singletons-base-3.1: A promoted and singled version of the base library
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRichard Eisenberg (rae@cs.brynmawr.edu)
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Functor.Identity.Singletons

Description

Exports the promoted and singled versions of the Identity data type.

Synopsis

The Identity singleton

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SWrappedSing :: WrappedSing a -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SIdentity :: forall (a :: Type). Identity a -> Type where Source #

Constructors

SIdentity :: forall (a :: Type) (n :: a). (Sing n) -> SIdentity ('Identity n :: Identity (a :: Type)) 

Instances

Instances details
SDecide a => TestCoercion (SIdentity :: Identity a -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b :: k). SIdentity a0 -> SIdentity b -> Maybe (Coercion a0 b) #

SDecide a => TestEquality (SIdentity :: Identity a -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b :: k). SIdentity a0 -> SIdentity b -> Maybe (a0 :~: b) #

ShowSing a => Show (SIdentity z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type family RunIdentity (a :: Identity (a :: Type)) :: a where ... Source #

Equations

RunIdentity ('Identity field) = field 

sRunIdentity :: forall (a :: Type) (t :: Identity (a :: Type)). Sing t -> Sing (Apply RunIdentitySym0 t :: a) Source #

Defunctionalization symbols

data IdentitySym0 :: (~>) a (Identity (a :: Type)) Source #

Instances

Instances details
SingI (IdentitySym0 :: TyFun a (Identity a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

SuppressUnusedWarnings (IdentitySym0 :: TyFun a (Identity a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (IdentitySym0 :: TyFun a (Identity a) -> Type) (a6989586621679043019 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (IdentitySym0 :: TyFun a (Identity a) -> Type) (a6989586621679043019 :: a) = 'Identity a6989586621679043019

type family IdentitySym1 (a6989586621679043019 :: a) :: Identity (a :: Type) where ... Source #

Equations

IdentitySym1 a6989586621679043019 = 'Identity a6989586621679043019 

data RunIdentitySym0 :: (~>) (Identity (a :: Type)) a Source #

Instances

Instances details
SingI (RunIdentitySym0 :: TyFun (Identity a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

SuppressUnusedWarnings (RunIdentitySym0 :: TyFun (Identity a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (RunIdentitySym0 :: TyFun (Identity a) a -> Type) (a6989586621679043022 :: Identity a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (RunIdentitySym0 :: TyFun (Identity a) a -> Type) (a6989586621679043022 :: Identity a) = RunIdentity a6989586621679043022

type family RunIdentitySym1 (a6989586621679043022 :: Identity (a :: Type)) :: a where ... Source #

Equations

RunIdentitySym1 a6989586621679043022 = RunIdentity a6989586621679043022 

Orphan instances

PApplicative Identity Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PFunctor Identity Source # 
Instance details

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PMonad Identity Source # 
Instance details

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

SApplicative Identity Source # 
Instance details

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Identity (a ~> b)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SFunctor Identity Source # 
Instance details

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SMonad Identity Source # 
Instance details

Methods

(%>>=) :: forall a b (t :: Identity a) (t :: a ~> Identity b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

PFoldable Identity Source # 
Instance details

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

SFoldable Identity Source # 
Instance details

Methods

sFold :: forall m (t :: Identity m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Identity a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Identity a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Identity a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Identity a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Identity a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

PMonoid (Identity a) Source # 
Instance details

Associated Types

type Mempty :: a Source #

type Mappend arg arg :: a Source #

type Mconcat arg :: a Source #

SMonoid a => SMonoid (Identity a) Source # 
Instance details

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t) Source #

sMconcat :: forall (t :: [Identity a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

PSemigroup (Identity a) Source # 
Instance details

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

SSemigroup a => SSemigroup (Identity a) Source # 
Instance details

Methods

(%<>) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Identity a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

PEnum (Identity a) Source # 
Instance details

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

SEnum a => SEnum (Identity a) Source # 
Instance details

Methods

sSucc :: forall (t :: Identity a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Identity a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Identity a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Identity a) (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

PNum (Identity a) Source # 
Instance details

Associated Types

type arg + arg :: a Source #

type arg - arg :: a Source #

type arg * arg :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

SNum a => SNum (Identity a) Source # 
Instance details

Methods

(%+) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (+@#@$) t) t) Source #

(%-) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t) Source #

(%*) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (*@#@$) t) t) Source #

sNegate :: forall (t :: Identity a). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Identity a). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Identity a). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

PShow (Identity a) Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

SShow a => SShow (Identity a) Source # 
Instance details

Methods

sShowsPrec :: forall (t :: Natural) (t :: Identity a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Identity a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Identity a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #