singletons-base-3.1: A promoted and singled version of the base library
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Semigroup.Singletons

Description

Defines the promoted version of Semigroup, PSemigroup, and the singleton version, SSemigroup.

Synopsis

Documentation

class PSemigroup a Source #

Associated Types

type (arg :: a) <> (arg :: a) :: a infixr 6 Source #

type Sconcat (arg :: NonEmpty a) :: a Source #

type Sconcat a = Apply Sconcat_6989586621679688710Sym0 a

Instances

Instances details
PSemigroup All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup Void Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup Ordering Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup () Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup Symbol Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Down a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (NonEmpty a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Maybe a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup [a] Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Either a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (a ~> b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (a, b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (a, b, c) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (a, b, c, d) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (a, b, c, d, e) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

class SSemigroup a where Source #

Minimal complete definition

(%<>)

Methods

(%<>) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t :: a) infixr 6 Source #

sSconcat :: forall (t :: NonEmpty a). Sing t -> Sing (Apply SconcatSym0 t :: a) Source #

default sSconcat :: forall (t :: NonEmpty a). (Apply SconcatSym0 t :: a) ~ Apply Sconcat_6989586621679688710Sym0 t => Sing t -> Sing (Apply SconcatSym0 t :: a) Source #

Instances

Instances details
SSemigroup All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty All). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty Any). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup Void Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty Void). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup Ordering Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty Ordering). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup () Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty ()). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup Symbol Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty Symbol). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup a => SSemigroup (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

(%<>) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Identity a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%<>) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (First a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%<>) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Last a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup a => SSemigroup (Down a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Down a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%<>) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (First a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%<>) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Last a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SOrd a => SSemigroup (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%<>) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Max a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SOrd a => SSemigroup (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%<>) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Min a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SMonoid m => SSemigroup (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%<>) :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (WrappedMonoid m)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup a => SSemigroup (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Dual a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SNum a => SSemigroup (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Product a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SNum a => SSemigroup (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Sum a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (NonEmpty a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (NonEmpty a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup a => SSemigroup (Maybe a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Maybe a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup [a] Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty [a]). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (Either a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Either a b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

(%<>) :: forall (t :: Proxy s) (t :: Proxy s). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Proxy s)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup b => SSemigroup (a ~> b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: a ~> b) (t :: a ~> b). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (a ~> b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

(SSemigroup a, SSemigroup b) => SSemigroup (a, b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (a, b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup a => SSemigroup (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%<>) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Const a b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

(SSemigroup a, SSemigroup b, SSemigroup c) => SSemigroup (a, b, c) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (a, b, c)). Sing t -> Sing (Apply SconcatSym0 t) Source #

(SSemigroup a, SSemigroup b, SSemigroup c, SSemigroup d) => SSemigroup (a, b, c, d) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (a, b, c, d)). Sing t -> Sing (Apply SconcatSym0 t) Source #

(SSemigroup a, SSemigroup b, SSemigroup c, SSemigroup d, SSemigroup e) => SSemigroup (a, b, c, d, e) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (a, b, c, d, e)). Sing t -> Sing (Apply SconcatSym0 t) Source #

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SWrappedSing :: WrappedSing a -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SMin :: forall (a :: Type). Min a -> Type where Source #

Constructors

SMin :: forall (a :: Type) (n :: a). (Sing n) -> SMin ('Min n :: Min (a :: Type)) 

Instances

Instances details
SDecide a => TestCoercion (SMin :: Min a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testCoercion :: forall (a0 :: k) (b :: k). SMin a0 -> SMin b -> Maybe (Coercion a0 b) #

SDecide a => TestEquality (SMin :: Min a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testEquality :: forall (a0 :: k) (b :: k). SMin a0 -> SMin b -> Maybe (a0 :~: b) #

ShowSing a => Show (SMin z) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

showsPrec :: Int -> SMin z -> ShowS #

show :: SMin z -> String #

showList :: [SMin z] -> ShowS #

data SMax :: forall (a :: Type). Max a -> Type where Source #

Constructors

SMax :: forall (a :: Type) (n :: a). (Sing n) -> SMax ('Max n :: Max (a :: Type)) 

Instances

Instances details
SDecide a => TestCoercion (SMax :: Max a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testCoercion :: forall (a0 :: k) (b :: k). SMax a0 -> SMax b -> Maybe (Coercion a0 b) #

SDecide a => TestEquality (SMax :: Max a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testEquality :: forall (a0 :: k) (b :: k). SMax a0 -> SMax b -> Maybe (a0 :~: b) #

ShowSing a => Show (SMax z) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

showsPrec :: Int -> SMax z -> ShowS #

show :: SMax z -> String #

showList :: [SMax z] -> ShowS #

data SFirst :: forall (a :: Type). First a -> Type where Source #

Constructors

SFirst :: forall (a :: Type) (n :: a). (Sing n) -> SFirst ('First n :: First (a :: Type)) 

Instances

Instances details
SDecide a => TestCoercion (SFirst :: First a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testCoercion :: forall (a0 :: k) (b :: k). SFirst a0 -> SFirst b -> Maybe (Coercion a0 b) #

SDecide a => TestEquality (SFirst :: First a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testEquality :: forall (a0 :: k) (b :: k). SFirst a0 -> SFirst b -> Maybe (a0 :~: b) #

ShowSing a => Show (SFirst z) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

showsPrec :: Int -> SFirst z -> ShowS #

show :: SFirst z -> String #

showList :: [SFirst z] -> ShowS #

data SLast :: forall (a :: Type). Last a -> Type where Source #

Constructors

SLast :: forall (a :: Type) (n :: a). (Sing n) -> SLast ('Last n :: Last (a :: Type)) 

Instances

Instances details
SDecide a => TestCoercion (SLast :: Last a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testCoercion :: forall (a0 :: k) (b :: k). SLast a0 -> SLast b -> Maybe (Coercion a0 b) #

SDecide a => TestEquality (SLast :: Last a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testEquality :: forall (a0 :: k) (b :: k). SLast a0 -> SLast b -> Maybe (a0 :~: b) #

ShowSing a => Show (SLast z) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

showsPrec :: Int -> SLast z -> ShowS #

show :: SLast z -> String #

showList :: [SLast z] -> ShowS #

data SWrappedMonoid :: forall (m :: Type). WrappedMonoid m -> Type where Source #

Constructors

SWrapMonoid :: forall (m :: Type) (n :: m). (Sing n) -> SWrappedMonoid ('WrapMonoid n :: WrappedMonoid (m :: Type)) 

Instances

Instances details
SDecide m => TestCoercion (SWrappedMonoid :: WrappedMonoid m -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testCoercion :: forall (a :: k) (b :: k). SWrappedMonoid a -> SWrappedMonoid b -> Maybe (Coercion a b) #

SDecide m => TestEquality (SWrappedMonoid :: WrappedMonoid m -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testEquality :: forall (a :: k) (b :: k). SWrappedMonoid a -> SWrappedMonoid b -> Maybe (a :~: b) #

ShowSing m => Show (SWrappedMonoid z) Source # 
Instance details

Defined in Data.Semigroup.Singletons

data SDual :: forall (a :: Type). Dual a -> Type where Source #

Constructors

SDual :: forall (a :: Type) (n :: a). (Sing n) -> SDual ('Dual n :: Dual (a :: Type)) 

Instances

Instances details
SDecide a => TestCoercion (SDual :: Dual a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testCoercion :: forall (a0 :: k) (b :: k). SDual a0 -> SDual b -> Maybe (Coercion a0 b) #

SDecide a => TestEquality (SDual :: Dual a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testEquality :: forall (a0 :: k) (b :: k). SDual a0 -> SDual b -> Maybe (a0 :~: b) #

ShowSing a => Show (SDual z) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

showsPrec :: Int -> SDual z -> ShowS #

show :: SDual z -> String #

showList :: [SDual z] -> ShowS #

data SAll :: All -> Type where Source #

Constructors

SAll :: forall (n :: Bool). (Sing n) -> SAll ('All n :: All) 

Instances

Instances details
SDecide Bool => TestCoercion SAll Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testCoercion :: forall (a :: k) (b :: k). SAll a -> SAll b -> Maybe (Coercion a b) #

SDecide Bool => TestEquality SAll Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testEquality :: forall (a :: k) (b :: k). SAll a -> SAll b -> Maybe (a :~: b) #

ShowSing Bool => Show (SAll z) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

showsPrec :: Int -> SAll z -> ShowS #

show :: SAll z -> String #

showList :: [SAll z] -> ShowS #

data SAny :: Any -> Type where Source #

Constructors

SAny :: forall (n :: Bool). (Sing n) -> SAny ('Any n :: Any) 

Instances

Instances details
SDecide Bool => TestCoercion SAny Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testCoercion :: forall (a :: k) (b :: k). SAny a -> SAny b -> Maybe (Coercion a b) #

SDecide Bool => TestEquality SAny Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testEquality :: forall (a :: k) (b :: k). SAny a -> SAny b -> Maybe (a :~: b) #

ShowSing Bool => Show (SAny z) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

showsPrec :: Int -> SAny z -> ShowS #

show :: SAny z -> String #

showList :: [SAny z] -> ShowS #

data SSum :: forall (a :: Type). Sum a -> Type where Source #

Constructors

SSum :: forall (a :: Type) (n :: a). (Sing n) -> SSum ('Sum n :: Sum (a :: Type)) 

Instances

Instances details
SDecide a => TestCoercion (SSum :: Sum a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testCoercion :: forall (a0 :: k) (b :: k). SSum a0 -> SSum b -> Maybe (Coercion a0 b) #

SDecide a => TestEquality (SSum :: Sum a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testEquality :: forall (a0 :: k) (b :: k). SSum a0 -> SSum b -> Maybe (a0 :~: b) #

ShowSing a => Show (SSum z) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

showsPrec :: Int -> SSum z -> ShowS #

show :: SSum z -> String #

showList :: [SSum z] -> ShowS #

data SProduct :: forall (a :: Type). Product a -> Type where Source #

Constructors

SProduct :: forall (a :: Type) (n :: a). (Sing n) -> SProduct ('Product n :: Product (a :: Type)) 

Instances

Instances details
SDecide a => TestCoercion (SProduct :: Product a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testCoercion :: forall (a0 :: k) (b :: k). SProduct a0 -> SProduct b -> Maybe (Coercion a0 b) #

SDecide a => TestEquality (SProduct :: Product a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

testEquality :: forall (a0 :: k) (b :: k). SProduct a0 -> SProduct b -> Maybe (a0 :~: b) #

ShowSing a => Show (SProduct z) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

showsPrec :: Int -> SProduct z -> ShowS #

show :: SProduct z -> String #

showList :: [SProduct z] -> ShowS #

data SArg :: forall (a :: Type) (b :: Type). Arg a b -> Type where Source #

Constructors

SArg :: forall (a :: Type) (b :: Type) (n :: a) (n :: b). (Sing n) -> (Sing n) -> SArg ('Arg n n :: Arg (a :: Type) (b :: Type)) 

Instances

Instances details
(ShowSing a, ShowSing b) => Show (SArg z) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

showsPrec :: Int -> SArg z -> ShowS #

show :: SArg z -> String #

showList :: [SArg z] -> ShowS #

type family GetMin (a :: Min (a :: Type)) :: a where ... Source #

Equations

GetMin ('Min field) = field 

type family GetMax (a :: Max (a :: Type)) :: a where ... Source #

Equations

GetMax ('Max field) = field 

type family GetFirst (a :: First (a :: Type)) :: a where ... Source #

Equations

GetFirst ('First field) = field 

type family GetLast (a :: Last (a :: Type)) :: a where ... Source #

Equations

GetLast ('Last field) = field 

type family UnwrapMonoid (a :: WrappedMonoid (m :: Type)) :: m where ... Source #

Equations

UnwrapMonoid ('WrapMonoid field) = field 

type family GetDual (a :: Dual (a :: Type)) :: a where ... Source #

Equations

GetDual ('Dual field) = field 

type family GetAll (a :: All) :: Bool where ... Source #

Equations

GetAll ('All field) = field 

type family GetAny (a :: Any) :: Bool where ... Source #

Equations

GetAny ('Any field) = field 

type family GetSum (a :: Sum (a :: Type)) :: a where ... Source #

Equations

GetSum ('Sum field) = field 

type family GetProduct (a :: Product (a :: Type)) :: a where ... Source #

Equations

GetProduct ('Product field) = field 

sGetMin :: forall (a :: Type) (t :: Min (a :: Type)). Sing t -> Sing (Apply GetMinSym0 t :: a) Source #

sGetMax :: forall (a :: Type) (t :: Max (a :: Type)). Sing t -> Sing (Apply GetMaxSym0 t :: a) Source #

sGetFirst :: forall (a :: Type) (t :: First (a :: Type)). Sing t -> Sing (Apply GetFirstSym0 t :: a) Source #

sGetLast :: forall (a :: Type) (t :: Last (a :: Type)). Sing t -> Sing (Apply GetLastSym0 t :: a) Source #

sUnwrapMonoid :: forall (m :: Type) (t :: WrappedMonoid (m :: Type)). Sing t -> Sing (Apply UnwrapMonoidSym0 t :: m) Source #

sGetDual :: forall (a :: Type) (t :: Dual (a :: Type)). Sing t -> Sing (Apply GetDualSym0 t :: a) Source #

sGetAll :: forall (t :: All). Sing t -> Sing (Apply GetAllSym0 t :: Bool) Source #

sGetAny :: forall (t :: Any). Sing t -> Sing (Apply GetAnySym0 t :: Bool) Source #

sGetSum :: forall (a :: Type) (t :: Sum (a :: Type)). Sing t -> Sing (Apply GetSumSym0 t :: a) Source #

sGetProduct :: forall (a :: Type) (t :: Product (a :: Type)). Sing t -> Sing (Apply GetProductSym0 t :: a) Source #

Defunctionalization symbols

data (<>@#@$) :: (~>) a ((~>) a a) infixr 6 Source #

Instances

Instances details
SSemigroup a => SingI ((<>@#@$) :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing (<>@#@$)

SuppressUnusedWarnings ((<>@#@$) :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply ((<>@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679688704 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply ((<>@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679688704 :: a) = (<>@#@$$) a6989586621679688704

data (<>@#@$$) (a6989586621679688704 :: a) :: (~>) a a infixr 6 Source #

Instances

Instances details
SSemigroup a => SingI1 ((<>@#@$$) :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<>@#@$$) x)

(SSemigroup a, SingI d) => SingI ((<>@#@$$) d :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing ((<>@#@$$) d)

SuppressUnusedWarnings ((<>@#@$$) a6989586621679688704 :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply ((<>@#@$$) a6989586621679688704 :: TyFun a a -> Type) (a6989586621679688705 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply ((<>@#@$$) a6989586621679688704 :: TyFun a a -> Type) (a6989586621679688705 :: a) = a6989586621679688704 <> a6989586621679688705

type family (a6989586621679688704 :: a) <>@#@$$$ (a6989586621679688705 :: a) :: a where ... infixr 6 Source #

Equations

a6989586621679688704 <>@#@$$$ a6989586621679688705 = (<>) a6989586621679688704 a6989586621679688705 

data SconcatSym0 :: (~>) (NonEmpty a) a Source #

Instances

Instances details
SSemigroup a => SingI (SconcatSym0 :: TyFun (NonEmpty a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SuppressUnusedWarnings (SconcatSym0 :: TyFun (NonEmpty a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (SconcatSym0 :: TyFun (NonEmpty a) a -> Type) (a6989586621679688708 :: NonEmpty a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (SconcatSym0 :: TyFun (NonEmpty a) a -> Type) (a6989586621679688708 :: NonEmpty a) = Sconcat a6989586621679688708

type family SconcatSym1 (a6989586621679688708 :: NonEmpty a) :: a where ... Source #

Equations

SconcatSym1 a6989586621679688708 = Sconcat a6989586621679688708 

data MinSym0 :: (~>) a (Min (a :: Type)) Source #

Instances

Instances details
SingI (MinSym0 :: TyFun a (Min a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing MinSym0

SuppressUnusedWarnings (MinSym0 :: TyFun a (Min a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (MinSym0 :: TyFun a (Min a) -> Type) (a6989586621679700185 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (MinSym0 :: TyFun a (Min a) -> Type) (a6989586621679700185 :: a) = 'Min a6989586621679700185

type family MinSym1 (a6989586621679700185 :: a) :: Min (a :: Type) where ... Source #

Equations

MinSym1 a6989586621679700185 = 'Min a6989586621679700185 

data GetMinSym0 :: (~>) (Min (a :: Type)) a Source #

Instances

Instances details
SingI (GetMinSym0 :: TyFun (Min a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing GetMinSym0

SuppressUnusedWarnings (GetMinSym0 :: TyFun (Min a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetMinSym0 :: TyFun (Min a) a -> Type) (a6989586621679700188 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetMinSym0 :: TyFun (Min a) a -> Type) (a6989586621679700188 :: Min a) = GetMin a6989586621679700188

type family GetMinSym1 (a6989586621679700188 :: Min (a :: Type)) :: a where ... Source #

Equations

GetMinSym1 a6989586621679700188 = GetMin a6989586621679700188 

data MaxSym0 :: (~>) a (Max (a :: Type)) Source #

Instances

Instances details
SingI (MaxSym0 :: TyFun a (Max a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing MaxSym0

SuppressUnusedWarnings (MaxSym0 :: TyFun a (Max a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (MaxSym0 :: TyFun a (Max a) -> Type) (a6989586621679700204 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (MaxSym0 :: TyFun a (Max a) -> Type) (a6989586621679700204 :: a) = 'Max a6989586621679700204

type family MaxSym1 (a6989586621679700204 :: a) :: Max (a :: Type) where ... Source #

Equations

MaxSym1 a6989586621679700204 = 'Max a6989586621679700204 

data GetMaxSym0 :: (~>) (Max (a :: Type)) a Source #

Instances

Instances details
SingI (GetMaxSym0 :: TyFun (Max a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing GetMaxSym0

SuppressUnusedWarnings (GetMaxSym0 :: TyFun (Max a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetMaxSym0 :: TyFun (Max a) a -> Type) (a6989586621679700207 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetMaxSym0 :: TyFun (Max a) a -> Type) (a6989586621679700207 :: Max a) = GetMax a6989586621679700207

type family GetMaxSym1 (a6989586621679700207 :: Max (a :: Type)) :: a where ... Source #

Equations

GetMaxSym1 a6989586621679700207 = GetMax a6989586621679700207 

data FirstSym0 :: (~>) a (First (a :: Type)) Source #

Instances

Instances details
SingI (FirstSym0 :: TyFun a (First a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing FirstSym0

SuppressUnusedWarnings (FirstSym0 :: TyFun a (First a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (FirstSym0 :: TyFun a (First a) -> Type) (a6989586621679700223 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (FirstSym0 :: TyFun a (First a) -> Type) (a6989586621679700223 :: a) = 'First a6989586621679700223

type family FirstSym1 (a6989586621679700223 :: a) :: First (a :: Type) where ... Source #

Equations

FirstSym1 a6989586621679700223 = 'First a6989586621679700223 

data GetFirstSym0 :: (~>) (First (a :: Type)) a Source #

Instances

Instances details
SingI (GetFirstSym0 :: TyFun (First a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SuppressUnusedWarnings (GetFirstSym0 :: TyFun (First a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetFirstSym0 :: TyFun (First a) a -> Type) (a6989586621679700226 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetFirstSym0 :: TyFun (First a) a -> Type) (a6989586621679700226 :: First a) = GetFirst a6989586621679700226

type family GetFirstSym1 (a6989586621679700226 :: First (a :: Type)) :: a where ... Source #

Equations

GetFirstSym1 a6989586621679700226 = GetFirst a6989586621679700226 

data LastSym0 :: (~>) a (Last (a :: Type)) Source #

Instances

Instances details
SingI (LastSym0 :: TyFun a (Last a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing LastSym0

SuppressUnusedWarnings (LastSym0 :: TyFun a (Last a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (LastSym0 :: TyFun a (Last a) -> Type) (a6989586621679700242 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (LastSym0 :: TyFun a (Last a) -> Type) (a6989586621679700242 :: a) = 'Last a6989586621679700242

type family LastSym1 (a6989586621679700242 :: a) :: Last (a :: Type) where ... Source #

Equations

LastSym1 a6989586621679700242 = 'Last a6989586621679700242 

data GetLastSym0 :: (~>) (Last (a :: Type)) a Source #

Instances

Instances details
SingI (GetLastSym0 :: TyFun (Last a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SuppressUnusedWarnings (GetLastSym0 :: TyFun (Last a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetLastSym0 :: TyFun (Last a) a -> Type) (a6989586621679700245 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetLastSym0 :: TyFun (Last a) a -> Type) (a6989586621679700245 :: Last a) = GetLast a6989586621679700245

type family GetLastSym1 (a6989586621679700245 :: Last (a :: Type)) :: a where ... Source #

Equations

GetLastSym1 a6989586621679700245 = GetLast a6989586621679700245 

data WrapMonoidSym0 :: (~>) m (WrappedMonoid (m :: Type)) Source #

Instances

Instances details
SingI (WrapMonoidSym0 :: TyFun m (WrappedMonoid m) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SuppressUnusedWarnings (WrapMonoidSym0 :: TyFun m (WrappedMonoid m) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (WrapMonoidSym0 :: TyFun m (WrappedMonoid m) -> Type) (a6989586621679700261 :: m) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (WrapMonoidSym0 :: TyFun m (WrappedMonoid m) -> Type) (a6989586621679700261 :: m) = 'WrapMonoid a6989586621679700261

type family WrapMonoidSym1 (a6989586621679700261 :: m) :: WrappedMonoid (m :: Type) where ... Source #

Equations

WrapMonoidSym1 a6989586621679700261 = 'WrapMonoid a6989586621679700261 

data UnwrapMonoidSym0 :: (~>) (WrappedMonoid (m :: Type)) m Source #

Instances

Instances details
SingI (UnwrapMonoidSym0 :: TyFun (WrappedMonoid m) m -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SuppressUnusedWarnings (UnwrapMonoidSym0 :: TyFun (WrappedMonoid m) m -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (UnwrapMonoidSym0 :: TyFun (WrappedMonoid m) m -> Type) (a6989586621679700264 :: WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (UnwrapMonoidSym0 :: TyFun (WrappedMonoid m) m -> Type) (a6989586621679700264 :: WrappedMonoid m) = UnwrapMonoid a6989586621679700264

type family UnwrapMonoidSym1 (a6989586621679700264 :: WrappedMonoid (m :: Type)) :: m where ... Source #

Equations

UnwrapMonoidSym1 a6989586621679700264 = UnwrapMonoid a6989586621679700264 

data DualSym0 :: (~>) a (Dual (a :: Type)) Source #

Instances

Instances details
SingI (DualSym0 :: TyFun a (Dual a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing DualSym0

SuppressUnusedWarnings (DualSym0 :: TyFun a (Dual a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (DualSym0 :: TyFun a (Dual a) -> Type) (a6989586621679700095 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (DualSym0 :: TyFun a (Dual a) -> Type) (a6989586621679700095 :: a) = 'Dual a6989586621679700095

type family DualSym1 (a6989586621679700095 :: a) :: Dual (a :: Type) where ... Source #

Equations

DualSym1 a6989586621679700095 = 'Dual a6989586621679700095 

data GetDualSym0 :: (~>) (Dual (a :: Type)) a Source #

Instances

Instances details
SingI (GetDualSym0 :: TyFun (Dual a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SuppressUnusedWarnings (GetDualSym0 :: TyFun (Dual a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetDualSym0 :: TyFun (Dual a) a -> Type) (a6989586621679700098 :: Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetDualSym0 :: TyFun (Dual a) a -> Type) (a6989586621679700098 :: Dual a) = GetDual a6989586621679700098

type family GetDualSym1 (a6989586621679700098 :: Dual (a :: Type)) :: a where ... Source #

Equations

GetDualSym1 a6989586621679700098 = GetDual a6989586621679700098 

data AllSym0 :: (~>) Bool All Source #

Instances

Instances details
SingI AllSym0 Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing AllSym0

SuppressUnusedWarnings AllSym0 Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply AllSym0 (a6989586621679700112 :: Bool) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply AllSym0 (a6989586621679700112 :: Bool) = 'All a6989586621679700112

type family AllSym1 (a6989586621679700112 :: Bool) :: All where ... Source #

Equations

AllSym1 a6989586621679700112 = 'All a6989586621679700112 

data GetAllSym0 :: (~>) All Bool Source #

Instances

Instances details
SingI GetAllSym0 Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing GetAllSym0

SuppressUnusedWarnings GetAllSym0 Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply GetAllSym0 (a6989586621679700115 :: All) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply GetAllSym0 (a6989586621679700115 :: All) = GetAll a6989586621679700115

type family GetAllSym1 (a6989586621679700115 :: All) :: Bool where ... Source #

Equations

GetAllSym1 a6989586621679700115 = GetAll a6989586621679700115 

data AnySym0 :: (~>) Bool Any Source #

Instances

Instances details
SingI AnySym0 Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing AnySym0

SuppressUnusedWarnings AnySym0 Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply AnySym0 (a6989586621679700128 :: Bool) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply AnySym0 (a6989586621679700128 :: Bool) = 'Any a6989586621679700128

type family AnySym1 (a6989586621679700128 :: Bool) :: Any where ... Source #

Equations

AnySym1 a6989586621679700128 = 'Any a6989586621679700128 

data GetAnySym0 :: (~>) Any Bool Source #

Instances

Instances details
SingI GetAnySym0 Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing GetAnySym0

SuppressUnusedWarnings GetAnySym0 Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply GetAnySym0 (a6989586621679700131 :: Any) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply GetAnySym0 (a6989586621679700131 :: Any) = GetAny a6989586621679700131

type family GetAnySym1 (a6989586621679700131 :: Any) :: Bool where ... Source #

Equations

GetAnySym1 a6989586621679700131 = GetAny a6989586621679700131 

data SumSym0 :: (~>) a (Sum (a :: Type)) Source #

Instances

Instances details
SingI (SumSym0 :: TyFun a (Sum a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing SumSym0

SuppressUnusedWarnings (SumSym0 :: TyFun a (Sum a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (SumSym0 :: TyFun a (Sum a) -> Type) (a6989586621679700147 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (SumSym0 :: TyFun a (Sum a) -> Type) (a6989586621679700147 :: a) = 'Sum a6989586621679700147

type family SumSym1 (a6989586621679700147 :: a) :: Sum (a :: Type) where ... Source #

Equations

SumSym1 a6989586621679700147 = 'Sum a6989586621679700147 

data GetSumSym0 :: (~>) (Sum (a :: Type)) a Source #

Instances

Instances details
SingI (GetSumSym0 :: TyFun (Sum a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing GetSumSym0

SuppressUnusedWarnings (GetSumSym0 :: TyFun (Sum a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetSumSym0 :: TyFun (Sum a) a -> Type) (a6989586621679700150 :: Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetSumSym0 :: TyFun (Sum a) a -> Type) (a6989586621679700150 :: Sum a) = GetSum a6989586621679700150

type family GetSumSym1 (a6989586621679700150 :: Sum (a :: Type)) :: a where ... Source #

Equations

GetSumSym1 a6989586621679700150 = GetSum a6989586621679700150 

data ProductSym0 :: (~>) a (Product (a :: Type)) Source #

Instances

Instances details
SingI (ProductSym0 :: TyFun a (Product a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SuppressUnusedWarnings (ProductSym0 :: TyFun a (Product a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (ProductSym0 :: TyFun a (Product a) -> Type) (a6989586621679700166 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (ProductSym0 :: TyFun a (Product a) -> Type) (a6989586621679700166 :: a) = 'Product a6989586621679700166

type family ProductSym1 (a6989586621679700166 :: a) :: Product (a :: Type) where ... Source #

Equations

ProductSym1 a6989586621679700166 = 'Product a6989586621679700166 

data GetProductSym0 :: (~>) (Product (a :: Type)) a Source #

Instances

Instances details
SingI (GetProductSym0 :: TyFun (Product a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SuppressUnusedWarnings (GetProductSym0 :: TyFun (Product a) a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetProductSym0 :: TyFun (Product a) a -> Type) (a6989586621679700169 :: Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply (GetProductSym0 :: TyFun (Product a) a -> Type) (a6989586621679700169 :: Product a) = GetProduct a6989586621679700169

type family GetProductSym1 (a6989586621679700169 :: Product (a :: Type)) :: a where ... Source #

Equations

GetProductSym1 a6989586621679700169 = GetProduct a6989586621679700169 

data ArgSym0 :: (~>) a ((~>) b (Arg (a :: Type) (b :: Type))) Source #

Instances

Instances details
SingI (ArgSym0 :: TyFun a (b ~> Arg a b) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sing :: Sing ArgSym0

SuppressUnusedWarnings (ArgSym0 :: TyFun a (b ~> Arg a b) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Apply (ArgSym0 :: TyFun a (b ~> Arg a b) -> Type) (a6989586621680904480 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Apply (ArgSym0 :: TyFun a (b ~> Arg a b) -> Type) (a6989586621680904480 :: a) = ArgSym1 a6989586621680904480 :: TyFun b (Arg a b) -> Type

data ArgSym1 (a6989586621680904480 :: a) :: (~>) b (Arg (a :: Type) (b :: Type)) Source #

Instances

Instances details
SingI1 (ArgSym1 :: a -> TyFun b (Arg a b) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ArgSym1 x)

SingI d => SingI (ArgSym1 d :: TyFun b (Arg a b) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sing :: Sing (ArgSym1 d)

SuppressUnusedWarnings (ArgSym1 a6989586621680904480 :: TyFun b (Arg a b) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Apply (ArgSym1 a6989586621680904480 :: TyFun b (Arg a b) -> Type) (a6989586621680904481 :: b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Apply (ArgSym1 a6989586621680904480 :: TyFun b (Arg a b) -> Type) (a6989586621680904481 :: b) = 'Arg a6989586621680904480 a6989586621680904481

type family ArgSym2 (a6989586621680904480 :: a) (a6989586621680904481 :: b) :: Arg (a :: Type) (b :: Type) where ... Source #

Equations

ArgSym2 a6989586621680904480 a6989586621680904481 = 'Arg a6989586621680904480 a6989586621680904481 

Orphan instances

PApplicative First Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Last Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Max Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Min Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PFunctor First Source # 
Instance details

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Last Source # 
Instance details

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Max Source # 
Instance details

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Min Source # 
Instance details

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PMonad First Source # 
Instance details

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Last Source # 
Instance details

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Max Source # 
Instance details

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Min Source # 
Instance details

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

SApplicative First Source # 
Instance details

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: First (a ~> b)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: First a) (t :: First b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Last Source # 
Instance details

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Last (a ~> b)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Max Source # 
Instance details

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Max (a ~> b)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Min Source # 
Instance details

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Min (a ~> b)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SFunctor First Source # 
Instance details

Methods

sFmap :: forall a b (t :: a ~> b) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Last Source # 
Instance details

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Max Source # 
Instance details

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Min Source # 
Instance details

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SMonad First Source # 
Instance details

Methods

(%>>=) :: forall a b (t :: First a) (t :: a ~> First b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Last Source # 
Instance details

Methods

(%>>=) :: forall a b (t :: Last a) (t :: a ~> Last b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Max Source # 
Instance details

Methods

(%>>=) :: forall a b (t :: Max a) (t :: a ~> Max b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Min Source # 
Instance details

Methods

(%>>=) :: forall a b (t :: Min a) (t :: a ~> Min b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

PFoldable First Source # 
Instance details

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Last Source # 
Instance details

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Max Source # 
Instance details

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Min Source # 
Instance details

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

SFoldable First Source # 
Instance details

Methods

sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Last Source # 
Instance details

Methods

sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Max Source # 
Instance details

Methods

sFold :: forall m (t :: Max m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Max a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Max a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Max a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Max a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Max a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Min Source # 
Instance details

Methods

sFold :: forall m (t :: Min m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Min a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Min a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Min a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Min a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Min a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

PTraversable First Source # 
Instance details

Associated Types

type Traverse arg arg :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable Last Source # 
Instance details

Associated Types

type Traverse arg arg :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable Max Source # 
Instance details

Associated Types

type Traverse arg arg :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable Min Source # 
Instance details

Associated Types

type Traverse arg arg :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg :: m (t b) Source #

type Sequence arg :: m (t a) Source #

STraversable First Source # 
Instance details

Methods

sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: First a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source #

sSequenceA :: forall (f :: Type -> Type) a (t :: First (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source #

sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: First a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source #

sSequence :: forall (m :: Type -> Type) a (t :: First (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source #

STraversable Last Source # 
Instance details

Methods

sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Last a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source #

sSequenceA :: forall (f :: Type -> Type) a (t :: Last (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source #

sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Last a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source #

sSequence :: forall (m :: Type -> Type) a (t :: Last (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source #

STraversable Max Source # 
Instance details

Methods

sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Max a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source #

sSequenceA :: forall (f :: Type -> Type) a (t :: Max (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source #

sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Max a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source #

sSequence :: forall (m :: Type -> Type) a (t :: Max (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source #

STraversable Min Source # 
Instance details

Methods

sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Min a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source #

sSequenceA :: forall (f :: Type -> Type) a (t :: Min (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source #

sMapM :: forall a (m :: Type -> Type) b (t :: a ~> m b) (t :: Min a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source #

sSequence :: forall (m :: Type -> Type) a (t :: Min (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source #

PShow All Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow Any Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

SShow Bool => SShow All Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: All) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: All). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [All]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

SShow Bool => SShow Any Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: Any) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Any). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Any]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

SingI2 ('Arg :: k1 -> k2 -> Arg k1 k2) Source # 
Instance details

Methods

liftSing2 :: forall (x :: k10) (y :: k20). Sing x -> Sing y -> Sing ('Arg0 x y)

SingI n => SingI1 ('Arg n :: k1 -> Arg a k1) Source # 
Instance details

Methods

liftSing :: forall (x :: k10). Sing x -> Sing ('Arg0 n x)

ShowSing Bool => Show (SAll z) Source # 
Instance details

Methods

showsPrec :: Int -> SAll z -> ShowS #

show :: SAll z -> String #

showList :: [SAll z] -> ShowS #

ShowSing Bool => Show (SAny z) Source # 
Instance details

Methods

showsPrec :: Int -> SAny z -> ShowS #

show :: SAny z -> String #

showList :: [SAny z] -> ShowS #

PFunctor (Arg a) Source # 
Instance details

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

SFunctor (Arg a) Source # 
Instance details

Methods

sFmap :: forall a0 b (t :: a0 ~> b) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a0 b (t :: a0) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

PFoldable (Arg a) Source # 
Instance details

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

SFoldable (Arg a) Source # 
Instance details

Methods

sFold :: forall m (t :: Arg a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Arg a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: Arg a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

PMonoid (Max a) Source # 
Instance details

Associated Types

type Mempty :: a Source #

type Mappend arg arg :: a Source #

type Mconcat arg :: a Source #

PMonoid (Min a) Source # 
Instance details

Associated Types

type Mempty :: a Source #

type Mappend arg arg :: a Source #

type Mconcat arg :: a Source #

PMonoid (WrappedMonoid m) Source # 
Instance details

Associated Types

type Mempty :: a Source #

type Mappend arg arg :: a Source #

type Mconcat arg :: a Source #

(SOrd a, SBounded a) => SMonoid (Max a) Source # 
Instance details

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t) Source #

sMconcat :: forall (t :: [Max a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

(SOrd a, SBounded a) => SMonoid (Min a) Source # 
Instance details

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t) Source #

sMconcat :: forall (t :: [Min a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid m => SMonoid (WrappedMonoid m) Source # 
Instance details

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t) Source #

sMconcat :: forall (t :: [WrappedMonoid m]). Sing t -> Sing (Apply MconcatSym0 t) Source #

PSemigroup (First a) Source # 
Instance details

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Last a) Source # 
Instance details

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Max a) Source # 
Instance details

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Min a) Source # 
Instance details

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

PSemigroup (WrappedMonoid m) Source # 
Instance details

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

SSemigroup (First a) Source # 
Instance details

Methods

(%<>) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (First a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (Last a) Source # 
Instance details

Methods

(%<>) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Last a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SOrd a => SSemigroup (Max a) Source # 
Instance details

Methods

(%<>) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Max a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SOrd a => SSemigroup (Min a) Source # 
Instance details

Methods

(%<>) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Min a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SMonoid m => SSemigroup (WrappedMonoid m) Source # 
Instance details

Methods

(%<>) :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (WrappedMonoid m)). Sing t -> Sing (Apply SconcatSym0 t) Source #

PEnum (First a) Source # 
Instance details

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum (Last a) Source # 
Instance details

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum (Max a) Source # 
Instance details

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum (Min a) Source # 
Instance details

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum (WrappedMonoid a) Source # 
Instance details

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

SEnum a => SEnum (First a) Source # 
Instance details

Methods

sSucc :: forall (t :: First a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: First a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: First a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: First a) (t :: First a) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum a => SEnum (Last a) Source # 
Instance details

Methods

sSucc :: forall (t :: Last a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Last a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Last a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Last a) (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum a => SEnum (Max a) Source # 
Instance details

Methods

sSucc :: forall (t :: Max a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Max a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Max a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Max a) (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum a => SEnum (Min a) Source # 
Instance details

Methods

sSucc :: forall (t :: Min a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Min a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Min a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Min a) (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum a => SEnum (WrappedMonoid a) Source # 
Instance details

Methods

sSucc :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: WrappedMonoid a) (t :: WrappedMonoid a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: WrappedMonoid a) (t :: WrappedMonoid a) (t :: WrappedMonoid a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

PTraversable (Arg a) Source # 
Instance details

Associated Types

type Traverse arg arg :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg :: m (t b) Source #

type Sequence arg :: m (t a) Source #

STraversable (Arg a) Source # 
Instance details

Methods

sTraverse :: forall a0 (f :: Type -> Type) b (t :: a0 ~> f b) (t :: Arg a a0). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source #

sSequenceA :: forall (f :: Type -> Type) a0 (t :: Arg a (f a0)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source #

sMapM :: forall a0 (m :: Type -> Type) b (t :: a0 ~> m b) (t :: Arg a a0). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source #

sSequence :: forall (m :: Type -> Type) a0 (t :: Arg a (m a0)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t) Source #

PNum (Max a) Source # 
Instance details

Associated Types

type arg + arg :: a Source #

type arg - arg :: a Source #

type arg * arg :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

PNum (Min a) Source # 
Instance details

Associated Types

type arg + arg :: a Source #

type arg - arg :: a Source #

type arg * arg :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

SNum a => SNum (Max a) Source # 
Instance details

Methods

(%+) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (+@#@$) t) t) Source #

(%-) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t) Source #

(%*) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (*@#@$) t) t) Source #

sNegate :: forall (t :: Max a). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Max a). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Max a). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

SNum a => SNum (Min a) Source # 
Instance details

Methods

(%+) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (+@#@$) t) t) Source #

(%-) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t) Source #

(%*) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (*@#@$) t) t) Source #

sNegate :: forall (t :: Min a). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Min a). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Min a). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

PShow (First a) Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (Last a) Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (Max a) Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (Min a) Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (WrappedMonoid m) Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (Dual a) Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (Product a) Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (Sum a) Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

SShow a => SShow (First a) Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: First a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: First a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [First a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

SShow a => SShow (Last a) Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: Last a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Last a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Last a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

SShow a => SShow (Max a) Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: Max a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Max a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Max a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

SShow a => SShow (Min a) Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: Min a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Min a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Min a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

SShow m => SShow (WrappedMonoid m) Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: WrappedMonoid m) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: WrappedMonoid m). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [WrappedMonoid m]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

SShow a => SShow (Dual a) Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: Dual a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Dual a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Dual a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

SShow a => SShow (Product a) Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: Product a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Product a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Product a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

SShow a => SShow (Sum a) Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: Sum a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Sum a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Sum a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

ShowSing a => Show (SDual z) Source # 
Instance details

Methods

showsPrec :: Int -> SDual z -> ShowS #

show :: SDual z -> String #

showList :: [SDual z] -> ShowS #

ShowSing a => Show (SFirst z) Source # 
Instance details

Methods

showsPrec :: Int -> SFirst z -> ShowS #

show :: SFirst z -> String #

showList :: [SFirst z] -> ShowS #

ShowSing a => Show (SLast z) Source # 
Instance details

Methods

showsPrec :: Int -> SLast z -> ShowS #

show :: SLast z -> String #

showList :: [SLast z] -> ShowS #

ShowSing a => Show (SMax z) Source # 
Instance details

Methods

showsPrec :: Int -> SMax z -> ShowS #

show :: SMax z -> String #

showList :: [SMax z] -> ShowS #

ShowSing a => Show (SMin z) Source # 
Instance details

Methods

showsPrec :: Int -> SMin z -> ShowS #

show :: SMin z -> String #

showList :: [SMin z] -> ShowS #

ShowSing a => Show (SProduct z) Source # 
Instance details

Methods

showsPrec :: Int -> SProduct z -> ShowS #

show :: SProduct z -> String #

showList :: [SProduct z] -> ShowS #

ShowSing a => Show (SSum z) Source # 
Instance details

Methods

showsPrec :: Int -> SSum z -> ShowS #

show :: SSum z -> String #

showList :: [SSum z] -> ShowS #

ShowSing m => Show (SWrappedMonoid z) Source # 
Instance details

(SingKind a, SingKind b) => SingKind (Arg a b) Source # 
Instance details

Associated Types

type Demote (Arg a b) = (r :: Type)

Methods

fromSing :: forall (a0 :: Arg a b). Sing a0 -> Demote (Arg a b)

toSing :: Demote (Arg a b) -> SomeSing (Arg a b)

PEq (Arg a b) Source # 
Instance details

Associated Types

type arg == arg :: Bool Source #

type arg /= arg :: Bool Source #

SEq a => SEq (Arg a b) Source # 
Instance details

Methods

(%==) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (==@#@$) t) t) Source #

(%/=) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (/=@#@$) t) t) Source #

POrd (Arg a b) Source # 
Instance details

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

SOrd a => SOrd (Arg a b) Source # 
Instance details

Methods

sCompare :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

PShow (Arg a b) Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

(SShow a, SShow b) => SShow (Arg a b) Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: Arg a b) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Arg a b). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Arg a b]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

(SingI n, SingI n) => SingI ('Arg n n :: Arg a b) Source # 
Instance details

Methods

sing :: Sing ('Arg0 n0 n)