singletons-base-3.1: A promoted and singled version of the base library
Copyright(C) 2013-2014 Richard Eisenberg Jan Stolarek
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Either.Singletons

Description

Defines functions and datatypes relating to the singleton for Either, including singled versions of all the definitions in Data.Either.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.Either. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis

The Either singleton

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SWrappedSing :: WrappedSing a -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SEither :: forall (a :: Type) (b :: Type). Either a b -> Type where Source #

Constructors

SLeft :: forall (a :: Type) (b :: Type) (n :: a). (Sing n) -> SEither ('Left n :: Either (a :: Type) (b :: Type)) 
SRight :: forall (a :: Type) (b :: Type) (n :: b). (Sing n) -> SEither ('Right n :: Either (a :: Type) (b :: Type)) 

Instances

Instances details
(SDecide a, SDecide b) => TestCoercion (SEither :: Either a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). SEither a0 -> SEither b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b) => TestEquality (SEither :: Either a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). SEither a0 -> SEither b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b) => Show (SEither z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> SEither z -> ShowS #

show :: SEither z -> String #

showList :: [SEither z] -> ShowS #

Singletons from Data.Either

either_ :: (a -> c) -> (b -> c) -> Either a b -> c Source #

type family Either_ (a :: (~>) a c) (a :: (~>) b c) (a :: Either a b) :: c where ... Source #

Equations

Either_ f _ ('Left x) = Apply f x 
Either_ _ g ('Right y) = Apply g y 

sEither_ :: forall a c b (t :: (~>) a c) (t :: (~>) b c) (t :: Either a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c) Source #

The preceding two definitions are derived from the function either in Data.Either. The extra underscore is to avoid name clashes with the type Either.

type family Lefts (a :: [Either a b]) :: [a] where ... Source #

Equations

Lefts '[] = NilSym0 
Lefts ('(:) ('Left x) xs) = Apply (Apply (:@#@$) x) (Apply LeftsSym0 xs) 
Lefts ('(:) ('Right _) xs) = Apply LeftsSym0 xs 

sLefts :: forall a b (t :: [Either a b]). Sing t -> Sing (Apply LeftsSym0 t :: [a]) Source #

type family Rights (a :: [Either a b]) :: [b] where ... Source #

Equations

Rights '[] = NilSym0 
Rights ('(:) ('Left _) xs) = Apply RightsSym0 xs 
Rights ('(:) ('Right x) xs) = Apply (Apply (:@#@$) x) (Apply RightsSym0 xs) 

sRights :: forall a b (t :: [Either a b]). Sing t -> Sing (Apply RightsSym0 t :: [b]) Source #

type family PartitionEithers (a :: [Either a b]) :: ([a], [b]) where ... Source #

Equations

PartitionEithers a_6989586621679325008 = Apply (Apply (Apply FoldrSym0 (Apply (Apply Either_Sym0 (Let6989586621679325014LeftSym1 a_6989586621679325008)) (Let6989586621679325014RightSym1 a_6989586621679325008))) (Apply (Apply Tuple2Sym0 NilSym0) NilSym0)) a_6989586621679325008 

sPartitionEithers :: forall a b (t :: [Either a b]). Sing t -> Sing (Apply PartitionEithersSym0 t :: ([a], [b])) Source #

type family IsLeft (a :: Either a b) :: Bool where ... Source #

Equations

IsLeft ('Left _) = TrueSym0 
IsLeft ('Right _) = FalseSym0 

sIsLeft :: forall a b (t :: Either a b). Sing t -> Sing (Apply IsLeftSym0 t :: Bool) Source #

type family IsRight (a :: Either a b) :: Bool where ... Source #

Equations

IsRight ('Left _) = FalseSym0 
IsRight ('Right _) = TrueSym0 

sIsRight :: forall a b (t :: Either a b). Sing t -> Sing (Apply IsRightSym0 t :: Bool) Source #

Defunctionalization symbols

data LeftSym0 :: (~>) a (Either (a :: Type) (b :: Type)) Source #

Instances

Instances details
SingI (LeftSym0 :: TyFun a (Either a b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing LeftSym0

SuppressUnusedWarnings (LeftSym0 :: TyFun a (Either a b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (LeftSym0 :: TyFun a (Either a b) -> Type) (a6989586621679042156 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (LeftSym0 :: TyFun a (Either a b) -> Type) (a6989586621679042156 :: a) = 'Left a6989586621679042156 :: Either a b

type family LeftSym1 (a6989586621679042156 :: a) :: Either (a :: Type) (b :: Type) where ... Source #

Equations

LeftSym1 a6989586621679042156 = 'Left a6989586621679042156 

data RightSym0 :: (~>) b (Either (a :: Type) (b :: Type)) Source #

Instances

Instances details
SingI (RightSym0 :: TyFun b (Either a b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing RightSym0

SuppressUnusedWarnings (RightSym0 :: TyFun b (Either a b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (RightSym0 :: TyFun b (Either a b) -> Type) (a6989586621679042158 :: b) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (RightSym0 :: TyFun b (Either a b) -> Type) (a6989586621679042158 :: b) = 'Right a6989586621679042158 :: Either a b

type family RightSym1 (a6989586621679042158 :: b) :: Either (a :: Type) (b :: Type) where ... Source #

Equations

RightSym1 a6989586621679042158 = 'Right a6989586621679042158 

data Either_Sym0 :: (~>) ((~>) a c) ((~>) ((~>) b c) ((~>) (Either a b) c)) Source #

Instances

Instances details
SingI (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

SuppressUnusedWarnings (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) (a6989586621679322752 :: a ~> c) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) (a6989586621679322752 :: a ~> c) = Either_Sym1 a6989586621679322752 :: TyFun (b ~> c) (Either a b ~> c) -> Type

data Either_Sym1 (a6989586621679322752 :: (~>) a c) :: (~>) ((~>) b c) ((~>) (Either a b) c) Source #

Instances

Instances details
SingI1 (Either_Sym1 :: (a ~> c) -> TyFun (b ~> c) (Either a b ~> c) -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Either_Sym1 x)

SingI d => SingI (Either_Sym1 d :: TyFun (b ~> c) (Either a b ~> c) -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

sing :: Sing (Either_Sym1 d)

SuppressUnusedWarnings (Either_Sym1 a6989586621679322752 :: TyFun (b ~> c) (Either a b ~> c) -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym1 a6989586621679322752 :: TyFun (b ~> c) (Either a b ~> c) -> Type) (a6989586621679322753 :: b ~> c) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym1 a6989586621679322752 :: TyFun (b ~> c) (Either a b ~> c) -> Type) (a6989586621679322753 :: b ~> c) = Either_Sym2 a6989586621679322752 a6989586621679322753

data Either_Sym2 (a6989586621679322752 :: (~>) a c) (a6989586621679322753 :: (~>) b c) :: (~>) (Either a b) c Source #

Instances

Instances details
SingI2 (Either_Sym2 :: (a ~> c) -> (b ~> c) -> TyFun (Either a b) c -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Either_Sym2 x y)

SingI d => SingI1 (Either_Sym2 d :: (b ~> c) -> TyFun (Either a b) c -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Either_Sym2 d x)

(SingI d1, SingI d2) => SingI (Either_Sym2 d1 d2 :: TyFun (Either a b) c -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

sing :: Sing (Either_Sym2 d1 d2)

SuppressUnusedWarnings (Either_Sym2 a6989586621679322752 a6989586621679322753 :: TyFun (Either a b) c -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym2 a6989586621679322752 a6989586621679322753 :: TyFun (Either a b) c -> Type) (a6989586621679322754 :: Either a b) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym2 a6989586621679322752 a6989586621679322753 :: TyFun (Either a b) c -> Type) (a6989586621679322754 :: Either a b) = Either_ a6989586621679322752 a6989586621679322753 a6989586621679322754

type family Either_Sym3 (a6989586621679322752 :: (~>) a c) (a6989586621679322753 :: (~>) b c) (a6989586621679322754 :: Either a b) :: c where ... Source #

Equations

Either_Sym3 a6989586621679322752 a6989586621679322753 a6989586621679322754 = Either_ a6989586621679322752 a6989586621679322753 a6989586621679322754 

data LeftsSym0 :: (~>) [Either a b] [a] Source #

Instances

Instances details
SingI (LeftsSym0 :: TyFun [Either a b] [a] -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

sing :: Sing LeftsSym0

SuppressUnusedWarnings (LeftsSym0 :: TyFun [Either a b] [a] -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (LeftsSym0 :: TyFun [Either a b] [a] -> Type) (a6989586621679325035 :: [Either a b]) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (LeftsSym0 :: TyFun [Either a b] [a] -> Type) (a6989586621679325035 :: [Either a b]) = Lefts a6989586621679325035

type family LeftsSym1 (a6989586621679325035 :: [Either a b]) :: [a] where ... Source #

Equations

LeftsSym1 a6989586621679325035 = Lefts a6989586621679325035 

data RightsSym0 :: (~>) [Either a b] [b] Source #

Instances

Instances details
SingI (RightsSym0 :: TyFun [Either a b] [b] -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

sing :: Sing RightsSym0

SuppressUnusedWarnings (RightsSym0 :: TyFun [Either a b] [b] -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (RightsSym0 :: TyFun [Either a b] [b] -> Type) (a6989586621679325029 :: [Either a b]) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (RightsSym0 :: TyFun [Either a b] [b] -> Type) (a6989586621679325029 :: [Either a b]) = Rights a6989586621679325029

type family RightsSym1 (a6989586621679325029 :: [Either a b]) :: [b] where ... Source #

Equations

RightsSym1 a6989586621679325029 = Rights a6989586621679325029 

data IsLeftSym0 :: (~>) (Either a b) Bool Source #

Instances

Instances details
SingI (IsLeftSym0 :: TyFun (Either a b) Bool -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

sing :: Sing IsLeftSym0

SuppressUnusedWarnings (IsLeftSym0 :: TyFun (Either a b) Bool -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (IsLeftSym0 :: TyFun (Either a b) Bool -> Type) (a6989586621679325007 :: Either a b) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (IsLeftSym0 :: TyFun (Either a b) Bool -> Type) (a6989586621679325007 :: Either a b) = IsLeft a6989586621679325007

type family IsLeftSym1 (a6989586621679325007 :: Either a b) :: Bool where ... Source #

Equations

IsLeftSym1 a6989586621679325007 = IsLeft a6989586621679325007 

data IsRightSym0 :: (~>) (Either a b) Bool Source #

Instances

Instances details
SingI (IsRightSym0 :: TyFun (Either a b) Bool -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

SuppressUnusedWarnings (IsRightSym0 :: TyFun (Either a b) Bool -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (IsRightSym0 :: TyFun (Either a b) Bool -> Type) (a6989586621679325004 :: Either a b) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (IsRightSym0 :: TyFun (Either a b) Bool -> Type) (a6989586621679325004 :: Either a b) = IsRight a6989586621679325004

type family IsRightSym1 (a6989586621679325004 :: Either a b) :: Bool where ... Source #

Equations

IsRightSym1 a6989586621679325004 = IsRight a6989586621679325004