d)

SuppressUnusedWarnings (FlipSym1 a6989586621679287737 :: TyFun b (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym1 a6989586621679287737 :: TyFun b (a ~> c) -> Type) (a6989586621679287738 :: b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym1 a6989586621679287737 :: TyFun b (a ~> c) -> Type) (a6989586621679287738 :: b) = FlipSym2 a6989586621679287737 a6989586621679287738

data FlipSym2 (a6989586621679287737 :: (~>) a ((~>) b c)) (a6989586621679287738 :: b) :: (~>) a c Source #

Instances

Instances details
SingI d => SingI1 (FlipSym2 d :: b -> TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FlipSym2 d x)

SingI2 (FlipSym2 :: (a ~> (b ~> c)) -> b -> TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (FlipSym2 x y)

(SingI d1, SingI d2) => SingI (FlipSym2 d1 d2 :: TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (FlipSym2 d1 d2)

SuppressUnusedWarnings (FlipSym2 a6989586621679287737 a6989586621679287738 :: TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym2 a6989586621679287737 a6989586621679287738 :: TyFun a c -> Type) (a6989586621679287739 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym2 a6989586621679287737 a6989586621679287738 :: TyFun a c -> Type) (a6989586621679287739 :: a) = Flip a6989586621679287737 a6989586621679287738 a6989586621679287739

type family FlipSym3 (a6989586621679287737 :: (~>) a ((~>) b c)) (a6989586621679287738 :: b) (a6989586621679287739 :: a) :: c where ... Source #

Equations

FlipSym3 a6989586621679287737 a6989586621679287738 a6989586621679287739 = Flip a6989586621679287737 a6989586621679287738 a6989586621679287739 

data ($@#@$) :: (~>) ((~>) a b) ((~>) a b) infixr 0 Source #

Instances

Instances details
SingI (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ($@#@$)

SuppressUnusedWarnings (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) (a6989586621679287718 :: a ~> b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) (a6989586621679287718 :: a ~> b) = ($@#@$$) a6989586621679287718

data ($@#@$$) (a6989586621679287718 :: (~>) a b) :: (~>) a b infixr 0 Source #

Instances

Instances details
SingI1 (($@#@$$) :: (a ~> b) -> TyFun a b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (($@#@$$) x)

SingI d => SingI (($@#@$$) d :: TyFun a b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (($@#@$$) d)

SuppressUnusedWarnings (($@#@$$) a6989586621679287718 :: TyFun a b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($@#@$$) a6989586621679287718 :: TyFun a b -> Type) (a6989586621679287719 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($@#@$$) a6989586621679287718 :: TyFun a b -> Type) (a6989586621679287719 :: a) = a6989586621679287718 $ a6989586621679287719

type family (a6989586621679287718 :: (~>) a b) $@#@$$$ (a6989586621679287719 :: a) :: b where ... infixr 0 Source #

Equations

a6989586621679287718 $@#@$$$ a6989586621679287719 = ($) a6989586621679287718 a6989586621679287719 

data (&@#@$) :: (~>) a ((~>) ((~>) a b) b) infixl 1 Source #

Instances

Instances details
SingI ((&@#@$) :: TyFun a ((a ~> b) ~> b) -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

sing :: Sing (&@#@$)

SuppressUnusedWarnings ((&@#@$) :: TyFun a ((a ~> b) ~> b) -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply ((&@#@$) :: TyFun a ((a ~> b) ~> b) -> Type) (a6989586621679314562 :: a) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply ((&@#@$) :: TyFun a ((a ~> b) ~> b) -> Type) (a6989586621679314562 :: a) = (&@#@$$) a6989586621679314562 :: TyFun (a ~> b) b -> Type

data (&@#@$$) (a6989586621679314562 :: a) :: (~>) ((~>) a b) b infixl 1 Source #

Instances

Instances details
SingI1 ((&@#@$$) :: a -> TyFun (a ~> b) b -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((&@#@$$) x)

SingI d => SingI ((&@#@$$) d :: TyFun (a ~> b) b -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

sing :: Sing ((&@#@$$) d)

SuppressUnusedWarnings ((&@#@$$) a6989586621679314562 :: TyFun (a ~> b) b -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply ((&@#@$$) a6989586621679314562 :: TyFun (a ~> b) b -> Type) (a6989586621679314563 :: a ~> b) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply ((&@#@$$) a6989586621679314562 :: TyFun (a ~> b) b -> Type) (a6989586621679314563 :: a ~> b) = a6989586621679314562 & a6989586621679314563

type family (a6989586621679314562 :: a) &@#@$$$ (a6989586621679314563 :: (~>) a b) :: b where ... infixl 1 Source #

Equations

a6989586621679314562 &@#@$$$ a6989586621679314563 = (&) a6989586621679314562 a6989586621679314563 

data OnSym0 :: (~>) ((~>) b ((~>) b c)) ((~>) ((~>) a b) ((~>) a ((~>) a c))) infixl 0 Source #

Instances

Instances details
SingI (OnSym0 :: TyFun (b ~> (b ~> c)) ((a ~> b) ~> (a ~> (a ~> c))) -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

sing :: Sing OnSym0

SuppressUnusedWarnings (OnSym0 :: TyFun (b ~> (b ~> c)) ((a ~> b) ~> (a ~> (a ~> c))) -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply (OnSym0 :: TyFun (b ~> (b ~> c)) ((a ~> b) ~> (a ~> (a ~> c))) -> Type) (a6989586621679314575 :: b ~> (b ~> c)) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply (OnSym0 :: TyFun (b ~> (b ~> c)) ((a ~> b) ~> (a ~> (a ~> c))) -> Type) (a6989586621679314575 :: b ~> (b ~> c)) = OnSym1 a6989586621679314575 :: TyFun (a ~> b) (a ~> (a ~> c)) -> Type

data OnSym1 (a6989586621679314575 :: (~>) b ((~>) b c)) :: (~>) ((~>) a b) ((~>) a ((~>) a c)) infixl 0 Source #

Instances

Instances details
SingI1 (OnSym1 :: (b ~> (b ~> c)) -> TyFun (a ~> b) (a ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (OnSym1 x)

SingI d => SingI (OnSym1 d :: TyFun (a ~> b) (a ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

sing :: Sing (OnSym1 d)

SuppressUnusedWarnings (OnSym1 a6989586621679314575 :: TyFun (a ~> b) (a ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply (OnSym1 a6989586621679314575 :: TyFun (a ~> b) (a ~> (a ~> c)) -> Type) (a6989586621679314576 :: a ~> b) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply (OnSym1 a6989586621679314575 :: TyFun (a ~> b) (a ~> (a ~> c)) -> Type) (a6989586621679314576 :: a ~> b) = OnSym2 a6989586621679314575 a6989586621679314576

data OnSym2 (a6989586621679314575 :: (~>) b ((~>) b c)) (a6989586621679314576 :: (~>) a b) :: (~>) a ((~>) a c) infixl 0 Source #

Instances

Instances details
SingI2 (OnSym2 :: (b ~> (b ~> c)) -> (a ~> b) -> TyFun a (a ~> c) -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (OnSym2 x y)

SingI d => SingI1 (OnSym2 d :: (a ~> b) -> TyFun a (a ~> c) -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (OnSym2 d x)

(SingI d1, SingI d2) => SingI (OnSym2 d1 d2 :: TyFun a (a ~> c) -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

sing :: Sing (OnSym2 d1 d2)

SuppressUnusedWarnings (OnSym2 a6989586621679314575 a6989586621679314576 :: TyFun a (a ~> c) -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply (OnSym2 a6989586621679314575 a6989586621679314576 :: TyFun a (a ~> c) -> Type) (a6989586621679314577 :: a) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply (OnSym2 a6989586621679314575 a6989586621679314576 :: TyFun a (a ~> c) -> Type) (a6989586621679314577 :: a) = OnSym3 a6989586621679314575 a6989586621679314576 a6989586621679314577

data OnSym3 (a6989586621679314575 :: (~>) b ((~>) b c)) (a6989586621679314576 :: (~>) a b) (a6989586621679314577 :: a) :: (~>) a c infixl 0 Source #

Instances

Instances details
(SingI d1, SingI d2) => SingI1 (OnSym3 d1 d2 :: a -> TyFun a c -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (OnSym3 d1 d2 x)

SingI d => SingI2 (OnSym3 d :: (a ~> b) -> a -> TyFun a c -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (OnSym3 d x y)

(SingI d1, SingI d2, SingI d3) => SingI (OnSym3 d1 d2 d3 :: TyFun a c -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

Methods

sing :: Sing (OnSym3 d1 d2 d3)

SuppressUnusedWarnings (OnSym3 a6989586621679314575 a6989586621679314576 a6989586621679314577 :: TyFun a c -> Type) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply (OnSym3 a6989586621679314575 a6989586621679314576 a6989586621679314577 :: TyFun a c -> Type) (a6989586621679314578 :: a) Source # 
Instance details

Defined in Data.Function.Singletons

type Apply (OnSym3 a6989586621679314575 a6989586621679314576 a6989586621679314577 :: TyFun a c -> Type) (a6989586621679314578 :: a) = On a6989586621679314575 a6989586621679314576 a6989586621679314577 a6989586621679314578

type family OnSym4 (a6989586621679314575 :: (~>) b ((~>) b c)) (a6989586621679314576 :: (~>) a b) (a6989586621679314577 :: a) (a6989586621679314578 :: a) :: c where ... infixl 0 Source #

Equations

OnSym4 a6989586621679314575 a6989586621679314576 a6989586621679314577 a6989586621679314578 = On a6989586621679314575 a6989586621679314576 a6989586621679314577 a6989586621679314578