{-# LANGUAGE TypeOperators, DataKinds, PolyKinds, TypeFamilies, RankNTypes, FlexibleContexts, TemplateHaskell, UndecidableInstances, GADTs, DefaultSignatures, ScopedTypeVariables, TypeApplications, StandaloneKindSignatures, InstanceSigs #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Eq.Singletons -- Copyright : (C) 2013 Richard Eisenberg -- License : BSD-style (see LICENSE) -- Maintainer : Ryan Scott -- Stability : experimental -- Portability : non-portable -- -- Defines the promoted version of 'Eq', 'PEq', and the singleton version, -- 'SEq'. Also defines the 'DefaultEq' type family, which is useful for -- implementing boolean equality for non-inductively defined data types. -- ----------------------------------------------------------------------------- module Data.Eq.Singletons ( PEq(..), SEq(..), DefaultEq, -- * Defunctionalization symbols type (==@#@$), type (==@#@$$), type (==@#@$$$), type (/=@#@$), type (/=@#@$$), type (/=@#@$$$), DefaultEqSym0, DefaultEqSym1, DefaultEqSym2 ) where import Data.Bool.Singletons import Data.Singletons.Base.Instances import Data.Singletons.Base.Util import Data.Singletons.TH -- The imports below are only needed for Haddock purposes. import qualified Data.Kind as Kind () import qualified Data.Type.Equality as DTE () import qualified GHC.TypeLits as Lit () $(singletonsOnly [d| infix 4 ==, /= -- -| The 'Eq' class defines equality ('==') and inequality ('/='). -- All the basic datatypes exported by the "Prelude" are instances of 'Eq', -- and 'Eq' may be derived for any datatype whose constituents are also -- instances of 'Eq'. -- -- The Haskell Report defines no laws for 'Eq'. However, '==' is customarily -- expected to implement an equivalence relationship where two values comparing -- equal are indistinguishable by "public" functions, with a "public" function -- being one not allowing to see implementation details. For example, for a -- type representing non-normalised natural numbers modulo 100, a "public" -- function doesn't make the difference between 1 and 201. It is expected to -- have the following properties: -- -- [__Reflexivity__]: @x == x@ = 'True' -- [__Symmetry__]: @x == y@ = @y == x@ -- [__Transitivity__]: if @x == y && y == z@ = 'True', then @x == z@ = 'True' -- [__Substitutivity__]: if @x == y@ = 'True' and @f@ is a "public" function -- whose return type is an instance of 'Eq', then @f x == f y@ = 'True' -- [__Negation__]: @x /= y@ = @not (x == y)@ -- -- Minimal complete definition: either '==' or '/='. -- class Eq a where (==), (/=) :: a -> a -> Bool {-# INLINE (/=) #-} {-# INLINE (==) #-} x /= y = not (x == y) x == y = not (x /= y) -- {-# MINIMAL (==) | (/=) #-} |]) -- | One way to compute Boolean equality for types of any kind. This will -- return 'True' if the two arguments are known to be the same type and 'False' -- if they are known to be apart. Examples: -- -- @ -- >>> 'DefaultEq' 'Nothing' 'Nothing' -- 'True' -- >>> 'DefaultEq' 'Nothing' ('Just' a) -- 'False' -- >>> 'DefaultEq' a a -- 'True' -- @ -- -- 'DefaultEq' is most suited for data types that are not inductively defined. -- Four concrete examples of this are 'Natural', 'Lit.Symbol', 'Lit.Char', and -- 'Kind.Type'. One cannot implement boolean equality for these types by -- pattern matching alone, so 'DefaultEq' is a good fit instead. -- -- The downside to 'DefaultEq' is that it can fail to reduce if it is unable -- to determine if two types are equal or apart. Here is one such example: -- -- @ -- 'DefaultEq' ('Just' a) ('Just' b) -- @ -- -- What should this reduce to? It depends on what @a@ and @b@ are. 'DefaultEq' -- has no way of knowing what these two types are, and as a result, this type -- will be stuck. This is a pitfall that you can run into if you use -- 'DefaultEq' to implement boolean equality for an inductive data type like -- 'Maybe'. For this reason, it is usually recommended to implement boolean -- equality for inductive data types using pattern matching and recursion, not -- 'DefaultEq'. -- -- Note that this definition is slightly different from the '(DTE.==)' type -- family from "Data.Type.Equality" in @base@, as '(DTE.==)' attempts to -- distinguish applications of type constructors from other types. As a result, -- @a == a@ does not reduce to 'True' for every @a@, but @'DefaultEq' a a@ -- /does/ reduce to 'True' for every @a@. The latter behavior is more desirable -- for @singletons@' purposes, so we use it instead of '(DTE.==)'. type DefaultEq :: k -> k -> Bool type family DefaultEq (a :: k) (b :: k) :: Bool where DefaultEq a a = 'True DefaultEq a b = 'False $(genDefunSymbols [''DefaultEq]) $