singletons-base-3.1: A promoted and singled version of the base library
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Control.Applicative.Singletons

Description

Defines the promoted and singled versions of the Applicative type class.

Synopsis
  • class PApplicative f where
    • type Pure (arg :: a) :: f a
    • type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b
    • type LiftA2 (arg :: (~>) a ((~>) b c)) (arg :: f a) (arg :: f b) :: f c
    • type (arg :: f a) *> (arg :: f b) :: f b
    • type (arg :: f a) <* (arg :: f b) :: f a
  • class SFunctor f => SApplicative f where
  • class PAlternative f where
    • type Empty :: f a
    • type (arg :: f a) <|> (arg :: f a) :: f a
  • class SApplicative f => SAlternative f where
  • type family Sing :: k -> Type
  • data SConst :: Const a b -> Type where
  • data Const a (b :: k)
  • type family GetConst (a :: Const a b) :: a where ...
  • sGetConst :: forall a b (t :: Const a b). Sing t -> Sing (Apply GetConstSym0 t :: a)
  • type family (a :: (~>) a b) <$> (a :: f a) :: f b where ...
  • (%<$>) :: forall a b f (t :: (~>) a b) (t :: f a). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$>@#@$) t) t :: f b)
  • type family (arg :: a) <$ (arg :: f b) :: f a
  • (%<$) :: forall a b (t :: a) (t :: f b). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a)
  • type family (a :: f a) <**> (a :: f ((~>) a b)) :: f b where ...
  • (%<**>) :: forall f a b (t :: f a) (t :: f ((~>) a b)). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply (<**>@#@$) t) t :: f b)
  • type family LiftA (a :: (~>) a b) (a :: f a) :: f b where ...
  • sLiftA :: forall a b f (t :: (~>) a b) (t :: f a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply LiftASym0 t) t :: f b)
  • type family LiftA3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: f a) (a :: f b) (a :: f c) :: f d where ...
  • sLiftA3 :: forall a b c d f (t :: (~>) a ((~>) b ((~>) c d))) (t :: f a) (t :: f b) (t :: f c). SApplicative f => Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply LiftA3Sym0 t) t) t) t :: f d)
  • type family Optional (a :: f a) :: f (Maybe a) where ...
  • sOptional :: forall f a (t :: f a). SAlternative f => Sing t -> Sing (Apply OptionalSym0 t :: f (Maybe a))
  • data PureSym0 :: (~>) a (f a)
  • type family PureSym1 (a6989586621679337039 :: a) :: f a where ...
  • data (<*>@#@$) :: (~>) (f ((~>) a b)) ((~>) (f a) (f b))
  • data (<*>@#@$$) (a6989586621679337043 :: f ((~>) a b)) :: (~>) (f a) (f b)
  • type family (a6989586621679337043 :: f ((~>) a b)) <*>@#@$$$ (a6989586621679337044 :: f a) :: f b where ...
  • data (*>@#@$) :: (~>) (f a) ((~>) (f b) (f b))
  • data (*>@#@$$) (a6989586621679337055 :: f a) :: (~>) (f b) (f b)
  • type family (a6989586621679337055 :: f a) *>@#@$$$ (a6989586621679337056 :: f b) :: f b where ...
  • data (<*@#@$) :: (~>) (f a) ((~>) (f b) (f a))
  • data (<*@#@$$) (a6989586621679337060 :: f a) :: (~>) (f b) (f a)
  • type family (a6989586621679337060 :: f a) <*@#@$$$ (a6989586621679337061 :: f b) :: f a where ...
  • type family EmptySym0 :: f a where ...
  • data (<|>@#@$) :: (~>) (f a) ((~>) (f a) (f a))
  • data (<|>@#@$$) (a6989586621679337164 :: f a) :: (~>) (f a) (f a)
  • type family (a6989586621679337164 :: f a) <|>@#@$$$ (a6989586621679337165 :: f a) :: f a where ...
  • data ConstSym0 z
  • type family ConstSym1 x where ...
  • data GetConstSym0 :: (~>) (Const a b) a
  • type family GetConstSym1 (a6989586621680726290 :: Const a b) :: a where ...
  • data (<$>@#@$) :: (~>) ((~>) a b) ((~>) (f a) (f b))
  • data (<$>@#@$$) (a6989586621679524018 :: (~>) a b) :: (~>) (f a) (f b)
  • type family (a6989586621679524018 :: (~>) a b) <$>@#@$$$ (a6989586621679524019 :: f a) :: f b where ...
  • data (<$@#@$) :: (~>) a ((~>) (f b) (f a))
  • data (<$@#@$$) (a6989586621679337020 :: a) :: (~>) (f b) (f a)
  • type family (a6989586621679337020 :: a) <$@#@$$$ (a6989586621679337021 :: f b) :: f a where ...
  • data (<**>@#@$) :: (~>) (f a) ((~>) (f ((~>) a b)) (f b))
  • data (<**>@#@$$) (a6989586621679337003 :: f a) :: (~>) (f ((~>) a b)) (f b)
  • type family (a6989586621679337003 :: f a) <**>@#@$$$ (a6989586621679337004 :: f ((~>) a b)) :: f b where ...
  • data LiftASym0 :: (~>) ((~>) a b) ((~>) (f a) (f b))
  • data LiftASym1 (a6989586621679336992 :: (~>) a b) :: (~>) (f a) (f b)
  • type family LiftASym2 (a6989586621679336992 :: (~>) a b) (a6989586621679336993 :: f a) :: f b where ...
  • data LiftA2Sym0 :: (~>) ((~>) a ((~>) b c)) ((~>) (f a) ((~>) (f b) (f c)))
  • data LiftA2Sym1 (a6989586621679337049 :: (~>) a ((~>) b c)) :: (~>) (f a) ((~>) (f b) (f c))
  • data LiftA2Sym2 (a6989586621679337049 :: (~>) a ((~>) b c)) (a6989586621679337050 :: f a) :: (~>) (f b) (f c)
  • type family LiftA2Sym3 (a6989586621679337049 :: (~>) a ((~>) b c)) (a6989586621679337050 :: f a) (a6989586621679337051 :: f b) :: f c where ...
  • data LiftA3Sym0 :: (~>) ((~>) a ((~>) b ((~>) c d))) ((~>) (f a) ((~>) (f b) ((~>) (f c) (f d))))
  • data LiftA3Sym1 (a6989586621679336981 :: (~>) a ((~>) b ((~>) c d))) :: (~>) (f a) ((~>) (f b) ((~>) (f c) (f d)))
  • data LiftA3Sym2 (a6989586621679336981 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679336982 :: f a) :: (~>) (f b) ((~>) (f c) (f d))
  • data LiftA3Sym3 (a6989586621679336981 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679336982 :: f a) (a6989586621679336983 :: f b) :: (~>) (f c) (f d)
  • data OptionalSym0 :: (~>) (f a) (f (Maybe a))
  • type family OptionalSym1 (a6989586621681295411 :: f a) :: f (Maybe a) where ...

Documentation

class PApplicative f Source #

Associated Types

type Pure (arg :: a) :: f a Source #

type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b infixl 4 Source #

type a <*> a = Apply (Apply TFHelper_6989586621679337064Sym0 a) a

type LiftA2 (arg :: (~>) a ((~>) b c)) (arg :: f a) (arg :: f b) :: f c Source #

type LiftA2 a a a = Apply (Apply (Apply LiftA2_6989586621679337080Sym0 a) a) a

type (arg :: f a) *> (arg :: f b) :: f b infixl 4 Source #

type a *> a = Apply (Apply TFHelper_6989586621679337096Sym0 a) a

type (arg :: f a) <* (arg :: f b) :: f a infixl 4 Source #

type a <* a = Apply (Apply TFHelper_6989586621679337107Sym0 a) a

Instances

Instances details
PApplicative Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative First Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Down Source # 
Instance details

Defined in Control.Applicative.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative ((,) a) Source # 
Instance details

Defined in Control.Applicative.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

class SFunctor f => SApplicative f where Source #

Minimal complete definition

sPure

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t :: f a) Source #

(%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) infixl 4 Source #

default (%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). (Apply (Apply (<*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679337064Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) Source #

sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) Source #

default sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) ~ Apply (Apply (Apply LiftA2_6989586621679337080Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) Source #

(%*>) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) infixl 4 Source #

default (%*>) :: forall a b (t :: f a) (t :: f b). (Apply (Apply (*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679337096Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) Source #

(%<*) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) infixl 4 Source #

default (%<*) :: forall a b (t :: f a) (t :: f b). (Apply (Apply (<*@#@$) t) t :: f a) ~ Apply (Apply TFHelper_6989586621679337107Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) Source #

Instances

Instances details
SApplicative Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Identity (a ~> b)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative First Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: First (a ~> b)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: First a) (t :: First b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Last (a ~> b)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Down Source # 
Instance details

Defined in Control.Applicative.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Down (a ~> b)) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: First (a ~> b)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: First a) (t :: First b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Last (a ~> b)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Max (a ~> b)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Min (a ~> b)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Dual (a ~> b)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Product (a ~> b)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Sum (a ~> b)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: NonEmpty (a ~> b)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Maybe (a ~> b)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: [a ~> b]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Either e (a ~> b)) (t :: Either e a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Proxy (a ~> b)) (t :: Proxy a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Proxy a) (t :: Proxy b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Proxy a) (t :: Proxy b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Proxy a) (t :: Proxy b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SMonoid a => SApplicative ((,) a) Source # 
Instance details

Defined in Control.Applicative.Singletons

Methods

sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a0 b (t :: (a, a0 ~> b)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a0 b c (t :: a0 ~> (b ~> c)) (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Const m (a ~> b)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

(SApplicative f, SApplicative g) => SApplicative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Product f g (a ~> b)) (t :: Product f g a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Product f g a) (t :: Product f g b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Product f g a) (t :: Product f g b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Product f g a) (t :: Product f g b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

(SApplicative f, SApplicative g) => SApplicative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Compose f g (a ~> b)) (t :: Compose f g a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Compose f g a) (t :: Compose f g b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Compose f g a) (t :: Compose f g b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Compose f g a) (t :: Compose f g b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

class PAlternative f Source #

Associated Types

type Empty :: f a Source #

type (arg :: f a) <|> (arg :: f a) :: f a infixl 3 Source #

Instances

Instances details
PAlternative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Empty :: f a Source #

type arg <|> arg :: f a Source #

PAlternative [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Empty :: f a Source #

type arg <|> arg :: f a Source #

PAlternative (Proxy :: k -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Empty :: f a Source #

type arg <|> arg :: f a Source #

PAlternative (Product f g :: k -> Type) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type Empty :: f a Source #

type arg <|> arg :: f a Source #

PAlternative (Compose f g :: k2 -> Type) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Associated Types

type Empty :: f a Source #

type arg <|> arg :: f a Source #

class SApplicative f => SAlternative f where Source #

Methods

sEmpty :: forall a. Sing (EmptySym0 :: f a) Source #

(%<|>) :: forall a (t :: f a) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t :: f a) infixl 3 Source #

Instances

Instances details
SAlternative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t) Source #

SAlternative [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t) Source #

SAlternative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t :: Proxy a) (t :: Proxy a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t) Source #

(SAlternative f, SAlternative g) => SAlternative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t :: Product f g a) (t :: Product f g a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t) Source #

(SAlternative f, SApplicative g) => SAlternative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t :: Compose f g a) (t :: Compose f g a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t) Source #

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SWrappedSing :: WrappedSing a -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SConst :: Const a b -> Type where Source #

Constructors

SConst :: forall {k} a (b :: k) (x :: a). Sing x -> SConst ('Const @a @b x) 

Instances

Instances details
SDecide a => TestCoercion (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (Coercion a0 b0) #

SDecide a => TestEquality (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testEquality :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (a0 :~: b0) #

data Const a (b :: k) #

The Const functor.

Instances

Instances details
Generic1 (Const a :: k -> Type) 
Instance details

Defined in Data.Functor.Const

Associated Types

type Rep1 (Const a) :: k -> Type #

Methods

from1 :: forall (a0 :: k0). Const a a0 -> Rep1 (Const a) a0 #

to1 :: forall (a0 :: k0). Rep1 (Const a) a0 -> Const a a0 #

Unbox a => Vector Vector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (Const a b) -> m (Vector (Const a b)) #

basicUnsafeThaw :: PrimMonad m => Vector (Const a b) -> m (Mutable Vector (PrimState m) (Const a b)) #

basicLength :: Vector (Const a b) -> Int #

basicUnsafeSlice :: Int -> Int -> Vector (Const a b) -> Vector (Const a b) #

basicUnsafeIndexM :: Monad m => Vector (Const a b) -> Int -> m (Const a b) #

basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (Const a b) -> Vector (Const a b) -> m () #

elemseq :: Vector (Const a b) -> Const a b -> b0 -> b0 #

Unbox a => MVector MVector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Const a b) -> Int #

basicUnsafeSlice :: Int -> Int -> MVector s (Const a b) -> MVector s (Const a b) #

basicOverlaps :: MVector s (Const a b) -> MVector s (Const a b) -> Bool #

basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (Const a b)) #

basicInitialize :: PrimMonad m => MVector (PrimState m) (Const a b) -> m () #

basicUnsafeReplicate :: PrimMonad m => Int -> Const a b -> m (MVector (PrimState m) (Const a b)) #

basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (Const a b) -> Int -> m (Const a b) #

basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (Const a b) -> Int -> Const a b -> m () #

basicClear :: PrimMonad m => MVector (PrimState m) (Const a b) -> m () #

basicSet :: PrimMonad m => MVector (PrimState m) (Const a b) -> Const a b -> m () #

basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (Const a b) -> MVector (PrimState m) (Const a b) -> m () #

basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (Const a b) -> MVector (PrimState m) (Const a b) -> m () #

basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (Const a b) -> Int -> m (MVector (PrimState m) (Const a b)) #

SingI1 ('Const :: k1 -> Const k1 b) 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

liftSing :: forall (x :: k10). Sing x -> Sing ('Const0 x)

Eq2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Const a c -> Const b d -> Bool #

Ord2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Const a c -> Const b d -> Ordering #

Read2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) #

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] #

liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) #

liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] #

Show2 (Const :: Type -> TYPE LiftedRep -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Const a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Const a b] -> ShowS #

Foldable (Const m :: TYPE LiftedRep -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldr :: (a -> b -> b) -> b -> Const m a -> b #

foldr' :: (a -> b -> b) -> b -> Const m a -> b #

foldl :: (b -> a -> b) -> b -> Const m a -> b #

foldl' :: (b -> a -> b) -> b -> Const m a -> b #

foldr1 :: (a -> a -> a) -> Const m a -> a #

foldl1 :: (a -> a -> a) -> Const m a -> a #

toList :: Const m a -> [a] #

null :: Const m a -> Bool #

length :: Const m a -> Int #

elem :: Eq a => a -> Const m a -> Bool #

maximum :: Ord a => Const m a -> a #

minimum :: Ord a => Const m a -> a #

sum :: Num a => Const m a -> a #

product :: Num a => Const m a -> a #

Eq a => Eq1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a0 -> b -> Bool) -> Const a a0 -> Const a b -> Bool #

Ord a => Ord1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a0 -> b -> Ordering) -> Const a a0 -> Const a b -> Ordering #

Read a => Read1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) #

liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] #

liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) #

liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] #

Show a => Show1 (Const a :: TYPE LiftedRep -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> Int -> Const a a0 -> ShowS #

liftShowList :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> [Const a a0] -> ShowS #

Traversable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) #

Monoid m => Applicative (Const m :: Type -> Type)

Since: base-2.0.1

Instance details

Defined in Data.Functor.Const

Methods

pure :: a -> Const m a #

(<*>) :: Const m (a -> b) -> Const m a -> Const m b #

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c #

(*>) :: Const m a -> Const m b -> Const m b #

(<*) :: Const m a -> Const m b -> Const m a #

Functor (Const m :: Type -> Type)

Since: base-2.1

Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b #

(<$) :: a -> Const m b -> Const m a #

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Const m (a ~> b)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

PFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

SFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sFold :: forall m0 (t :: Const m m0). SMonoid m0 => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m0 (t :: a ~> m0) (t :: Const m a). SMonoid m0 => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Const m a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Const m a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Const m a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Const m a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

PTraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg :: m (t b) Source #

type Sequence arg :: m (t a) Source #

STraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Const m a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source #

sSequenceA :: forall (f :: Type -> Type) a (t :: Const m (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source #

sMapM :: forall a (m0 :: Type -> Type) b (t :: a ~> m0 b) (t :: Const m a). SMonad m0 => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source #

sSequence :: forall (m0 :: Type -> Type) a (t :: Const m (m0 a)). SMonad m0 => Sing t -> Sing (Apply SequenceSym0 t) Source #

SingI (GetConstSym0 :: TyFun (Const a b) a -> Type) 
Instance details

Defined in Data.Functor.Const.Singletons

SingI (ConstSym0 :: TyFun a (Const a b) -> Type) 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sing :: Sing ConstSym0

SuppressUnusedWarnings (GetConstSym0 :: TyFun (Const a b) a -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

IsString a => IsString (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.String

Methods

fromString :: String -> Const a b #

Storable a => Storable (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

sizeOf :: Const a b -> Int #

alignment :: Const a b -> Int #

peekElemOff :: Ptr (Const a b) -> Int -> IO (Const a b) #

pokeElemOff :: Ptr (Const a b) -> Int -> Const a b -> IO () #

peekByteOff :: Ptr b0 -> Int -> IO (Const a b) #

pokeByteOff :: Ptr b0 -> Int -> Const a b -> IO () #

peek :: Ptr (Const a b) -> IO (Const a b) #

poke :: Ptr (Const a b) -> Const a b -> IO () #

Monoid a => Monoid (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

mempty :: Const a b #

mappend :: Const a b -> Const a b -> Const a b #

mconcat :: [Const a b] -> Const a b #

Semigroup a => Semigroup (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(<>) :: Const a b -> Const a b -> Const a b #

sconcat :: NonEmpty (Const a b) -> Const a b #

stimes :: Integral b0 => b0 -> Const a b -> Const a b #

Bits a => Bits (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(.&.) :: Const a b -> Const a b -> Const a b #

(.|.) :: Const a b -> Const a b -> Const a b #

xor :: Const a b -> Const a b -> Const a b #

complement :: Const a b -> Const a b #

shift :: Const a b -> Int -> Const a b #

rotate :: Const a b -> Int -> Const a b #

zeroBits :: Const a b #

bit :: Int -> Const a b #

setBit :: Const a b -> Int -> Const a b #

clearBit :: Const a b -> Int -> Const a b #

complementBit :: Const a b -> Int -> Const a b #

testBit :: Const a b -> Int -> Bool #

bitSizeMaybe :: Const a b -> Maybe Int #

bitSize :: Const a b -> Int #

isSigned :: Const a b -> Bool #

shiftL :: Const a b -> Int -> Const a b #

unsafeShiftL :: Const a b -> Int -> Const a b #

shiftR :: Const a b -> Int -> Const a b #

unsafeShiftR :: Const a b -> Int -> Const a b #

rotateL :: Const a b -> Int -> Const a b #

rotateR :: Const a b -> Int -> Const a b #

popCount :: Const a b -> Int #

FiniteBits a => FiniteBits (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Bounded a => Bounded (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

minBound :: Const a b #

maxBound :: Const a b #

Enum a => Enum (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

succ :: Const a b -> Const a b #

pred :: Const a b -> Const a b #

toEnum :: Int -> Const a b #

fromEnum :: Const a b -> Int #

enumFrom :: Const a b -> [Const a b] #

enumFromThen :: Const a b -> Const a b -> [Const a b] #

enumFromTo :: Const a b -> Const a b -> [Const a b] #

enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] #

Floating a => Floating (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

pi :: Const a b #

exp :: Const a b -> Const a b #

log :: Const a b -> Const a b #

sqrt :: Const a b -> Const a b #

(**) :: Const a b -> Const a b -> Const a b #

logBase :: Const a b -> Const a b -> Const a b #

sin :: Const a b -> Const a b #

cos :: Const a b -> Const a b #

tan :: Const a b -> Const a b #

asin :: Const a b -> Const a b #

acos :: Const a b -> Const a b #

atan :: Const a b -> Const a b #

sinh :: Const a b -> Const a b #

cosh :: Const a b -> Const a b #

tanh :: Const a b -> Const a b #

asinh :: Const a b -> Const a b #

acosh :: Const a b -> Const a b #

atanh :: Const a b -> Const a b #

log1p :: Const a b -> Const a b #

expm1 :: Const a b -> Const a b #

log1pexp :: Const a b -> Const a b #

log1mexp :: Const a b -> Const a b #

RealFloat a => RealFloat (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

floatRadix :: Const a b -> Integer #

floatDigits :: Const a b -> Int #

floatRange :: Const a b -> (Int, Int) #

decodeFloat :: Const a b -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Const a b #

exponent :: Const a b -> Int #

significand :: Const a b -> Const a b #

scaleFloat :: Int -> Const a b -> Const a b #

isNaN :: Const a b -> Bool #

isInfinite :: Const a b -> Bool #

isDenormalized :: Const a b -> Bool #

isNegativeZero :: Const a b -> Bool #

isIEEE :: Const a b -> Bool #

atan2 :: Const a b -> Const a b -> Const a b #

Generic (Const a b) 
Instance details

Defined in Data.Functor.Const

Associated Types

type Rep (Const a b) :: Type -> Type #

Methods

from :: Const a b -> Rep (Const a b) x #

to :: Rep (Const a b) x -> Const a b #

Ix a => Ix (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

range :: (Const a b, Const a b) -> [Const a b] #

index :: (Const a b, Const a b) -> Const a b -> Int #

unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int #

inRange :: (Const a b, Const a b) -> Const a b -> Bool #

rangeSize :: (Const a b, Const a b) -> Int #

unsafeRangeSize :: (Const a b, Const a b) -> Int #

Num a => Num (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(+) :: Const a b -> Const a b -> Const a b #

(-) :: Const a b -> Const a b -> Const a b #

(*) :: Const a b -> Const a b -> Const a b #

negate :: Const a b -> Const a b #

abs :: Const a b -> Const a b #

signum :: Const a b -> Const a b #

fromInteger :: Integer -> Const a b #

Read a => Read (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Const

Fractional a => Fractional (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b #

recip :: Const a b -> Const a b #

fromRational :: Rational -> Const a b #

Integral a => Integral (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b #

rem :: Const a b -> Const a b -> Const a b #

div :: Const a b -> Const a b -> Const a b #

mod :: Const a b -> Const a b -> Const a b #

quotRem :: Const a b -> Const a b -> (Const a b, Const a b) #

divMod :: Const a b -> Const a b -> (Const a b, Const a b) #

toInteger :: Const a b -> Integer #

Real a => Real (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

toRational :: Const a b -> Rational #

RealFrac a => RealFrac (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b) #

truncate :: Integral b0 => Const a b -> b0 #

round :: Integral b0 => Const a b -> b0 #

ceiling :: Integral b0 => Const a b -> b0 #

floor :: Integral b0 => Const a b -> b0 #

Show a => Show (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Const

Methods

showsPrec :: Int -> Const a b -> ShowS #

show :: Const a b -> String #

showList :: [Const a b] -> ShowS #

Eq a => Eq (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(==) :: Const a b -> Const a b -> Bool #

(/=) :: Const a b -> Const a b -> Bool #

Ord a => Ord (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

compare :: Const a b -> Const a b -> Ordering #

(<) :: Const a b -> Const a b -> Bool #

(<=) :: Const a b -> Const a b -> Bool #

(>) :: Const a b -> Const a b -> Bool #

(>=) :: Const a b -> Const a b -> Bool #

max :: Const a b -> Const a b -> Const a b #

min :: Const a b -> Const a b -> Const a b #

Prim a => Prim (Const a b)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Methods

sizeOf# :: Const a b -> Int# #

alignment# :: Const a b -> Int# #

indexByteArray# :: ByteArray# -> Int# -> Const a b #

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Const a b #) #

writeByteArray# :: MutableByteArray# s -> Int# -> Const a b -> State# s -> State# s #

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Const a b -> State# s -> State# s #

indexOffAddr# :: Addr# -> Int# -> Const a b #

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Const a b #) #

writeOffAddr# :: Addr# -> Int# -> Const a b -> State# s -> State# s #

setOffAddr# :: Addr# -> Int# -> Int# -> Const a b -> State# s -> State# s #

SingKind a => SingKind (Const a b) 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Demote (Const a b) = (r :: Type)

Methods

fromSing :: forall (a0 :: Const a b). Sing a0 -> Demote (Const a b)

toSing :: Demote (Const a b) -> SomeSing (Const a b)

SDecide a => SDecide (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%~) :: forall (a0 :: Const a b) (b0 :: Const a b). Sing a0 -> Sing b0 -> Decision (a0 :~: b0) #

PEq (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type arg == arg :: Bool Source #

type arg /= arg :: Bool Source #

SEq a => SEq (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%==) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (==@#@$) t) t) Source #

(%/=) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (/=@#@$) t) t) Source #

PMonoid (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg :: a Source #

type Mconcat arg :: a Source #

SMonoid a => SMonoid (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t) Source #

sMconcat :: forall (t :: [Const a b]). Sing t -> Sing (Apply MconcatSym0 t) Source #

POrd (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

SOrd a => SOrd (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sCompare :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

PSemigroup (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

SSemigroup a => SSemigroup (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%<>) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Const a b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

PBounded (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PEnum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

SBounded a => SBounded (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SEnum a => SEnum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sSucc :: forall (t :: Const a b). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Const a b). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Const a b). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Const a b) (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

PIsString (Const a b) Source # 
Instance details

Defined in Data.String.Singletons

Associated Types

type FromString arg :: a Source #

SIsString a => SIsString (Const a b) Source # 
Instance details

Defined in Data.String.Singletons

Methods

sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t) Source #

PNum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type arg + arg :: a Source #

type arg - arg :: a Source #

type arg * arg :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

SNum a => SNum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%+) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (+@#@$) t) t) Source #

(%-) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t) Source #

(%*) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (*@#@$) t) t) Source #

sNegate :: forall (t :: Const a b). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Const a b). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Const a b). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

PShow (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

SShow a => SShow (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sShowsPrec :: forall (t :: Natural) (t :: Const a b) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Const a b). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Const a b]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

Unbox a => Unbox (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

SDecide a => TestCoercion (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (Coercion a0 b0) #

SDecide a => TestEquality (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testEquality :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (a0 :~: b0) #

SingI a2 => SingI ('Const a2 :: Const a1 b) 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sing :: Sing ('Const0 a2)

type MapM (arg1 :: a ~> m1 b) (arg2 :: Const m2 a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m1 b) (arg2 :: Const m2 a)
type Traverse (a2 :: a1 ~> f b) (a3 :: Const m a1) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Traverse (a2 :: a1 ~> f b) (a3 :: Const m a1)
type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Const m a1) (a4 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Const m a1) (a4 :: Const m b)
type Fmap (a2 :: a1 ~> b) (a3 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: Const m a1)
type FoldMap (a2 :: a1 ~> k2) (a3 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type FoldMap (a2 :: a1 ~> k2) (a3 :: Const m a1)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Const m a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Const m a)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Const m a1)
type Foldr' (arg1 :: a ~> (b ~> b)) (arg2 :: b) (arg3 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr' (arg1 :: a ~> (b ~> b)) (arg2 :: b) (arg3 :: Const m a)
type Rep1 (Const a :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

type Rep1 (Const a :: k -> Type) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Pure (a :: k1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Pure (a :: k1)
type Elem (arg1 :: a) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Elem (arg1 :: a) (arg2 :: Const m a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Const m a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Const m a)
type (a1 :: k1) <$ (a2 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a1 :: k1) <$ (a2 :: Const m b)
newtype MVector s (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Const a b) = MV_Const (MVector s a)
type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (x :: a) 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (x :: a) = 'Const x :: Const a b
type Fold (arg :: Const m1 m2) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Fold (arg :: Const m1 m2)
type Length (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Length (arg :: Const m a)
type Maximum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Maximum (arg :: Const m a)
type Minimum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Minimum (arg :: Const m a)
type Null (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Null (arg :: Const m a)
type Product (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Product (arg :: Const m a)
type Sum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sum (arg :: Const m a)
type ToList (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ToList (arg :: Const m a)
type Sequence (arg :: Const m1 (m2 a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Const m1 (m2 a))
type SequenceA (arg :: Const m (f a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type SequenceA (arg :: Const m (f a))
type (arg1 :: Const m a) *> (arg2 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg1 :: Const m a) *> (arg2 :: Const m b)
type (arg1 :: Const m a) <* (arg2 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg1 :: Const m a) <* (arg2 :: Const m b)
type (a2 :: Const m (a1 ~> b)) <*> (a3 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const m (a1 ~> b)) <*> (a3 :: Const m a1)
type Rep (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

type Rep (Const a b) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Demote (Const a b) 
Instance details

Defined in Data.Functor.Const.Singletons

type Demote (Const a b) = Const (Demote a) b
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Mempty Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Mempty
type MaxBound Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type MinBound Source # 
Instance details

Defined in Data.Functor.Const.Singletons

newtype Vector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Const a b) = V_Const (Vector a)
type Mconcat (arg :: [Const a b]) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Mconcat (arg :: [Const a b])
type Sconcat (arg :: NonEmpty (Const a b)) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sconcat (arg :: NonEmpty (Const a b))
type FromEnum (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type FromEnum (a2 :: Const a1 b)
type Pred (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Pred (a2 :: Const a1 b)
type Succ (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Succ (a2 :: Const a1 b)
type ToEnum a2 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ToEnum a2
type FromString a2 Source # 
Instance details

Defined in Data.String.Singletons

type FromString a2
type Abs (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Abs (a2 :: Const a1 b)
type FromInteger a2 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type FromInteger a2
type Negate (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Negate (a2 :: Const a1 b)
type Signum (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Signum (a2 :: Const a1 b)
type Show_ (arg :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Show_ (arg :: Const a b)
type (arg1 :: Const a b) /= (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg1 :: Const a b) /= (arg2 :: Const a b)
type (a2 :: Const a1 b) == (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) == (a3 :: Const a1 b)
type Mappend (arg1 :: Const a b) (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Mappend (arg1 :: Const a b) (arg2 :: Const a b)
type (arg1 :: Const a b) < (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg1 :: Const a b) < (arg2 :: Const a b)
type (arg1 :: Const a b) <= (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg1 :: Const a b) <= (arg2 :: Const a b)
type (arg1 :: Const a b) > (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg1 :: Const a b) > (arg2 :: Const a b)
type (arg1 :: Const a b) >= (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg1 :: Const a b) >= (arg2 :: Const a b)
type Compare (a2 :: Const a1 b) (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Compare (a2 :: Const a1 b) (a3 :: Const a1 b)
type Max (arg1 :: Const a b) (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Max (arg1 :: Const a b) (arg2 :: Const a b)
type Min (arg1 :: Const a b) (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Min (arg1 :: Const a b) (arg2 :: Const a b)
type (a2 :: Const a1 b) <> (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) <> (a3 :: Const a1 b)
type EnumFromTo (a2 :: Const a1 b) (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type EnumFromTo (a2 :: Const a1 b) (a3 :: Const a1 b)
type (a2 :: Const a1 b) * (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) * (a3 :: Const a1 b)
type (a2 :: Const a1 b) + (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) + (a3 :: Const a1 b)
type (a2 :: Const a1 b) - (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) - (a3 :: Const a1 b)
type ShowList (arg1 :: [Const a b]) arg2 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ShowList (arg1 :: [Const a b]) arg2
type EnumFromThenTo (a2 :: Const a1 b) (a3 :: Const a1 b) (a4 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type EnumFromThenTo (a2 :: Const a1 b) (a3 :: Const a1 b) (a4 :: Const a1 b)
type ShowsPrec a2 (a3 :: Const a1 b) a4 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ShowsPrec a2 (a3 :: Const a1 b) a4
type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680726290 :: Const a b) 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680726290 :: Const a b) = GetConst a6989586621680726290

type family GetConst (a :: Const a b) :: a where ... Source #

Equations

GetConst ('Const x) = x 

sGetConst :: forall a b (t :: Const a b). Sing t -> Sing (Apply GetConstSym0 t :: a) Source #

type family (a :: (~>) a b) <$> (a :: f a) :: f b where ... infixl 4 Source #

Equations

a_6989586621679524011 <$> a_6989586621679524013 = Apply (Apply FmapSym0 a_6989586621679524011) a_6989586621679524013 

(%<$>) :: forall a b f (t :: (~>) a b) (t :: f a). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$>@#@$) t) t :: f b) infixl 4 Source #

type family (arg :: a) <$ (arg :: f b) :: f a infixl 4 Source #

Instances

Instances details
type (a1 :: k1) <$ (a2 :: Identity b) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type (a1 :: k1) <$ (a2 :: Identity b)
type (a1 :: k1) <$ (a2 :: First b) Source # 
Instance details

Defined in Data.Monoid.Singletons

type (a1 :: k1) <$ (a2 :: First b)
type (a1 :: k1) <$ (a2 :: Last b) Source # 
Instance details

Defined in Data.Monoid.Singletons

type (a1 :: k1) <$ (a2 :: Last b)
type (a1 :: k1) <$ (a2 :: Down b) Source # 
Instance details

Defined in Data.Functor.Singletons

type (a1 :: k1) <$ (a2 :: Down b)
type (a1 :: k1) <$ (a2 :: First b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a1 :: k1) <$ (a2 :: First b)
type (a1 :: k1) <$ (a2 :: Last b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a1 :: k1) <$ (a2 :: Last b)
type (a1 :: k1) <$ (a2 :: Max b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a1 :: k1) <$ (a2 :: Max b)
type (a1 :: k1) <$ (a2 :: Min b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a1 :: k1) <$ (a2 :: Min b)
type (a1 :: k1) <$ (a2 :: Dual b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type (a1 :: k1) <$ (a2 :: Dual b)
type (a1 :: k1) <$ (a2 :: Product b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type (a1 :: k1) <$ (a2 :: Product b)
type (a1 :: k1) <$ (a2 :: Sum b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type (a1 :: k1) <$ (a2 :: Sum b)
type (a1 :: k1) <$ (a2 :: NonEmpty b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a1 :: k1) <$ (a2 :: NonEmpty b)
type (a1 :: k1) <$ (a2 :: Maybe b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a1 :: k1) <$ (a2 :: Maybe b)
type (a1 :: k1) <$ (a2 :: [b]) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a1 :: k1) <$ (a2 :: [b])
type (arg1 :: a) <$ (arg2 :: Proxy b) Source # 
Instance details

Defined in Data.Proxy.Singletons

type (arg1 :: a) <$ (arg2 :: Proxy b)
type (a2 :: k1) <$ (a3 :: Either a1 b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: k1) <$ (a3 :: Either a1 b)
type (a2 :: k1) <$ (a3 :: Arg a1 b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: k1) <$ (a3 :: Arg a1 b)
type (a2 :: k1) <$ (a3 :: (a1, b)) Source # 
Instance details

Defined in Data.Functor.Singletons

type (a2 :: k1) <$ (a3 :: (a1, b))
type (a1 :: k1) <$ (a2 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a1 :: k1) <$ (a2 :: Const m b)
type (a1 :: k1) <$ (a2 :: Product f g b) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type (a1 :: k1) <$ (a2 :: Product f g b)
type (a1 :: k1) <$ (a2 :: Sum f g b) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type (a1 :: k1) <$ (a2 :: Sum f g b)
type (a1 :: k1) <$ (a2 :: Compose f g b) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type (a1 :: k1) <$ (a2 :: Compose f g b)

(%<$) :: forall a b (t :: a) (t :: f b). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a) infixl 4 Source #

type family (a :: f a) <**> (a :: f ((~>) a b)) :: f b where ... infixl 4 Source #

Equations

a_6989586621679336996 <**> a_6989586621679336998 = Apply (Apply (Apply LiftA2Sym0 (Apply (Apply Lambda_6989586621679337007Sym0 a_6989586621679336996) a_6989586621679336998)) a_6989586621679336996) a_6989586621679336998 

(%<**>) :: forall f a b (t :: f a) (t :: f ((~>) a b)). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply (<**>@#@$) t) t :: f b) infixl 4 Source #

type family LiftA (a :: (~>) a b) (a :: f a) :: f b where ... Source #

Equations

LiftA f a = Apply (Apply (<*>@#@$) (Apply PureSym0 f)) a 

sLiftA :: forall a b f (t :: (~>) a b) (t :: f a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply LiftASym0 t) t :: f b) Source #

type family LiftA3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: f a) (a :: f b) (a :: f c) :: f d where ... Source #

Equations

LiftA3 f a b c = Apply (Apply (<*>@#@$) (Apply (Apply (Apply LiftA2Sym0 f) a) b)) c 

sLiftA3 :: forall a b c d f (t :: (~>) a ((~>) b ((~>) c d))) (t :: f a) (t :: f b) (t :: f c). SApplicative f => Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply LiftA3Sym0 t) t) t) t :: f d) Source #

type family Optional (a :: f a) :: f (Maybe a) where ... Source #

Equations

Optional v = Apply (Apply (<|>@#@$) (Apply (Apply (<$>@#@$) JustSym0) v)) (Apply PureSym0 NothingSym0) 

sOptional :: forall f a (t :: f a). SAlternative f => Sing t -> Sing (Apply OptionalSym0 t :: f (Maybe a)) Source #

Defunctionalization symbols

data PureSym0 :: (~>) a (f a) Source #

Instances

Instances details
SApplicative f => SingI (PureSym0 :: TyFun a (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing PureSym0

SuppressUnusedWarnings (PureSym0 :: TyFun a (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (PureSym0 :: TyFun a (f a) -> Type) (a6989586621679337039 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (PureSym0 :: TyFun a (f a) -> Type) (a6989586621679337039 :: a) = Pure a6989586621679337039 :: f a

type family PureSym1 (a6989586621679337039 :: a) :: f a where ... Source #

Equations

PureSym1 a6989586621679337039 = Pure a6989586621679337039 

data (<*>@#@$) :: (~>) (f ((~>) a b)) ((~>) (f a) (f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<*>@#@$)

SuppressUnusedWarnings ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679337043 :: f (a ~> b)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679337043 :: f (a ~> b)) = (<*>@#@$$) a6989586621679337043

data (<*>@#@$$) (a6989586621679337043 :: f ((~>) a b)) :: (~>) (f a) (f b) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((<*>@#@$$) :: f (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<*>@#@$$) x)

(SApplicative f, SingI d) => SingI ((<*>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<*>@#@$$) d)

SuppressUnusedWarnings ((<*>@#@$$) a6989586621679337043 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$$) a6989586621679337043 :: TyFun (f a) (f b) -> Type) (a6989586621679337044 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$$) a6989586621679337043 :: TyFun (f a) (f b) -> Type) (a6989586621679337044 :: f a) = a6989586621679337043 <*> a6989586621679337044

type family (a6989586621679337043 :: f ((~>) a b)) <*>@#@$$$ (a6989586621679337044 :: f a) :: f b where ... infixl 4 Source #

Equations

a6989586621679337043 <*>@#@$$$ a6989586621679337044 = (<*>) a6989586621679337043 a6989586621679337044 

data (*>@#@$) :: (~>) (f a) ((~>) (f b) (f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (*>@#@$)

SuppressUnusedWarnings ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) (a6989586621679337055 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) (a6989586621679337055 :: f a) = (*>@#@$$) a6989586621679337055 :: TyFun (f b) (f b) -> Type

data (*>@#@$$) (a6989586621679337055 :: f a) :: (~>) (f b) (f b) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((*>@#@$$) :: f a -> TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((*>@#@$$) x)

(SApplicative f, SingI d) => SingI ((*>@#@$$) d :: TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((*>@#@$$) d)

SuppressUnusedWarnings ((*>@#@$$) a6989586621679337055 :: TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$$) a6989586621679337055 :: TyFun (f b) (f b) -> Type) (a6989586621679337056 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$$) a6989586621679337055 :: TyFun (f b) (f b) -> Type) (a6989586621679337056 :: f b) = a6989586621679337055 *> a6989586621679337056

type family (a6989586621679337055 :: f a) *>@#@$$$ (a6989586621679337056 :: f b) :: f b where ... infixl 4 Source #

Equations

a6989586621679337055 *>@#@$$$ a6989586621679337056 = (*>) a6989586621679337055 a6989586621679337056 

data (<*@#@$) :: (~>) (f a) ((~>) (f b) (f a)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<*@#@$)

SuppressUnusedWarnings ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) (a6989586621679337060 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) (a6989586621679337060 :: f a) = (<*@#@$$) a6989586621679337060 :: TyFun (f b) (f a) -> Type

data (<*@#@$$) (a6989586621679337060 :: f a) :: (~>) (f b) (f a) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((<*@#@$$) :: f a -> TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<*@#@$$) x)

(SApplicative f, SingI d) => SingI ((<*@#@$$) d :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<*@#@$$) d)

SuppressUnusedWarnings ((<*@#@$$) a6989586621679337060 :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$$) a6989586621679337060 :: TyFun (f b) (f a) -> Type) (a6989586621679337061 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$$) a6989586621679337060 :: TyFun (f b) (f a) -> Type) (a6989586621679337061 :: f b) = a6989586621679337060 <* a6989586621679337061

type family (a6989586621679337060 :: f a) <*@#@$$$ (a6989586621679337061 :: f b) :: f a where ... infixl 4 Source #

Equations

a6989586621679337060 <*@#@$$$ a6989586621679337061 = (<*) a6989586621679337060 a6989586621679337061 

type family EmptySym0 :: f a where ... Source #

Equations

EmptySym0 = Empty 

data (<|>@#@$) :: (~>) (f a) ((~>) (f a) (f a)) infixl 3 Source #

Instances

Instances details
SAlternative f => SingI ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<|>@#@$)

SuppressUnusedWarnings ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) (a6989586621679337164 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) (a6989586621679337164 :: f a) = (<|>@#@$$) a6989586621679337164

data (<|>@#@$$) (a6989586621679337164 :: f a) :: (~>) (f a) (f a) infixl 3 Source #

Instances

Instances details
SAlternative f => SingI1 ((<|>@#@$$) :: f a -> TyFun (f a) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<|>@#@$$) x)

(SAlternative f, SingI d) => SingI ((<|>@#@$$) d :: TyFun (f a) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<|>@#@$$) d)

SuppressUnusedWarnings ((<|>@#@$$) a6989586621679337164 :: TyFun (f a) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$$) a6989586621679337164 :: TyFun (f a) (f a) -> Type) (a6989586621679337165 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$$) a6989586621679337164 :: TyFun (f a) (f a) -> Type) (a6989586621679337165 :: f a) = a6989586621679337164 <|> a6989586621679337165

type family (a6989586621679337164 :: f a) <|>@#@$$$ (a6989586621679337165 :: f a) :: f a where ... infixl 3 Source #

Equations

a6989586621679337164 <|>@#@$$$ a6989586621679337165 = (<|>) a6989586621679337164 a6989586621679337165 

data ConstSym0 z Source #

Instances

Instances details
SingI (ConstSym0 :: TyFun a (Const a b) -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sing :: Sing ConstSym0

type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (x :: a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (x :: a) = 'Const x :: Const a b

type family ConstSym1 x where ... Source #

Equations

ConstSym1 x = 'Const x 

data GetConstSym0 :: (~>) (Const a b) a Source #

Instances

Instances details
SingI (GetConstSym0 :: TyFun (Const a b) a -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SuppressUnusedWarnings (GetConstSym0 :: TyFun (Const a b) a -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680726290 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680726290 :: Const a b) = GetConst a6989586621680726290

type family GetConstSym1 (a6989586621680726290 :: Const a b) :: a where ... Source #

Equations

GetConstSym1 a6989586621680726290 = GetConst a6989586621680726290 

data (<$>@#@$) :: (~>) ((~>) a b) ((~>) (f a) (f b)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sing :: Sing (<$>@#@$)

SuppressUnusedWarnings ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679524018 :: a ~> b) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679524018 :: a ~> b) = (<$>@#@$$) a6989586621679524018 :: TyFun (f a) (f b) -> Type

data (<$>@#@$$) (a6989586621679524018 :: (~>) a b) :: (~>) (f a) (f b) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI1 ((<$>@#@$$) :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<$>@#@$$) x)

(SFunctor f, SingI d) => SingI ((<$>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sing :: Sing ((<$>@#@$$) d)

SuppressUnusedWarnings ((<$>@#@$$) a6989586621679524018 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$$) a6989586621679524018 :: TyFun (f a) (f b) -> Type) (a6989586621679524019 :: f a) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$$) a6989586621679524018 :: TyFun (f a) (f b) -> Type) (a6989586621679524019 :: f a) = a6989586621679524018 <$> a6989586621679524019

type family (a6989586621679524018 :: (~>) a b) <$>@#@$$$ (a6989586621679524019 :: f a) :: f b where ... infixl 4 Source #

Equations

a6989586621679524018 <$>@#@$$$ a6989586621679524019 = (<$>) a6989586621679524018 a6989586621679524019 

data (<$@#@$) :: (~>) a ((~>) (f b) (f a)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<$@#@$)

SuppressUnusedWarnings ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) (a6989586621679337020 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) (a6989586621679337020 :: a) = (<$@#@$$) a6989586621679337020 :: TyFun (f b) (f a) -> Type

data (<$@#@$$) (a6989586621679337020 :: a) :: (~>) (f b) (f a) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI1 ((<$@#@$$) :: a -> TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<$@#@$$) x)

(SFunctor f, SingI d) => SingI ((<$@#@$$) d :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<$@#@$$) d)

SuppressUnusedWarnings ((<$@#@$$) a6989586621679337020 :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$$) a6989586621679337020 :: TyFun (f b) (f a) -> Type) (a6989586621679337021 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$$) a6989586621679337020 :: TyFun (f b) (f a) -> Type) (a6989586621679337021 :: f b) = a6989586621679337020 <$ a6989586621679337021

type family (a6989586621679337020 :: a) <$@#@$$$ (a6989586621679337021 :: f b) :: f a where ... infixl 4 Source #

Equations

a6989586621679337020 <$@#@$$$ a6989586621679337021 = (<$) a6989586621679337020 a6989586621679337021 

data (<**>@#@$) :: (~>) (f a) ((~>) (f ((~>) a b)) (f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<**>@#@$)

SuppressUnusedWarnings ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) (a6989586621679337003 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) (a6989586621679337003 :: f a) = (<**>@#@$$) a6989586621679337003 :: TyFun (f (a ~> b)) (f b) -> Type

data (<**>@#@$$) (a6989586621679337003 :: f a) :: (~>) (f ((~>) a b)) (f b) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((<**>@#@$$) :: f a -> TyFun (f (a ~> b)) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<**>@#@$$) x)

(SApplicative f, SingI d) => SingI ((<**>@#@$$) d :: TyFun (f (a ~> b)) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<**>@#@$$) d)

SuppressUnusedWarnings ((<**>@#@$$) a6989586621679337003 :: TyFun (f (a ~> b)) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$$) a6989586621679337003 :: TyFun (f (a ~> b)) (f b) -> Type) (a6989586621679337004 :: f (a ~> b)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$$) a6989586621679337003 :: TyFun (f (a ~> b)) (f b) -> Type) (a6989586621679337004 :: f (a ~> b)) = a6989586621679337003 <**> a6989586621679337004

type family (a6989586621679337003 :: f a) <**>@#@$$$ (a6989586621679337004 :: f ((~>) a b)) :: f b where ... infixl 4 Source #

Equations

a6989586621679337003 <**>@#@$$$ a6989586621679337004 = (<**>) a6989586621679337003 a6989586621679337004 

data LiftASym0 :: (~>) ((~>) a b) ((~>) (f a) (f b)) Source #

Instances

Instances details
SApplicative f => SingI (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing LiftASym0

SuppressUnusedWarnings (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679336992 :: a ~> b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679336992 :: a ~> b) = LiftASym1 a6989586621679336992 :: TyFun (f a) (f b) -> Type

data LiftASym1 (a6989586621679336992 :: (~>) a b) :: (~>) (f a) (f b) Source #

Instances

Instances details
SApplicative f => SingI1 (LiftASym1 :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftASym1 x)

(SApplicative f, SingI d) => SingI (LiftASym1 d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftASym1 d)

SuppressUnusedWarnings (LiftASym1 a6989586621679336992 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym1 a6989586621679336992 :: TyFun (f a) (f b) -> Type) (a6989586621679336993 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym1 a6989586621679336992 :: TyFun (f a) (f b) -> Type) (a6989586621679336993 :: f a) = LiftA a6989586621679336992 a6989586621679336993

type family LiftASym2 (a6989586621679336992 :: (~>) a b) (a6989586621679336993 :: f a) :: f b where ... Source #

Equations

LiftASym2 a6989586621679336992 a6989586621679336993 = LiftA a6989586621679336992 a6989586621679336993 

data LiftA2Sym0 :: (~>) ((~>) a ((~>) b c)) ((~>) (f a) ((~>) (f b) (f c))) Source #

Instances

Instances details
SApplicative f => SingI (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing LiftA2Sym0

SuppressUnusedWarnings (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) (a6989586621679337049 :: a ~> (b ~> c)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) (a6989586621679337049 :: a ~> (b ~> c)) = LiftA2Sym1 a6989586621679337049 :: TyFun (f a) (f b ~> f c) -> Type

data LiftA2Sym1 (a6989586621679337049 :: (~>) a ((~>) b c)) :: (~>) (f a) ((~>) (f b) (f c)) Source #

Instances

Instances details
SApplicative f => SingI1 (LiftA2Sym1 :: (a ~> (b ~> c)) -> TyFun (f a) (f b ~> f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftA2Sym1 x)

(SApplicative f, SingI d) => SingI (LiftA2Sym1 d :: TyFun (f a) (f b ~> f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA2Sym1 d)

SuppressUnusedWarnings (LiftA2Sym1 a6989586621679337049 :: TyFun (f a) (f b ~> f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym1 a6989586621679337049 :: TyFun (f a) (f b ~> f c) -> Type) (a6989586621679337050 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym1 a6989586621679337049 :: TyFun (f a) (f b ~> f c) -> Type) (a6989586621679337050 :: f a) = LiftA2Sym2 a6989586621679337049 a6989586621679337050

data LiftA2Sym2 (a6989586621679337049 :: (~>) a ((~>) b c)) (a6989586621679337050 :: f a) :: (~>) (f b) (f c) Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI1 (LiftA2Sym2 d :: f a -> TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftA2Sym2 d x)

SApplicative f => SingI2 (LiftA2Sym2 :: (a ~> (b ~> c)) -> f a -> TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftA2Sym2 x y)

(SApplicative f, SingI d1, SingI d2) => SingI (LiftA2Sym2 d1 d2 :: TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA2Sym2 d1 d2)

SuppressUnusedWarnings (LiftA2Sym2 a6989586621679337049 a6989586621679337050 :: TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym2 a6989586621679337049 a6989586621679337050 :: TyFun (f b) (f c) -> Type) (a6989586621679337051 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym2 a6989586621679337049 a6989586621679337050 :: TyFun (f b) (f c) -> Type) (a6989586621679337051 :: f b) = LiftA2 a6989586621679337049 a6989586621679337050 a6989586621679337051

type family LiftA2Sym3 (a6989586621679337049 :: (~>) a ((~>) b c)) (a6989586621679337050 :: f a) (a6989586621679337051 :: f b) :: f c where ... Source #

Equations

LiftA2Sym3 a6989586621679337049 a6989586621679337050 a6989586621679337051 = LiftA2 a6989586621679337049 a6989586621679337050 a6989586621679337051 

data LiftA3Sym0 :: (~>) ((~>) a ((~>) b ((~>) c d))) ((~>) (f a) ((~>) (f b) ((~>) (f c) (f d)))) Source #

Instances

Instances details
SApplicative f => SingI (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing LiftA3Sym0

SuppressUnusedWarnings (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) (a6989586621679336981 :: a ~> (b ~> (c ~> d))) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) (a6989586621679336981 :: a ~> (b ~> (c ~> d))) = LiftA3Sym1 a6989586621679336981 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type

data LiftA3Sym1 (a6989586621679336981 :: (~>) a ((~>) b ((~>) c d))) :: (~>) (f a) ((~>) (f b) ((~>) (f c) (f d))) Source #

Instances

Instances details
SApplicative f => SingI1 (LiftA3Sym1 :: (a ~> (b ~> (c ~> d))) -> TyFun (f a) (f b ~> (f c ~> f d)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftA3Sym1 x)

(SApplicative f, SingI d2) => SingI (LiftA3Sym1 d2 :: TyFun (f a) (f b ~> (f c ~> f d1)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA3Sym1 d2)

SuppressUnusedWarnings (LiftA3Sym1 a6989586621679336981 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym1 a6989586621679336981 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type) (a6989586621679336982 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym1 a6989586621679336981 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type) (a6989586621679336982 :: f a) = LiftA3Sym2 a6989586621679336981 a6989586621679336982

data LiftA3Sym2 (a6989586621679336981 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679336982 :: f a) :: (~>) (f b) ((~>) (f c) (f d)) Source #

Instances

Instances details
(SApplicative f, SingI d2) => SingI1 (LiftA3Sym2 d2 :: f a -> TyFun (f b) (f c ~> f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftA3Sym2 d2 x)

SApplicative f => SingI2 (LiftA3Sym2 :: (a ~> (b ~> (c ~> d))) -> f a -> TyFun (f b) (f c ~> f d) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftA3Sym2 x y)

(SApplicative f, SingI d2, SingI d3) => SingI (LiftA3Sym2 d2 d3 :: TyFun (f b) (f c ~> f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA3Sym2 d2 d3)

SuppressUnusedWarnings (LiftA3Sym2 a6989586621679336981 a6989586621679336982 :: TyFun (f b) (f c ~> f d) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym2 a6989586621679336981 a6989586621679336982 :: TyFun (f b) (f c ~> f d) -> Type) (a6989586621679336983 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym2 a6989586621679336981 a6989586621679336982 :: TyFun (f b) (f c ~> f d) -> Type) (a6989586621679336983 :: f b) = LiftA3Sym3 a6989586621679336981 a6989586621679336982 a6989586621679336983

data LiftA3Sym3 (a6989586621679336981 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679336982 :: f a) (a6989586621679336983 :: f b) :: (~>) (f c) (f d) Source #

Instances

Instances details
(SApplicative f, SingI d2) => SingI2 (LiftA3Sym3 d2 :: f a -> f b -> TyFun (f c) (f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftA3Sym3 d2 x y)

(SApplicative f, SingI d2, SingI d3) => SingI1 (LiftA3Sym3 d2 d3 :: f b -> TyFun (f c) (f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftA3Sym3 d2 d3 x)

(SApplicative f, SingI d2, SingI d3, SingI d4) => SingI (LiftA3Sym3 d2 d3 d4 :: TyFun (f c) (f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA3Sym3 d2 d3 d4)

SuppressUnusedWarnings (LiftA3Sym3 a6989586621679336981 a6989586621679336982 a6989586621679336983 :: TyFun (f c) (f d) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym3 a6989586621679336981 a6989586621679336982 a6989586621679336983 :: TyFun (f c) (f d) -> Type) (a6989586621679336984 :: f c) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym3 a6989586621679336981 a6989586621679336982 a6989586621679336983 :: TyFun (f c) (f d) -> Type) (a6989586621679336984 :: f c) = LiftA3 a6989586621679336981 a6989586621679336982 a6989586621679336983 a6989586621679336984

data OptionalSym0 :: (~>) (f a) (f (Maybe a)) Source #

Instances

Instances details
SAlternative f => SingI (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) Source # 
Instance details

Defined in Control.Applicative.Singletons

SuppressUnusedWarnings (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) Source # 
Instance details

Defined in Control.Applicative.Singletons

type Apply (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) (a6989586621681295411 :: f a) Source # 
Instance details

Defined in Control.Applicative.Singletons

type Apply (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) (a6989586621681295411 :: f a) = Optional a6989586621681295411

type family OptionalSym1 (a6989586621681295411 :: f a) :: f (Maybe a) where ... Source #

Equations

OptionalSym1 a6989586621681295411 = Optional a6989586621681295411 

Orphan instances

PApplicative Down Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

SApplicative Down Source # 
Instance details

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Down (a ~> b)) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

PApplicative ((,) a) Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

SMonoid a => SApplicative ((,) a) Source # 
Instance details

Methods

sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a0 b (t :: (a, a0 ~> b)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a0 b c (t :: a0 ~> (b ~> c)) (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #