singletons-base-3.1: A promoted and singled version of the base library
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Control.Monad.Singletons

Description

Defines the promoted and singled versions of the Monad type class.

Synopsis
  • class PFunctor f where
    • type Fmap (arg :: (~>) a b) (arg :: f a) :: f b
  • class SFunctor f where
  • class PMonad m where
    • type (arg :: m a) >>= (arg :: (~>) a (m b)) :: m b
    • type (arg :: m a) >> (arg :: m b) :: m b
    • type Return (arg :: a) :: m a
  • class SApplicative m => SMonad m where
  • class PMonadPlus m where
    • type Mzero :: m a
    • type Mplus (arg :: m a) (arg :: m a) :: m a
  • class (SAlternative m, SMonad m) => SMonadPlus m where
  • class PMonadFail m where
  • class SMonad m => SMonadFail m where
  • type family MapM (arg :: (~>) a (m b)) (arg :: t a) :: m (t b)
  • sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). (STraversable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b))
  • type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ...
  • sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ())
  • type family ForM (a :: t a) (a :: (~>) a (m b)) :: m (t b) where ...
  • sForM :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (STraversable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForMSym0 t) t :: m (t b))
  • type family Sequence (arg :: t (m a)) :: m (t a)
  • sSequence :: forall m a (t :: t (m a)). (STraversable t, SMonad m) => Sing t -> Sing (Apply SequenceSym0 t :: m (t a))
  • type family Sequence_ (a :: t (m a)) :: m () where ...
  • sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ())
  • type family (a :: (~>) a (m b)) =<< (a :: m a) :: m b where ...
  • (%=<<) :: forall a m b (t :: (~>) a (m b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (=<<@#@$) t) t :: m b)
  • type family ((a :: (~>) a (m b)) >=> (a :: (~>) b (m c))) (a :: a) :: m c where ...
  • (%>=>) :: forall a m b c (t :: (~>) a (m b)) (t :: (~>) b (m c)) (t :: a). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (>=>@#@$) t) t) t :: m c)
  • type family ((a :: (~>) b (m c)) <=< (a :: (~>) a (m b))) (a :: a) :: m c where ...
  • (%<=<) :: forall b m c a (t :: (~>) b (m c)) (t :: (~>) a (m b)) (t :: a). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (<=<@#@$) t) t) t :: m c)
  • type family Void (a :: f a) :: f () where ...
  • sVoid :: forall f a (t :: f a). SFunctor f => Sing t -> Sing (Apply VoidSym0 t :: f ())
  • type family Join (a :: m (m a)) :: m a where ...
  • sJoin :: forall m a (t :: m (m a)). SMonad m => Sing t -> Sing (Apply JoinSym0 t :: m a)
  • type family Msum (a :: t (m a)) :: m a where ...
  • sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a)
  • type family Mfilter (a :: (~>) a Bool) (a :: m a) :: m a where ...
  • sMfilter :: forall a m (t :: (~>) a Bool) (t :: m a). SMonadPlus m => Sing t -> Sing t -> Sing (Apply (Apply MfilterSym0 t) t :: m a)
  • type family FilterM (a :: (~>) a (m Bool)) (a :: [a]) :: m [a] where ...
  • sFilterM :: forall a m (t :: (~>) a (m Bool)) (t :: [a]). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply FilterMSym0 t) t :: m [a])
  • type family MapAndUnzipM (a :: (~>) a (m (b, c))) (a :: [a]) :: m ([b], [c]) where ...
  • sMapAndUnzipM :: forall a m b c (t :: (~>) a (m (b, c))) (t :: [a]). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply MapAndUnzipMSym0 t) t :: m ([b], [c]))
  • type family ZipWithM (a :: (~>) a ((~>) b (m c))) (a :: [a]) (a :: [b]) :: m [c] where ...
  • sZipWithM :: forall a b m c (t :: (~>) a ((~>) b (m c))) (t :: [a]) (t :: [b]). SApplicative m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithMSym0 t) t) t :: m [c])
  • type family ZipWithM_ (a :: (~>) a ((~>) b (m c))) (a :: [a]) (a :: [b]) :: m () where ...
  • sZipWithM_ :: forall a b m c (t :: (~>) a ((~>) b (m c))) (t :: [a]) (t :: [b]). SApplicative m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithM_Sym0 t) t) t :: m ())
  • type family FoldlM (a :: (~>) b ((~>) a (m b))) (a :: b) (a :: t a) :: m b where ...
  • sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b)
  • type family ReplicateM (a :: Natural) (a :: m a) :: m [a] where ...
  • sReplicateM :: forall m a (t :: Natural) (t :: m a). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply ReplicateMSym0 t) t :: m [a])
  • type family ReplicateM_ (a :: Natural) (a :: m a) :: m () where ...
  • sReplicateM_ :: forall m a (t :: Natural) (t :: m a). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply ReplicateM_Sym0 t) t :: m ())
  • type family Guard (a :: Bool) :: f () where ...
  • sGuard :: forall f (t :: Bool). SAlternative f => Sing t -> Sing (Apply GuardSym0 t :: f ())
  • type family When (a :: Bool) (a :: f ()) :: f () where ...
  • sWhen :: forall f (t :: Bool) (t :: f ()). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply WhenSym0 t) t :: f ())
  • type family Unless (a :: Bool) (a :: f ()) :: f () where ...
  • sUnless :: forall f (t :: Bool) (t :: f ()). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply UnlessSym0 t) t :: f ())
  • type family LiftM (a :: (~>) a1 r) (a :: m a1) :: m r where ...
  • sLiftM :: forall a1 r m (t :: (~>) a1 r) (t :: m a1). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply LiftMSym0 t) t :: m r)
  • type family LiftM2 (a :: (~>) a1 ((~>) a2 r)) (a :: m a1) (a :: m a2) :: m r where ...
  • sLiftM2 :: forall a1 a2 r m (t :: (~>) a1 ((~>) a2 r)) (t :: m a1) (t :: m a2). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftM2Sym0 t) t) t :: m r)
  • type family LiftM3 (a :: (~>) a1 ((~>) a2 ((~>) a3 r))) (a :: m a1) (a :: m a2) (a :: m a3) :: m r where ...
  • sLiftM3 :: forall a1 a2 a3 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 r))) (t :: m a1) (t :: m a2) (t :: m a3). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply LiftM3Sym0 t) t) t) t :: m r)
  • type family LiftM4 (a :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a :: m a1) (a :: m a2) (a :: m a3) (a :: m a4) :: m r where ...
  • sLiftM4 :: forall a1 a2 a3 a4 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (t :: m a1) (t :: m a2) (t :: m a3) (t :: m a4). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply (Apply LiftM4Sym0 t) t) t) t) t :: m r)
  • type family LiftM5 (a :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a :: m a1) (a :: m a2) (a :: m a3) (a :: m a4) (a :: m a5) :: m r where ...
  • sLiftM5 :: forall a1 a2 a3 a4 a5 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (t :: m a1) (t :: m a2) (t :: m a3) (t :: m a4) (t :: m a5). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply (Apply (Apply LiftM5Sym0 t) t) t) t) t) t :: m r)
  • type family Ap (a :: m ((~>) a b)) (a :: m a) :: m b where ...
  • sAp :: forall m a b (t :: m ((~>) a b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply ApSym0 t) t :: m b)
  • type family (a :: (~>) a b) <$!> (a :: m a) :: m b where ...
  • (%<$!>) :: forall a b m (t :: (~>) a b) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (<$!>@#@$) t) t :: m b)
  • data FmapSym0 :: (~>) ((~>) a b) ((~>) (f a) (f b))
  • data FmapSym1 (a6989586621679337015 :: (~>) a b) :: (~>) (f a) (f b)
  • type family FmapSym2 (a6989586621679337015 :: (~>) a b) (a6989586621679337016 :: f a) :: f b where ...
  • data (>>=@#@$) :: (~>) (m a) ((~>) ((~>) a (m b)) (m b))
  • data (>>=@#@$$) (a6989586621679337123 :: m a) :: (~>) ((~>) a (m b)) (m b)
  • type family (a6989586621679337123 :: m a) >>=@#@$$$ (a6989586621679337124 :: (~>) a (m b)) :: m b where ...
  • data (>>@#@$) :: (~>) (m a) ((~>) (m b) (m b))
  • data (>>@#@$$) (a6989586621679337128 :: m a) :: (~>) (m b) (m b)
  • type family (a6989586621679337128 :: m a) >>@#@$$$ (a6989586621679337129 :: m b) :: m b where ...
  • data ReturnSym0 :: (~>) a (m a)
  • type family ReturnSym1 (a6989586621679337132 :: a) :: m a where ...
  • data FailSym0 :: (~>) [Char] (m a)
  • type family FailSym1 (a6989586621679540843 :: [Char]) :: m a where ...
  • type family MzeroSym0 :: m a where ...
  • data MplusSym0 :: (~>) (m a) ((~>) (m a) (m a))
  • data MplusSym1 (a6989586621679337170 :: m a) :: (~>) (m a) (m a)
  • type family MplusSym2 (a6989586621679337170 :: m a) (a6989586621679337171 :: m a) :: m a where ...
  • data MapMSym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m (t b)))
  • data MapMSym1 (a6989586621680777182 :: (~>) a (m b)) :: (~>) (t a) (m (t b))
  • type family MapMSym2 (a6989586621680777182 :: (~>) a (m b)) (a6989586621680777183 :: t a) :: m (t b) where ...
  • data MapM_Sym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m ()))
  • data MapM_Sym1 (a6989586621680427168 :: (~>) a (m b)) :: (~>) (t a) (m ())
  • type family MapM_Sym2 (a6989586621680427168 :: (~>) a (m b)) (a6989586621680427169 :: t a) :: m () where ...
  • data ForMSym0 :: (~>) (t a) ((~>) ((~>) a (m b)) (m (t b)))
  • data ForMSym1 (a6989586621680784607 :: t a) :: (~>) ((~>) a (m b)) (m (t b))
  • type family ForMSym2 (a6989586621680784607 :: t a) (a6989586621680784608 :: (~>) a (m b)) :: m (t b) where ...
  • data SequenceSym0 :: (~>) (t (m a)) (m (t a))
  • type family SequenceSym1 (a6989586621680777186 :: t (m a)) :: m (t a) where ...
  • data Sequence_Sym0 :: (~>) (t (m a)) (m ())
  • type family Sequence_Sym1 (a6989586621680427144 :: t (m a)) :: m () where ...
  • data (=<<@#@$) :: (~>) ((~>) a (m b)) ((~>) (m a) (m b))
  • data (=<<@#@$$) (a6989586621679336968 :: (~>) a (m b)) :: (~>) (m a) (m b)
  • type family (a6989586621679336968 :: (~>) a (m b)) =<<@#@$$$ (a6989586621679336969 :: m a) :: m b where ...
  • data (>=>@#@$) :: (~>) ((~>) a (m b)) ((~>) ((~>) b (m c)) ((~>) a (m c)))
  • data (>=>@#@$$) (a6989586621681333053 :: (~>) a (m b)) :: (~>) ((~>) b (m c)) ((~>) a (m c))
  • data (a6989586621681333053 :: (~>) a (m b)) >=>@#@$$$ (a6989586621681333054 :: (~>) b (m c)) :: (~>) a (m c)
  • data (<=<@#@$) :: (~>) ((~>) b (m c)) ((~>) ((~>) a (m b)) ((~>) a (m c)))
  • data (<=<@#@$$) (a6989586621681333041 :: (~>) b (m c)) :: (~>) ((~>) a (m b)) ((~>) a (m c))
  • data (a6989586621681333041 :: (~>) b (m c)) <=<@#@$$$ (a6989586621681333042 :: (~>) a (m b)) :: (~>) a (m c)
  • data VoidSym0 :: (~>) (f a) (f ())
  • type family VoidSym1 (a6989586621679523991 :: f a) :: f () where ...
  • data JoinSym0 :: (~>) (m (m a)) (m a)
  • type family JoinSym1 (a6989586621679336974 :: m (m a)) :: m a where ...
  • data MsumSym0 :: (~>) (t (m a)) (m a)
  • type family MsumSym1 (a6989586621680427132 :: t (m a)) :: m a where ...
  • data MfilterSym0 :: (~>) ((~>) a Bool) ((~>) (m a) (m a))
  • data MfilterSym1 (a6989586621681332906 :: (~>) a Bool) :: (~>) (m a) (m a)
  • type family MfilterSym2 (a6989586621681332906 :: (~>) a Bool) (a6989586621681332907 :: m a) :: m a where ...
  • data FilterMSym0 :: (~>) ((~>) a (m Bool)) ((~>) [a] (m [a]))
  • data FilterMSym1 (a6989586621681333068 :: (~>) a (m Bool)) :: (~>) [a] (m [a])
  • type family FilterMSym2 (a6989586621681333068 :: (~>) a (m Bool)) (a6989586621681333069 :: [a]) :: m [a] where ...
  • data MapAndUnzipMSym0 :: (~>) ((~>) a (m (b, c))) ((~>) [a] (m ([b], [c])))
  • data MapAndUnzipMSym1 (a6989586621681333027 :: (~>) a (m (b, c))) :: (~>) [a] (m ([b], [c]))
  • type family MapAndUnzipMSym2 (a6989586621681333027 :: (~>) a (m (b, c))) (a6989586621681333028 :: [a]) :: m ([b], [c]) where ...
  • data ZipWithMSym0 :: (~>) ((~>) a ((~>) b (m c))) ((~>) [a] ((~>) [b] (m [c])))
  • data ZipWithMSym1 (a6989586621681333018 :: (~>) a ((~>) b (m c))) :: (~>) [a] ((~>) [b] (m [c]))
  • data ZipWithMSym2 (a6989586621681333018 :: (~>) a ((~>) b (m c))) (a6989586621681333019 :: [a]) :: (~>) [b] (m [c])
  • type family ZipWithMSym3 (a6989586621681333018 :: (~>) a ((~>) b (m c))) (a6989586621681333019 :: [a]) (a6989586621681333020 :: [b]) :: m [c] where ...
  • data ZipWithM_Sym0 :: (~>) ((~>) a ((~>) b (m c))) ((~>) [a] ((~>) [b] (m ())))
  • data ZipWithM_Sym1 (a6989586621681333008 :: (~>) a ((~>) b (m c))) :: (~>) [a] ((~>) [b] (m ()))
  • data ZipWithM_Sym2 (a6989586621681333008 :: (~>) a ((~>) b (m c))) (a6989586621681333009 :: [a]) :: (~>) [b] (m ())
  • type family ZipWithM_Sym3 (a6989586621681333008 :: (~>) a ((~>) b (m c))) (a6989586621681333009 :: [a]) (a6989586621681333010 :: [b]) :: m () where ...
  • data FoldlMSym0 :: (~>) ((~>) b ((~>) a (m b))) ((~>) b ((~>) (t a) (m b)))
  • data FoldlMSym1 (a6989586621680427196 :: (~>) b ((~>) a (m b))) :: (~>) b ((~>) (t a) (m b))
  • data FoldlMSym2 (a6989586621680427196 :: (~>) b ((~>) a (m b))) (a6989586621680427197 :: b) :: (~>) (t a) (m b)
  • type family FoldlMSym3 (a6989586621680427196 :: (~>) b ((~>) a (m b))) (a6989586621680427197 :: b) (a6989586621680427198 :: t a) :: m b where ...
  • data ReplicateMSym0 :: (~>) Natural ((~>) (m a) (m [a]))
  • data ReplicateMSym1 (a6989586621681332963 :: Natural) :: (~>) (m a) (m [a])
  • type family ReplicateMSym2 (a6989586621681332963 :: Natural) (a6989586621681332964 :: m a) :: m [a] where ...
  • data ReplicateM_Sym0 :: (~>) Natural ((~>) (m a) (m ()))
  • data ReplicateM_Sym1 (a6989586621681332945 :: Natural) :: (~>) (m a) (m ())
  • type family ReplicateM_Sym2 (a6989586621681332945 :: Natural) (a6989586621681332946 :: m a) :: m () where ...
  • data GuardSym0 :: (~>) Bool (f ())
  • type family GuardSym1 (a6989586621679336814 :: Bool) :: f () where ...
  • data WhenSym0 :: (~>) Bool ((~>) (f ()) (f ()))
  • data WhenSym1 (a6989586621679336958 :: Bool) :: (~>) (f ()) (f ())
  • type family WhenSym2 (a6989586621679336958 :: Bool) (a6989586621679336959 :: f ()) :: f () where ...
  • data UnlessSym0 :: (~>) Bool ((~>) (f ()) (f ()))
  • data UnlessSym1 (a6989586621681332935 :: Bool) :: (~>) (f ()) (f ())
  • type family UnlessSym2 (a6989586621681332935 :: Bool) (a6989586621681332936 :: f ()) :: f () where ...
  • data LiftMSym0 :: (~>) ((~>) a1 r) ((~>) (m a1) (m r))
  • data LiftMSym1 (a6989586621679336947 :: (~>) a1 r) :: (~>) (m a1) (m r)
  • type family LiftMSym2 (a6989586621679336947 :: (~>) a1 r) (a6989586621679336948 :: m a1) :: m r where ...
  • data LiftM2Sym0 :: (~>) ((~>) a1 ((~>) a2 r)) ((~>) (m a1) ((~>) (m a2) (m r)))
  • data LiftM2Sym1 (a6989586621679336930 :: (~>) a1 ((~>) a2 r)) :: (~>) (m a1) ((~>) (m a2) (m r))
  • data LiftM2Sym2 (a6989586621679336930 :: (~>) a1 ((~>) a2 r)) (a6989586621679336931 :: m a1) :: (~>) (m a2) (m r)
  • type family LiftM2Sym3 (a6989586621679336930 :: (~>) a1 ((~>) a2 r)) (a6989586621679336931 :: m a1) (a6989586621679336932 :: m a2) :: m r where ...
  • data LiftM3Sym0 :: (~>) ((~>) a1 ((~>) a2 ((~>) a3 r))) ((~>) (m a1) ((~>) (m a2) ((~>) (m a3) (m r))))
  • data LiftM3Sym1 (a6989586621679336906 :: (~>) a1 ((~>) a2 ((~>) a3 r))) :: (~>) (m a1) ((~>) (m a2) ((~>) (m a3) (m r)))
  • data LiftM3Sym2 (a6989586621679336906 :: (~>) a1 ((~>) a2 ((~>) a3 r))) (a6989586621679336907 :: m a1) :: (~>) (m a2) ((~>) (m a3) (m r))
  • data LiftM3Sym3 (a6989586621679336906 :: (~>) a1 ((~>) a2 ((~>) a3 r))) (a6989586621679336907 :: m a1) (a6989586621679336908 :: m a2) :: (~>) (m a3) (m r)
  • type family LiftM3Sym4 (a6989586621679336906 :: (~>) a1 ((~>) a2 ((~>) a3 r))) (a6989586621679336907 :: m a1) (a6989586621679336908 :: m a2) (a6989586621679336909 :: m a3) :: m r where ...
  • data LiftM4Sym0 :: (~>) ((~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) ((~>) (m a1) ((~>) (m a2) ((~>) (m a3) ((~>) (m a4) (m r)))))
  • data LiftM4Sym1 (a6989586621679336875 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) :: (~>) (m a1) ((~>) (m a2) ((~>) (m a3) ((~>) (m a4) (m r))))
  • data LiftM4Sym2 (a6989586621679336875 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a6989586621679336876 :: m a1) :: (~>) (m a2) ((~>) (m a3) ((~>) (m a4) (m r)))
  • data LiftM4Sym3 (a6989586621679336875 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a6989586621679336876 :: m a1) (a6989586621679336877 :: m a2) :: (~>) (m a3) ((~>) (m a4) (m r))
  • data LiftM4Sym4 (a6989586621679336875 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a6989586621679336876 :: m a1) (a6989586621679336877 :: m a2) (a6989586621679336878 :: m a3) :: (~>) (m a4) (m r)
  • type family LiftM4Sym5 (a6989586621679336875 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a6989586621679336876 :: m a1) (a6989586621679336877 :: m a2) (a6989586621679336878 :: m a3) (a6989586621679336879 :: m a4) :: m r where ...
  • data LiftM5Sym0 :: (~>) ((~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) ((~>) (m a1) ((~>) (m a2) ((~>) (m a3) ((~>) (m a4) ((~>) (m a5) (m r))))))
  • data LiftM5Sym1 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) :: (~>) (m a1) ((~>) (m a2) ((~>) (m a3) ((~>) (m a4) ((~>) (m a5) (m r)))))
  • data LiftM5Sym2 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a6989586621679336838 :: m a1) :: (~>) (m a2) ((~>) (m a3) ((~>) (m a4) ((~>) (m a5) (m r))))
  • data LiftM5Sym3 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a6989586621679336838 :: m a1) (a6989586621679336839 :: m a2) :: (~>) (m a3) ((~>) (m a4) ((~>) (m a5) (m r)))
  • data LiftM5Sym4 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a6989586621679336838 :: m a1) (a6989586621679336839 :: m a2) (a6989586621679336840 :: m a3) :: (~>) (m a4) ((~>) (m a5) (m r))
  • data LiftM5Sym5 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a6989586621679336838 :: m a1) (a6989586621679336839 :: m a2) (a6989586621679336840 :: m a3) (a6989586621679336841 :: m a4) :: (~>) (m a5) (m r)
  • type family LiftM5Sym6 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a6989586621679336838 :: m a1) (a6989586621679336839 :: m a2) (a6989586621679336840 :: m a3) (a6989586621679336841 :: m a4) (a6989586621679336842 :: m a5) :: m r where ...
  • data ApSym0 :: (~>) (m ((~>) a b)) ((~>) (m a) (m b))
  • data ApSym1 (a6989586621679336818 :: m ((~>) a b)) :: (~>) (m a) (m b)
  • type family ApSym2 (a6989586621679336818 :: m ((~>) a b)) (a6989586621679336819 :: m a) :: m b where ...
  • data (<$!>@#@$) :: (~>) ((~>) a b) ((~>) (m a) (m b))
  • data (<$!>@#@$$) (a6989586621681332922 :: (~>) a b) :: (~>) (m a) (m b)
  • type family (a6989586621681332922 :: (~>) a b) <$!>@#@$$$ (a6989586621681332923 :: m a) :: m b where ...

Documentation

class PFunctor f Source #

Associated Types

type Fmap (arg :: (~>) a b) (arg :: f a) :: f b Source #

Instances

Instances details
PFunctor Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor First Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Down Source # 
Instance details

Defined in Data.Functor.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor (Either a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor (Arg a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor ((,) a) Source # 
Instance details

Defined in Data.Functor.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor (Sum f g) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

class SFunctor f where Source #

Methods

sFmap :: forall a b (t :: (~>) a b) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t :: f b) Source #

Instances

Instances details
SFunctor Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor First Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Down Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor (Either a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a0 b (t :: a0 ~> b) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a0 b (t :: a0) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Proxy a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Proxy b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor (Arg a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a0 b (t :: a0 ~> b) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a0 b (t :: a0) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor ((,) a) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sFmap :: forall a0 b (t :: a0 ~> b) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a0 b (t :: a0) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

(SFunctor f, SFunctor g) => SFunctor (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Product f g a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Product f g b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

(SFunctor f, SFunctor g) => SFunctor (Sum f g) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Sum f g a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Sum f g b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

(SFunctor f, SFunctor g) => SFunctor (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Compose f g a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Compose f g b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

class PMonad m Source #

Associated Types

type (arg :: m a) >>= (arg :: (~>) a (m b)) :: m b infixl 1 Source #

type (arg :: m a) >> (arg :: m b) :: m b infixl 1 Source #

type a >> a = Apply (Apply TFHelper_6989586621679337135Sym0 a) a

type Return (arg :: a) :: m a Source #

type Return a = Apply Return_6989586621679337152Sym0 a

Instances

Instances details
PMonad Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad First Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Down Source # 
Instance details

Defined in Control.Monad.Singletons

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad ((,) a) Source # 
Instance details

Defined in Control.Monad.Singletons

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

class SApplicative m => SMonad m where Source #

Minimal complete definition

(%>>=)

Methods

(%>>=) :: forall a b (t :: m a) (t :: (~>) a (m b)). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t :: m b) infixl 1 Source #

(%>>) :: forall a b (t :: m a) (t :: m b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t :: m b) infixl 1 Source #

default (%>>) :: forall a b (t :: m a) (t :: m b). (Apply (Apply (>>@#@$) t) t :: m b) ~ Apply (Apply TFHelper_6989586621679337135Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t :: m b) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t :: m a) Source #

default sReturn :: forall a (t :: a). (Apply ReturnSym0 t :: m a) ~ Apply Return_6989586621679337152Sym0 t => Sing t -> Sing (Apply ReturnSym0 t :: m a) Source #

Instances

Instances details
SMonad Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

(%>>=) :: forall a b (t :: Identity a) (t :: a ~> Identity b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad First Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%>>=) :: forall a b (t :: First a) (t :: a ~> First b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%>>=) :: forall a b (t :: Last a) (t :: a ~> Last b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Down Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

(%>>=) :: forall a b (t :: Down a) (t :: a ~> Down b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t :: First a) (t :: a ~> First b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t :: Last a) (t :: a ~> Last b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t :: Max a) (t :: a ~> Max b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t :: Min a) (t :: a ~> Min b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%>>=) :: forall a b (t :: Dual a) (t :: a ~> Dual b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%>>=) :: forall a b (t :: Product a) (t :: a ~> Product b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%>>=) :: forall a b (t :: Sum a) (t :: a ~> Sum b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t :: NonEmpty a) (t :: a ~> NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t :: Maybe a) (t :: a ~> Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t :: [a]) (t :: a ~> [b]). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t :: Either e a) (t :: a ~> Either e b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

(%>>=) :: forall a b (t :: Proxy a) (t :: a ~> Proxy b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Proxy a) (t :: Proxy b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonoid a => SMonad ((,) a) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

(%>>=) :: forall a0 b (t :: (a, a0)) (t :: a0 ~> (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a0 (t :: a0). Sing t -> Sing (Apply ReturnSym0 t) Source #

(SMonad f, SMonad g) => SMonad (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

(%>>=) :: forall a b (t :: Product f g a) (t :: a ~> Product f g b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Product f g a) (t :: Product f g b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

class PMonadPlus m Source #

Associated Types

type Mzero :: m a Source #

type Mzero = Mzero_6989586621679337172Sym0

type Mplus (arg :: m a) (arg :: m a) :: m a Source #

type Mplus a a = Apply (Apply Mplus_6989586621679337177Sym0 a) a

Instances

Instances details
PMonadPlus Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Mzero :: m a Source #

type Mplus arg arg :: m a Source #

PMonadPlus [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Mzero :: m a Source #

type Mplus arg arg :: m a Source #

PMonadPlus (Proxy :: k -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Mzero :: m a Source #

type Mplus arg arg :: m a Source #

PMonadPlus (Product f g :: k -> Type) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type Mzero :: m a Source #

type Mplus arg arg :: m a Source #

class (SAlternative m, SMonad m) => SMonadPlus m where Source #

Minimal complete definition

Nothing

Methods

sMzero :: forall a. Sing (MzeroSym0 :: m a) Source #

default sMzero :: forall a. (MzeroSym0 :: m a) ~ Mzero_6989586621679337172Sym0 => Sing (MzeroSym0 :: m a) Source #

sMplus :: forall a (t :: m a) (t :: m a). Sing t -> Sing t -> Sing (Apply (Apply MplusSym0 t) t :: m a) Source #

default sMplus :: forall a (t :: m a) (t :: m a). (Apply (Apply MplusSym0 t) t :: m a) ~ Apply (Apply Mplus_6989586621679337177Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MplusSym0 t) t :: m a) Source #

Instances

Instances details
SMonadPlus Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sMzero :: Sing MzeroSym0 Source #

sMplus :: forall a (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply MplusSym0 t) t) Source #

SMonadPlus [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sMzero :: Sing MzeroSym0 Source #

sMplus :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MplusSym0 t) t) Source #

SMonadPlus (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sMzero :: Sing MzeroSym0 Source #

sMplus :: forall a (t :: Proxy a) (t :: Proxy a). Sing t -> Sing t -> Sing (Apply (Apply MplusSym0 t) t) Source #

(SMonadPlus f, SMonadPlus g) => SMonadPlus (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sMzero :: Sing MzeroSym0 Source #

sMplus :: forall a (t :: Product f g a) (t :: Product f g a). Sing t -> Sing t -> Sing (Apply (Apply MplusSym0 t) t) Source #

class PMonadFail m Source #

Associated Types

type Fail (arg :: [Char]) :: m a Source #

Instances

Instances details
PMonadFail Maybe Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Associated Types

type Fail arg :: m a Source #

PMonadFail [] Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Associated Types

type Fail arg :: m a Source #

class SMonad m => SMonadFail m where Source #

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Apply FailSym0 t :: m a) Source #

Instances

Instances details
SMonadFail Maybe Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Apply FailSym0 t) Source #

SMonadFail [] Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Apply FailSym0 t) Source #

type family MapM (arg :: (~>) a (m b)) (arg :: t a) :: m (t b) Source #

Instances

Instances details
type MapM (arg1 :: a ~> m b) (arg2 :: Identity a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Identity a)
type MapM (arg1 :: a ~> m b) (arg2 :: First a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: First a)
type MapM (arg1 :: a ~> m b) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Last a)
type MapM (arg1 :: a ~> m b) (arg2 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: First a)
type MapM (arg1 :: a ~> m b) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Last a)
type MapM (arg1 :: a ~> m b) (arg2 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Max a)
type MapM (arg1 :: a ~> m b) (arg2 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Min a)
type MapM (arg1 :: a ~> m b) (arg2 :: Dual a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Dual a)
type MapM (arg1 :: a ~> m b) (arg2 :: Product a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Product a)
type MapM (arg1 :: a ~> m b) (arg2 :: Sum a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Sum a)
type MapM (arg1 :: a ~> m b) (arg2 :: NonEmpty a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: NonEmpty a)
type MapM (arg1 :: a ~> m b) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Maybe a)
type MapM (arg1 :: a ~> m b) (arg2 :: [a]) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: [a])
type MapM (arg1 :: a1 ~> m b) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a1 ~> m b) (arg2 :: Either a2 a1)
type MapM (a2 :: a1 ~> m b) (a3 :: Proxy a1) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (a2 :: a1 ~> m b) (a3 :: Proxy a1)
type MapM (arg1 :: a1 ~> m b) (arg2 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type MapM (arg1 :: a1 ~> m b) (arg2 :: Arg a2 a1)
type MapM (arg1 :: a1 ~> m b) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a1 ~> m b) (arg2 :: (a2, a1))
type MapM (arg1 :: a ~> m1 b) (arg2 :: Const m2 a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m1 b) (arg2 :: Const m2 a)
type MapM (arg1 :: a ~> m b) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Product f g a)
type MapM (arg1 :: a ~> m b) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Sum f g a)
type MapM (arg1 :: a ~> m b) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Compose f g a)

sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). (STraversable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b)) Source #

type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ... Source #

Equations

MapM_ f a_6989586621680427163 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (>>@#@$)) f)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680427163 

sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ()) Source #

type family ForM (a :: t a) (a :: (~>) a (m b)) :: m (t b) where ... Source #

Equations

ForM a_6989586621680784600 a_6989586621680784602 = Apply (Apply (Apply FlipSym0 MapMSym0) a_6989586621680784600) a_6989586621680784602 

sForM :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (STraversable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForMSym0 t) t :: m (t b)) Source #

type family Sequence (arg :: t (m a)) :: m (t a) Source #

Instances

Instances details
type Sequence (arg :: Identity (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Identity (m a))
type Sequence (arg :: First (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: First (m a))
type Sequence (arg :: Last (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Last (m a))
type Sequence (arg :: First (m a)) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sequence (arg :: First (m a))
type Sequence (arg :: Last (m a)) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sequence (arg :: Last (m a))
type Sequence (arg :: Max (m a)) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sequence (arg :: Max (m a))
type Sequence (arg :: Min (m a)) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sequence (arg :: Min (m a))
type Sequence (arg :: Dual (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Dual (m a))
type Sequence (arg :: Product (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Product (m a))
type Sequence (arg :: Sum (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Sum (m a))
type Sequence (arg :: NonEmpty (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: NonEmpty (m a))
type Sequence (arg :: Maybe (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Maybe (m a))
type Sequence (arg :: [m a]) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: [m a])
type Sequence (arg :: Either a1 (m a2)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Either a1 (m a2))
type Sequence (a2 :: Proxy (m a1)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (a2 :: Proxy (m a1))
type Sequence (arg :: Arg a1 (m a2)) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sequence (arg :: Arg a1 (m a2))
type Sequence (arg :: (a1, m a2)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: (a1, m a2))
type Sequence (arg :: Const m1 (m2 a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Const m1 (m2 a))
type Sequence (arg :: Product f g (m a)) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sequence (arg :: Product f g (m a))
type Sequence (arg :: Sum f g (m a)) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sequence (arg :: Sum f g (m a))
type Sequence (arg :: Compose f g (m a)) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sequence (arg :: Compose f g (m a))

sSequence :: forall m a (t :: t (m a)). (STraversable t, SMonad m) => Sing t -> Sing (Apply SequenceSym0 t :: m (t a)) Source #

type family Sequence_ (a :: t (m a)) :: m () where ... Source #

Equations

Sequence_ a_6989586621680427140 = Apply (Apply (Apply FoldrSym0 (>>@#@$)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680427140 

sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ()) Source #

type family (a :: (~>) a (m b)) =<< (a :: m a) :: m b where ... infixr 1 Source #

Equations

f =<< x = Apply (Apply (>>=@#@$) x) f 

(%=<<) :: forall a m b (t :: (~>) a (m b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (=<<@#@$) t) t :: m b) infixr 1 Source #

type family ((a :: (~>) a (m b)) >=> (a :: (~>) b (m c))) (a :: a) :: m c where ... infixr 1 Source #

Equations

(f >=> g) a_6989586621681333047 = Apply (Apply (Apply (Apply Lambda_6989586621681333059Sym0 f) g) a_6989586621681333047) a_6989586621681333047 

(%>=>) :: forall a m b c (t :: (~>) a (m b)) (t :: (~>) b (m c)) (t :: a). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (>=>@#@$) t) t) t :: m c) infixr 1 Source #

type family ((a :: (~>) b (m c)) <=< (a :: (~>) a (m b))) (a :: a) :: m c where ... infixr 1 Source #

Equations

(a_6989586621681333031 <=< a_6989586621681333033) a_6989586621681333035 = Apply (Apply (Apply (Apply FlipSym0 (>=>@#@$)) a_6989586621681333031) a_6989586621681333033) a_6989586621681333035 

(%<=<) :: forall b m c a (t :: (~>) b (m c)) (t :: (~>) a (m b)) (t :: a). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (<=<@#@$) t) t) t :: m c) infixr 1 Source #

type family Void (a :: f a) :: f () where ... Source #

Equations

Void x = Apply (Apply (<$@#@$) Tuple0Sym0) x 

sVoid :: forall f a (t :: f a). SFunctor f => Sing t -> Sing (Apply VoidSym0 t :: f ()) Source #

type family Join (a :: m (m a)) :: m a where ... Source #

Equations

Join x = Apply (Apply (>>=@#@$) x) IdSym0 

sJoin :: forall m a (t :: m (m a)). SMonad m => Sing t -> Sing (Apply JoinSym0 t :: m a) Source #

type family Msum (a :: t (m a)) :: m a where ... Source #

Equations

Msum a_6989586621680427128 = Apply AsumSym0 a_6989586621680427128 

sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a) Source #

type family Mfilter (a :: (~>) a Bool) (a :: m a) :: m a where ... Source #

Equations

Mfilter p ma = Apply (Apply (>>=@#@$) ma) (Apply (Apply Lambda_6989586621681332910Sym0 p) ma) 

sMfilter :: forall a m (t :: (~>) a Bool) (t :: m a). SMonadPlus m => Sing t -> Sing t -> Sing (Apply (Apply MfilterSym0 t) t :: m a) Source #

type family FilterM (a :: (~>) a (m Bool)) (a :: [a]) :: m [a] where ... Source #

Equations

FilterM p a_6989586621681333063 = Apply (Apply (Apply FoldrSym0 (Apply (Apply Lambda_6989586621681333072Sym0 p) a_6989586621681333063)) (Apply PureSym0 NilSym0)) a_6989586621681333063 

sFilterM :: forall a m (t :: (~>) a (m Bool)) (t :: [a]). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply FilterMSym0 t) t :: m [a]) Source #

type family MapAndUnzipM (a :: (~>) a (m (b, c))) (a :: [a]) :: m ([b], [c]) where ... Source #

Equations

MapAndUnzipM f xs = Apply (Apply (<$>@#@$) UnzipSym0) (Apply (Apply TraverseSym0 f) xs) 

sMapAndUnzipM :: forall a m b c (t :: (~>) a (m (b, c))) (t :: [a]). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply MapAndUnzipMSym0 t) t :: m ([b], [c])) Source #

type family ZipWithM (a :: (~>) a ((~>) b (m c))) (a :: [a]) (a :: [b]) :: m [c] where ... Source #

Equations

ZipWithM f xs ys = Apply SequenceASym0 (Apply (Apply (Apply ZipWithSym0 f) xs) ys) 

sZipWithM :: forall a b m c (t :: (~>) a ((~>) b (m c))) (t :: [a]) (t :: [b]). SApplicative m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithMSym0 t) t) t :: m [c]) Source #

type family ZipWithM_ (a :: (~>) a ((~>) b (m c))) (a :: [a]) (a :: [b]) :: m () where ... Source #

Equations

ZipWithM_ f xs ys = Apply SequenceA_Sym0 (Apply (Apply (Apply ZipWithSym0 f) xs) ys) 

sZipWithM_ :: forall a b m c (t :: (~>) a ((~>) b (m c))) (t :: [a]) (t :: [b]). SApplicative m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithM_Sym0 t) t) t :: m ()) Source #

type family FoldlM (a :: (~>) b ((~>) a (m b))) (a :: b) (a :: t a) :: m b where ... Source #

Equations

FoldlM f z0 xs = Apply (Apply (Apply (Apply FoldrSym0 (Let6989586621680427202F'Sym3 f z0 xs)) ReturnSym0) xs) z0 

sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b) Source #

type family ReplicateM (a :: Natural) (a :: m a) :: m [a] where ... Source #

Equations

ReplicateM cnt0 f = Apply (Let6989586621681332967LoopSym2 cnt0 f) cnt0 

sReplicateM :: forall m a (t :: Natural) (t :: m a). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply ReplicateMSym0 t) t :: m [a]) Source #

type family ReplicateM_ (a :: Natural) (a :: m a) :: m () where ... Source #

Equations

ReplicateM_ cnt0 f = Apply (Let6989586621681332949LoopSym2 cnt0 f) cnt0 

sReplicateM_ :: forall m a (t :: Natural) (t :: m a). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply ReplicateM_Sym0 t) t :: m ()) Source #

type family Guard (a :: Bool) :: f () where ... Source #

sGuard :: forall f (t :: Bool). SAlternative f => Sing t -> Sing (Apply GuardSym0 t :: f ()) Source #

type family When (a :: Bool) (a :: f ()) :: f () where ... Source #

Equations

When p s = Case_6989586621679336962 p s p 

sWhen :: forall f (t :: Bool) (t :: f ()). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply WhenSym0 t) t :: f ()) Source #

type family Unless (a :: Bool) (a :: f ()) :: f () where ... Source #

Equations

Unless p s = Case_6989586621681332939 p s p 

sUnless :: forall f (t :: Bool) (t :: f ()). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply UnlessSym0 t) t :: f ()) Source #

type family LiftM (a :: (~>) a1 r) (a :: m a1) :: m r where ... Source #

Equations

LiftM f m1 = Apply (Apply (>>=@#@$) m1) (Apply (Apply Lambda_6989586621679336951Sym0 f) m1) 

sLiftM :: forall a1 r m (t :: (~>) a1 r) (t :: m a1). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply LiftMSym0 t) t :: m r) Source #

type family LiftM2 (a :: (~>) a1 ((~>) a2 r)) (a :: m a1) (a :: m a2) :: m r where ... Source #

Equations

LiftM2 f m1 m2 = Apply (Apply (>>=@#@$) m1) (Apply (Apply (Apply Lambda_6989586621679336936Sym0 f) m1) m2) 

sLiftM2 :: forall a1 a2 r m (t :: (~>) a1 ((~>) a2 r)) (t :: m a1) (t :: m a2). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftM2Sym0 t) t) t :: m r) Source #

type family LiftM3 (a :: (~>) a1 ((~>) a2 ((~>) a3 r))) (a :: m a1) (a :: m a2) (a :: m a3) :: m r where ... Source #

Equations

LiftM3 f m1 m2 m3 = Apply (Apply (>>=@#@$) m1) (Apply (Apply (Apply (Apply Lambda_6989586621679336914Sym0 f) m1) m2) m3) 

sLiftM3 :: forall a1 a2 a3 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 r))) (t :: m a1) (t :: m a2) (t :: m a3). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply LiftM3Sym0 t) t) t) t :: m r) Source #

type family LiftM4 (a :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a :: m a1) (a :: m a2) (a :: m a3) (a :: m a4) :: m r where ... Source #

Equations

LiftM4 f m1 m2 m3 m4 = Apply (Apply (>>=@#@$) m1) (Apply (Apply (Apply (Apply (Apply Lambda_6989586621679336885Sym0 f) m1) m2) m3) m4) 

sLiftM4 :: forall a1 a2 a3 a4 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (t :: m a1) (t :: m a2) (t :: m a3) (t :: m a4). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply (Apply LiftM4Sym0 t) t) t) t) t :: m r) Source #

type family LiftM5 (a :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a :: m a1) (a :: m a2) (a :: m a3) (a :: m a4) (a :: m a5) :: m r where ... Source #

Equations

LiftM5 f m1 m2 m3 m4 m5 = Apply (Apply (>>=@#@$) m1) (Apply (Apply (Apply (Apply (Apply (Apply Lambda_6989586621679336849Sym0 f) m1) m2) m3) m4) m5) 

sLiftM5 :: forall a1 a2 a3 a4 a5 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (t :: m a1) (t :: m a2) (t :: m a3) (t :: m a4) (t :: m a5). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply (Apply (Apply LiftM5Sym0 t) t) t) t) t) t :: m r) Source #

type family Ap (a :: m ((~>) a b)) (a :: m a) :: m b where ... Source #

Equations

Ap m1 m2 = Apply (Apply (>>=@#@$) m1) (Apply (Apply Lambda_6989586621679336822Sym0 m1) m2) 

sAp :: forall m a b (t :: m ((~>) a b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply ApSym0 t) t :: m b) Source #

type family (a :: (~>) a b) <$!> (a :: m a) :: m b where ... infixl 4 Source #

Equations

f <$!> m = Apply (Apply (>>=@#@$) m) (Apply (Apply Lambda_6989586621681332926Sym0 f) m) 

(%<$!>) :: forall a b m (t :: (~>) a b) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (<$!>@#@$) t) t :: m b) infixl 4 Source #

Defunctionalization symbols

data FmapSym0 :: (~>) ((~>) a b) ((~>) (f a) (f b)) Source #

Instances

Instances details
SFunctor f => SingI (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing FmapSym0

SuppressUnusedWarnings (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679337015 :: a ~> b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679337015 :: a ~> b) = FmapSym1 a6989586621679337015 :: TyFun (f a) (f b) -> Type

data FmapSym1 (a6989586621679337015 :: (~>) a b) :: (~>) (f a) (f b) Source #

Instances

Instances details
SFunctor f => SingI1 (FmapSym1 :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FmapSym1 x)

(SFunctor f, SingI d) => SingI (FmapSym1 d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (FmapSym1 d)

SuppressUnusedWarnings (FmapSym1 a6989586621679337015 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym1 a6989586621679337015 :: TyFun (f a) (f b) -> Type) (a6989586621679337016 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym1 a6989586621679337015 :: TyFun (f a) (f b) -> Type) (a6989586621679337016 :: f a) = Fmap a6989586621679337015 a6989586621679337016

type family FmapSym2 (a6989586621679337015 :: (~>) a b) (a6989586621679337016 :: f a) :: f b where ... Source #

Equations

FmapSym2 a6989586621679337015 a6989586621679337016 = Fmap a6989586621679337015 a6989586621679337016 

data (>>=@#@$) :: (~>) (m a) ((~>) ((~>) a (m b)) (m b)) infixl 1 Source #

Instances

Instances details
SMonad m => SingI ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (>>=@#@$)

SuppressUnusedWarnings ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) (a6989586621679337123 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) (a6989586621679337123 :: m a) = (>>=@#@$$) a6989586621679337123 :: TyFun (a ~> m b) (m b) -> Type

data (>>=@#@$$) (a6989586621679337123 :: m a) :: (~>) ((~>) a (m b)) (m b) infixl 1 Source #

Instances

Instances details
SMonad m => SingI1 ((>>=@#@$$) :: m a -> TyFun (a ~> m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((>>=@#@$$) x)

(SMonad m, SingI d) => SingI ((>>=@#@$$) d :: TyFun (a ~> m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((>>=@#@$$) d)

SuppressUnusedWarnings ((>>=@#@$$) a6989586621679337123 :: TyFun (a ~> m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$$) a6989586621679337123 :: TyFun (a ~> m b) (m b) -> Type) (a6989586621679337124 :: a ~> m b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$$) a6989586621679337123 :: TyFun (a ~> m b) (m b) -> Type) (a6989586621679337124 :: a ~> m b) = a6989586621679337123 >>= a6989586621679337124

type family (a6989586621679337123 :: m a) >>=@#@$$$ (a6989586621679337124 :: (~>) a (m b)) :: m b where ... infixl 1 Source #

Equations

a6989586621679337123 >>=@#@$$$ a6989586621679337124 = (>>=) a6989586621679337123 a6989586621679337124 

data (>>@#@$) :: (~>) (m a) ((~>) (m b) (m b)) infixl 1 Source #

Instances

Instances details
SMonad m => SingI ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (>>@#@$)

SuppressUnusedWarnings ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) (a6989586621679337128 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) (a6989586621679337128 :: m a) = (>>@#@$$) a6989586621679337128 :: TyFun (m b) (m b) -> Type

data (>>@#@$$) (a6989586621679337128 :: m a) :: (~>) (m b) (m b) infixl 1 Source #

Instances

Instances details
SMonad m => SingI1 ((>>@#@$$) :: m a -> TyFun (m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((>>@#@$$) x)

(SMonad m, SingI d) => SingI ((>>@#@$$) d :: TyFun (m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((>>@#@$$) d)

SuppressUnusedWarnings ((>>@#@$$) a6989586621679337128 :: TyFun (m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$$) a6989586621679337128 :: TyFun (m b) (m b) -> Type) (a6989586621679337129 :: m b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$$) a6989586621679337128 :: TyFun (m b) (m b) -> Type) (a6989586621679337129 :: m b) = a6989586621679337128 >> a6989586621679337129

type family (a6989586621679337128 :: m a) >>@#@$$$ (a6989586621679337129 :: m b) :: m b where ... infixl 1 Source #

Equations

a6989586621679337128 >>@#@$$$ a6989586621679337129 = (>>) a6989586621679337128 a6989586621679337129 

data ReturnSym0 :: (~>) a (m a) Source #

Instances

Instances details
SMonad m => SingI (ReturnSym0 :: TyFun a (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ReturnSym0

SuppressUnusedWarnings (ReturnSym0 :: TyFun a (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ReturnSym0 :: TyFun a (m a) -> Type) (a6989586621679337132 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ReturnSym0 :: TyFun a (m a) -> Type) (a6989586621679337132 :: a) = Return a6989586621679337132 :: m a

type family ReturnSym1 (a6989586621679337132 :: a) :: m a where ... Source #

Equations

ReturnSym1 a6989586621679337132 = Return a6989586621679337132 

data FailSym0 :: (~>) [Char] (m a) Source #

Instances

Instances details
SMonadFail m => SingI (FailSym0 :: TyFun [Char] (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Methods

sing :: Sing FailSym0

SuppressUnusedWarnings (FailSym0 :: TyFun [Char] (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

type Apply (FailSym0 :: TyFun [Char] (m a) -> Type) (a6989586621679540843 :: [Char]) Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

type Apply (FailSym0 :: TyFun [Char] (m a) -> Type) (a6989586621679540843 :: [Char]) = Fail a6989586621679540843 :: m a

type family FailSym1 (a6989586621679540843 :: [Char]) :: m a where ... Source #

Equations

FailSym1 a6989586621679540843 = Fail a6989586621679540843 

type family MzeroSym0 :: m a where ... Source #

Equations

MzeroSym0 = Mzero 

data MplusSym0 :: (~>) (m a) ((~>) (m a) (m a)) Source #

Instances

Instances details
SMonadPlus m => SingI (MplusSym0 :: TyFun (m a) (m a ~> m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing MplusSym0

SuppressUnusedWarnings (MplusSym0 :: TyFun (m a) (m a ~> m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (MplusSym0 :: TyFun (m a) (m a ~> m a) -> Type) (a6989586621679337170 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (MplusSym0 :: TyFun (m a) (m a ~> m a) -> Type) (a6989586621679337170 :: m a) = MplusSym1 a6989586621679337170

data MplusSym1 (a6989586621679337170 :: m a) :: (~>) (m a) (m a) Source #

Instances

Instances details
SMonadPlus m => SingI1 (MplusSym1 :: m a -> TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MplusSym1 x)

(SMonadPlus m, SingI d) => SingI (MplusSym1 d :: TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (MplusSym1 d)

SuppressUnusedWarnings (MplusSym1 a6989586621679337170 :: TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (MplusSym1 a6989586621679337170 :: TyFun (m a) (m a) -> Type) (a6989586621679337171 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (MplusSym1 a6989586621679337170 :: TyFun (m a) (m a) -> Type) (a6989586621679337171 :: m a) = Mplus a6989586621679337170 a6989586621679337171

type family MplusSym2 (a6989586621679337170 :: m a) (a6989586621679337171 :: m a) :: m a where ... Source #

Equations

MplusSym2 a6989586621679337170 a6989586621679337171 = Mplus a6989586621679337170 a6989586621679337171 

data MapMSym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m (t b))) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing MapMSym0

SuppressUnusedWarnings (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) (a6989586621680777182 :: a ~> m b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) (a6989586621680777182 :: a ~> m b) = MapMSym1 a6989586621680777182 :: TyFun (t a) (m (t b)) -> Type

data MapMSym1 (a6989586621680777182 :: (~>) a (m b)) :: (~>) (t a) (m (t b)) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI1 (MapMSym1 :: (a ~> m b) -> TyFun (t a) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapMSym1 x)

(STraversable t, SMonad m, SingI d) => SingI (MapMSym1 d :: TyFun (t a) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapMSym1 d)

SuppressUnusedWarnings (MapMSym1 a6989586621680777182 :: TyFun (t a) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym1 a6989586621680777182 :: TyFun (t a) (m (t b)) -> Type) (a6989586621680777183 :: t a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym1 a6989586621680777182 :: TyFun (t a) (m (t b)) -> Type) (a6989586621680777183 :: t a) = MapM a6989586621680777182 a6989586621680777183

type family MapMSym2 (a6989586621680777182 :: (~>) a (m b)) (a6989586621680777183 :: t a) :: m (t b) where ... Source #

Equations

MapMSym2 a6989586621680777182 a6989586621680777183 = MapM a6989586621680777182 a6989586621680777183 

data MapM_Sym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing MapM_Sym0

SuppressUnusedWarnings (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) (a6989586621680427168 :: a ~> m b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) (a6989586621680427168 :: a ~> m b) = MapM_Sym1 a6989586621680427168 :: TyFun (t a) (m ()) -> Type

data MapM_Sym1 (a6989586621680427168 :: (~>) a (m b)) :: (~>) (t a) (m ()) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI1 (MapM_Sym1 :: (a ~> m b) -> TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapM_Sym1 x)

(SFoldable t, SMonad m, SingI d) => SingI (MapM_Sym1 d :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MapM_Sym1 d)

SuppressUnusedWarnings (MapM_Sym1 a6989586621680427168 :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym1 a6989586621680427168 :: TyFun (t a) (m ()) -> Type) (a6989586621680427169 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym1 a6989586621680427168 :: TyFun (t a) (m ()) -> Type) (a6989586621680427169 :: t a) = MapM_ a6989586621680427168 a6989586621680427169

type family MapM_Sym2 (a6989586621680427168 :: (~>) a (m b)) (a6989586621680427169 :: t a) :: m () where ... Source #

Equations

MapM_Sym2 a6989586621680427168 a6989586621680427169 = MapM_ a6989586621680427168 a6989586621680427169 

data ForMSym0 :: (~>) (t a) ((~>) ((~>) a (m b)) (m (t b))) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI (ForMSym0 :: TyFun (t a) ((a ~> m b) ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing ForMSym0

SuppressUnusedWarnings (ForMSym0 :: TyFun (t a) ((a ~> m b) ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (ForMSym0 :: TyFun (t a) ((a ~> m b) ~> m (t b)) -> Type) (a6989586621680784607 :: t a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (ForMSym0 :: TyFun (t a) ((a ~> m b) ~> m (t b)) -> Type) (a6989586621680784607 :: t a) = ForMSym1 a6989586621680784607 :: TyFun (a ~> m b) (m (t b)) -> Type

data ForMSym1 (a6989586621680784607 :: t a) :: (~>) ((~>) a (m b)) (m (t b)) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI1 (ForMSym1 :: t a -> TyFun (a ~> m b) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ForMSym1 x)

(STraversable t, SMonad m, SingI d) => SingI (ForMSym1 d :: TyFun (a ~> m b) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (ForMSym1 d)

SuppressUnusedWarnings (ForMSym1 a6989586621680784607 :: TyFun (a ~> m b) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (ForMSym1 a6989586621680784607 :: TyFun (a ~> m b) (m (t b)) -> Type) (a6989586621680784608 :: a ~> m b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (ForMSym1 a6989586621680784607 :: TyFun (a ~> m b) (m (t b)) -> Type) (a6989586621680784608 :: a ~> m b) = ForM a6989586621680784607 a6989586621680784608

type family ForMSym2 (a6989586621680784607 :: t a) (a6989586621680784608 :: (~>) a (m b)) :: m (t b) where ... Source #

Equations

ForMSym2 a6989586621680784607 a6989586621680784608 = ForM a6989586621680784607 a6989586621680784608 

data SequenceSym0 :: (~>) (t (m a)) (m (t a)) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

SuppressUnusedWarnings (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) (a6989586621680777186 :: t (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) (a6989586621680777186 :: t (m a)) = Sequence a6989586621680777186

type family SequenceSym1 (a6989586621680777186 :: t (m a)) :: m (t a) where ... Source #

Equations

SequenceSym1 a6989586621680777186 = Sequence a6989586621680777186 

data Sequence_Sym0 :: (~>) (t (m a)) (m ()) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680427144 :: t (m a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680427144 :: t (m a)) = Sequence_ a6989586621680427144

type family Sequence_Sym1 (a6989586621680427144 :: t (m a)) :: m () where ... Source #

Equations

Sequence_Sym1 a6989586621680427144 = Sequence_ a6989586621680427144 

data (=<<@#@$) :: (~>) ((~>) a (m b)) ((~>) (m a) (m b)) infixr 1 Source #

Instances

Instances details
SMonad m => SingI ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (=<<@#@$)

SuppressUnusedWarnings ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) (a6989586621679336968 :: a ~> m b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) (a6989586621679336968 :: a ~> m b) = (=<<@#@$$) a6989586621679336968

data (=<<@#@$$) (a6989586621679336968 :: (~>) a (m b)) :: (~>) (m a) (m b) infixr 1 Source #

Instances

Instances details
SMonad m => SingI1 ((=<<@#@$$) :: (a ~> m b) -> TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((=<<@#@$$) x)

(SMonad m, SingI d) => SingI ((=<<@#@$$) d :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((=<<@#@$$) d)

SuppressUnusedWarnings ((=<<@#@$$) a6989586621679336968 :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$$) a6989586621679336968 :: TyFun (m a) (m b) -> Type) (a6989586621679336969 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$$) a6989586621679336968 :: TyFun (m a) (m b) -> Type) (a6989586621679336969 :: m a) = a6989586621679336968 =<< a6989586621679336969

type family (a6989586621679336968 :: (~>) a (m b)) =<<@#@$$$ (a6989586621679336969 :: m a) :: m b where ... infixr 1 Source #

Equations

a6989586621679336968 =<<@#@$$$ a6989586621679336969 = (=<<) a6989586621679336968 a6989586621679336969 

data (>=>@#@$) :: (~>) ((~>) a (m b)) ((~>) ((~>) b (m c)) ((~>) a (m c))) infixr 1 Source #

Instances

Instances details
SMonad m => SingI ((>=>@#@$) :: TyFun (a ~> m b) ((b ~> m c) ~> (a ~> m c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (>=>@#@$)

SuppressUnusedWarnings ((>=>@#@$) :: TyFun (a ~> m b) ((b ~> m c) ~> (a ~> m c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((>=>@#@$) :: TyFun (a ~> m b) ((b ~> m c) ~> (a ~> m c)) -> Type) (a6989586621681333053 :: a ~> m b) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((>=>@#@$) :: TyFun (a ~> m b) ((b ~> m c) ~> (a ~> m c)) -> Type) (a6989586621681333053 :: a ~> m b) = (>=>@#@$$) a6989586621681333053 :: TyFun (b ~> m c) (a ~> m c) -> Type

data (>=>@#@$$) (a6989586621681333053 :: (~>) a (m b)) :: (~>) ((~>) b (m c)) ((~>) a (m c)) infixr 1 Source #

Instances

Instances details
SMonad m => SingI1 ((>=>@#@$$) :: (a ~> m b) -> TyFun (b ~> m c) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((>=>@#@$$) x)

(SMonad m, SingI d) => SingI ((>=>@#@$$) d :: TyFun (b ~> m c) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing ((>=>@#@$$) d)

SuppressUnusedWarnings ((>=>@#@$$) a6989586621681333053 :: TyFun (b ~> m c) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((>=>@#@$$) a6989586621681333053 :: TyFun (b ~> m c) (a ~> m c) -> Type) (a6989586621681333054 :: b ~> m c) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((>=>@#@$$) a6989586621681333053 :: TyFun (b ~> m c) (a ~> m c) -> Type) (a6989586621681333054 :: b ~> m c) = a6989586621681333053 >=>@#@$$$ a6989586621681333054

data (a6989586621681333053 :: (~>) a (m b)) >=>@#@$$$ (a6989586621681333054 :: (~>) b (m c)) :: (~>) a (m c) infixr 1 Source #

Instances

Instances details
SMonad m => SingI2 ((>=>@#@$$$) :: (a ~> m b) -> (b ~> m c) -> TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (x >=>@#@$$$ y)

(SMonad m, SingI d) => SingI1 ((>=>@#@$$$) d :: (b ~> m c) -> TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (d >=>@#@$$$ x)

(SMonad m, SingI d1, SingI d2) => SingI (d1 >=>@#@$$$ d2 :: TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (d1 >=>@#@$$$ d2)

SuppressUnusedWarnings (a6989586621681333053 >=>@#@$$$ a6989586621681333054 :: TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (a6989586621681333053 >=>@#@$$$ a6989586621681333054 :: TyFun a (m c) -> Type) (a6989586621681333055 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (a6989586621681333053 >=>@#@$$$ a6989586621681333054 :: TyFun a (m c) -> Type) (a6989586621681333055 :: a) = (a6989586621681333053 >=> a6989586621681333054) a6989586621681333055

data (<=<@#@$) :: (~>) ((~>) b (m c)) ((~>) ((~>) a (m b)) ((~>) a (m c))) infixr 1 Source #

Instances

Instances details
SMonad m => SingI ((<=<@#@$) :: TyFun (b ~> m c) ((a ~> m b) ~> (a ~> m c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (<=<@#@$)

SuppressUnusedWarnings ((<=<@#@$) :: TyFun (b ~> m c) ((a ~> m b) ~> (a ~> m c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<=<@#@$) :: TyFun (b ~> m c) ((a ~> m b) ~> (a ~> m c)) -> Type) (a6989586621681333041 :: b ~> m c) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<=<@#@$) :: TyFun (b ~> m c) ((a ~> m b) ~> (a ~> m c)) -> Type) (a6989586621681333041 :: b ~> m c) = (<=<@#@$$) a6989586621681333041 :: TyFun (a ~> m b) (a ~> m c) -> Type

data (<=<@#@$$) (a6989586621681333041 :: (~>) b (m c)) :: (~>) ((~>) a (m b)) ((~>) a (m c)) infixr 1 Source #

Instances

Instances details
SMonad m => SingI1 ((<=<@#@$$) :: (b ~> m c) -> TyFun (a ~> m b) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<=<@#@$$) x)

(SMonad m, SingI d) => SingI ((<=<@#@$$) d :: TyFun (a ~> m b) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing ((<=<@#@$$) d)

SuppressUnusedWarnings ((<=<@#@$$) a6989586621681333041 :: TyFun (a ~> m b) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<=<@#@$$) a6989586621681333041 :: TyFun (a ~> m b) (a ~> m c) -> Type) (a6989586621681333042 :: a ~> m b) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<=<@#@$$) a6989586621681333041 :: TyFun (a ~> m b) (a ~> m c) -> Type) (a6989586621681333042 :: a ~> m b) = a6989586621681333041 <=<@#@$$$ a6989586621681333042

data (a6989586621681333041 :: (~>) b (m c)) <=<@#@$$$ (a6989586621681333042 :: (~>) a (m b)) :: (~>) a (m c) infixr 1 Source #

Instances

Instances details
SMonad m => SingI2 ((<=<@#@$$$) :: (b ~> m c) -> (a ~> m b) -> TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (x <=<@#@$$$ y)

(SMonad m, SingI d) => SingI1 ((<=<@#@$$$) d :: (a ~> m b) -> TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (d <=<@#@$$$ x)

(SMonad m, SingI d1, SingI d2) => SingI (d1 <=<@#@$$$ d2 :: TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (d1 <=<@#@$$$ d2)

SuppressUnusedWarnings (a6989586621681333041 <=<@#@$$$ a6989586621681333042 :: TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (a6989586621681333041 <=<@#@$$$ a6989586621681333042 :: TyFun a (m c) -> Type) (a6989586621681333043 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (a6989586621681333041 <=<@#@$$$ a6989586621681333042 :: TyFun a (m c) -> Type) (a6989586621681333043 :: a) = (a6989586621681333041 <=< a6989586621681333042) a6989586621681333043

data VoidSym0 :: (~>) (f a) (f ()) Source #

Instances

Instances details
SFunctor f => SingI (VoidSym0 :: TyFun (f a) (f ()) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sing :: Sing VoidSym0

SuppressUnusedWarnings (VoidSym0 :: TyFun (f a) (f ()) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply (VoidSym0 :: TyFun (f a) (f ()) -> Type) (a6989586621679523991 :: f a) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply (VoidSym0 :: TyFun (f a) (f ()) -> Type) (a6989586621679523991 :: f a) = Void a6989586621679523991

type family VoidSym1 (a6989586621679523991 :: f a) :: f () where ... Source #

Equations

VoidSym1 a6989586621679523991 = Void a6989586621679523991 

data JoinSym0 :: (~>) (m (m a)) (m a) Source #

Instances

Instances details
SMonad m => SingI (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing JoinSym0

SuppressUnusedWarnings (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) (a6989586621679336974 :: m (m a)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) (a6989586621679336974 :: m (m a)) = Join a6989586621679336974

type family JoinSym1 (a6989586621679336974 :: m (m a)) :: m a where ... Source #

Equations

JoinSym1 a6989586621679336974 = Join a6989586621679336974 

data MsumSym0 :: (~>) (t (m a)) (m a) Source #

Instances

Instances details
(SFoldable t, SMonadPlus m) => SingI (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing MsumSym0

SuppressUnusedWarnings (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680427132 :: t (m a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680427132 :: t (m a)) = Msum a6989586621680427132

type family MsumSym1 (a6989586621680427132 :: t (m a)) :: m a where ... Source #

Equations

MsumSym1 a6989586621680427132 = Msum a6989586621680427132 

data MfilterSym0 :: (~>) ((~>) a Bool) ((~>) (m a) (m a)) Source #

Instances

Instances details
SMonadPlus m => SingI (MfilterSym0 :: TyFun (a ~> Bool) (m a ~> m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

SuppressUnusedWarnings (MfilterSym0 :: TyFun (a ~> Bool) (m a ~> m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MfilterSym0 :: TyFun (a ~> Bool) (m a ~> m a) -> Type) (a6989586621681332906 :: a ~> Bool) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MfilterSym0 :: TyFun (a ~> Bool) (m a ~> m a) -> Type) (a6989586621681332906 :: a ~> Bool) = MfilterSym1 a6989586621681332906 :: TyFun (m a) (m a) -> Type

data MfilterSym1 (a6989586621681332906 :: (~>) a Bool) :: (~>) (m a) (m a) Source #

Instances

Instances details
SMonadPlus m => SingI1 (MfilterSym1 :: (a ~> Bool) -> TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MfilterSym1 x)

(SMonadPlus m, SingI d) => SingI (MfilterSym1 d :: TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (MfilterSym1 d)

SuppressUnusedWarnings (MfilterSym1 a6989586621681332906 :: TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MfilterSym1 a6989586621681332906 :: TyFun (m a) (m a) -> Type) (a6989586621681332907 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MfilterSym1 a6989586621681332906 :: TyFun (m a) (m a) -> Type) (a6989586621681332907 :: m a) = Mfilter a6989586621681332906 a6989586621681332907

type family MfilterSym2 (a6989586621681332906 :: (~>) a Bool) (a6989586621681332907 :: m a) :: m a where ... Source #

Equations

MfilterSym2 a6989586621681332906 a6989586621681332907 = Mfilter a6989586621681332906 a6989586621681332907 

data FilterMSym0 :: (~>) ((~>) a (m Bool)) ((~>) [a] (m [a])) Source #

Instances

Instances details
SApplicative m => SingI (FilterMSym0 :: TyFun (a ~> m Bool) ([a] ~> m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

SuppressUnusedWarnings (FilterMSym0 :: TyFun (a ~> m Bool) ([a] ~> m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (FilterMSym0 :: TyFun (a ~> m Bool) ([a] ~> m [a]) -> Type) (a6989586621681333068 :: a ~> m Bool) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (FilterMSym0 :: TyFun (a ~> m Bool) ([a] ~> m [a]) -> Type) (a6989586621681333068 :: a ~> m Bool) = FilterMSym1 a6989586621681333068

data FilterMSym1 (a6989586621681333068 :: (~>) a (m Bool)) :: (~>) [a] (m [a]) Source #

Instances

Instances details
SApplicative m => SingI1 (FilterMSym1 :: (a ~> m Bool) -> TyFun [a] (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FilterMSym1 x)

(SApplicative m, SingI d) => SingI (FilterMSym1 d :: TyFun [a] (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (FilterMSym1 d)

SuppressUnusedWarnings (FilterMSym1 a6989586621681333068 :: TyFun [a] (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (FilterMSym1 a6989586621681333068 :: TyFun [a] (m [a]) -> Type) (a6989586621681333069 :: [a]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (FilterMSym1 a6989586621681333068 :: TyFun [a] (m [a]) -> Type) (a6989586621681333069 :: [a]) = FilterM a6989586621681333068 a6989586621681333069

type family FilterMSym2 (a6989586621681333068 :: (~>) a (m Bool)) (a6989586621681333069 :: [a]) :: m [a] where ... Source #

Equations

FilterMSym2 a6989586621681333068 a6989586621681333069 = FilterM a6989586621681333068 a6989586621681333069 

data MapAndUnzipMSym0 :: (~>) ((~>) a (m (b, c))) ((~>) [a] (m ([b], [c]))) Source #

Instances

Instances details
SApplicative m => SingI (MapAndUnzipMSym0 :: TyFun (a ~> m (b, c)) ([a] ~> m ([b], [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

SuppressUnusedWarnings (MapAndUnzipMSym0 :: TyFun (a ~> m (b, c)) ([a] ~> m ([b], [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MapAndUnzipMSym0 :: TyFun (a ~> m (b, c)) ([a] ~> m ([b], [c])) -> Type) (a6989586621681333027 :: a ~> m (b, c)) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MapAndUnzipMSym0 :: TyFun (a ~> m (b, c)) ([a] ~> m ([b], [c])) -> Type) (a6989586621681333027 :: a ~> m (b, c)) = MapAndUnzipMSym1 a6989586621681333027

data MapAndUnzipMSym1 (a6989586621681333027 :: (~>) a (m (b, c))) :: (~>) [a] (m ([b], [c])) Source #

Instances

Instances details
SApplicative m => SingI1 (MapAndUnzipMSym1 :: (a ~> m (b, c)) -> TyFun [a] (m ([b], [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapAndUnzipMSym1 x)

(SApplicative m, SingI d) => SingI (MapAndUnzipMSym1 d :: TyFun [a] (m ([b], [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (MapAndUnzipMSym1 d)

SuppressUnusedWarnings (MapAndUnzipMSym1 a6989586621681333027 :: TyFun [a] (m ([b], [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MapAndUnzipMSym1 a6989586621681333027 :: TyFun [a] (m ([b], [c])) -> Type) (a6989586621681333028 :: [a]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MapAndUnzipMSym1 a6989586621681333027 :: TyFun [a] (m ([b], [c])) -> Type) (a6989586621681333028 :: [a]) = MapAndUnzipM a6989586621681333027 a6989586621681333028

type family MapAndUnzipMSym2 (a6989586621681333027 :: (~>) a (m (b, c))) (a6989586621681333028 :: [a]) :: m ([b], [c]) where ... Source #

Equations

MapAndUnzipMSym2 a6989586621681333027 a6989586621681333028 = MapAndUnzipM a6989586621681333027 a6989586621681333028 

data ZipWithMSym0 :: (~>) ((~>) a ((~>) b (m c))) ((~>) [a] ((~>) [b] (m [c]))) Source #

Instances

Instances details
SApplicative m => SingI (ZipWithMSym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

SuppressUnusedWarnings (ZipWithMSym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m [c])) -> Type) (a6989586621681333018 :: a ~> (b ~> m c)) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m [c])) -> Type) (a6989586621681333018 :: a ~> (b ~> m c)) = ZipWithMSym1 a6989586621681333018

data ZipWithMSym1 (a6989586621681333018 :: (~>) a ((~>) b (m c))) :: (~>) [a] ((~>) [b] (m [c])) Source #

Instances

Instances details
SApplicative m => SingI1 (ZipWithMSym1 :: (a ~> (b ~> m c)) -> TyFun [a] ([b] ~> m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithMSym1 x)

(SApplicative m, SingI d) => SingI (ZipWithMSym1 d :: TyFun [a] ([b] ~> m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ZipWithMSym1 d)

SuppressUnusedWarnings (ZipWithMSym1 a6989586621681333018 :: TyFun [a] ([b] ~> m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym1 a6989586621681333018 :: TyFun [a] ([b] ~> m [c]) -> Type) (a6989586621681333019 :: [a]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym1 a6989586621681333018 :: TyFun [a] ([b] ~> m [c]) -> Type) (a6989586621681333019 :: [a]) = ZipWithMSym2 a6989586621681333018 a6989586621681333019

data ZipWithMSym2 (a6989586621681333018 :: (~>) a ((~>) b (m c))) (a6989586621681333019 :: [a]) :: (~>) [b] (m [c]) Source #

Instances

Instances details
(SApplicative m, SingI d) => SingI1 (ZipWithMSym2 d :: [a] -> TyFun [b] (m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithMSym2 d x)

SApplicative m => SingI2 (ZipWithMSym2 :: (a ~> (b ~> m c)) -> [a] -> TyFun [b] (m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWithMSym2 x y)

(SApplicative m, SingI d1, SingI d2) => SingI (ZipWithMSym2 d1 d2 :: TyFun [b] (m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ZipWithMSym2 d1 d2)

SuppressUnusedWarnings (ZipWithMSym2 a6989586621681333018 a6989586621681333019 :: TyFun [b] (m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym2 a6989586621681333018 a6989586621681333019 :: TyFun [b] (m [c]) -> Type) (a6989586621681333020 :: [b]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym2 a6989586621681333018 a6989586621681333019 :: TyFun [b] (m [c]) -> Type) (a6989586621681333020 :: [b]) = ZipWithM a6989586621681333018 a6989586621681333019 a6989586621681333020

type family ZipWithMSym3 (a6989586621681333018 :: (~>) a ((~>) b (m c))) (a6989586621681333019 :: [a]) (a6989586621681333020 :: [b]) :: m [c] where ... Source #

Equations

ZipWithMSym3 a6989586621681333018 a6989586621681333019 a6989586621681333020 = ZipWithM a6989586621681333018 a6989586621681333019 a6989586621681333020 

data ZipWithM_Sym0 :: (~>) ((~>) a ((~>) b (m c))) ((~>) [a] ((~>) [b] (m ()))) Source #

Instances

Instances details
SApplicative m => SingI (ZipWithM_Sym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m ())) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

SuppressUnusedWarnings (ZipWithM_Sym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m ())) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m ())) -> Type) (a6989586621681333008 :: a ~> (b ~> m c)) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m ())) -> Type) (a6989586621681333008 :: a ~> (b ~> m c)) = ZipWithM_Sym1 a6989586621681333008

data ZipWithM_Sym1 (a6989586621681333008 :: (~>) a ((~>) b (m c))) :: (~>) [a] ((~>) [b] (m ())) Source #

Instances

Instances details
SApplicative m => SingI1 (ZipWithM_Sym1 :: (a ~> (b ~> m c)) -> TyFun [a] ([b] ~> m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithM_Sym1 x)

(SApplicative m, SingI d) => SingI (ZipWithM_Sym1 d :: TyFun [a] ([b] ~> m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ZipWithM_Sym1 d)

SuppressUnusedWarnings (ZipWithM_Sym1 a6989586621681333008 :: TyFun [a] ([b] ~> m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym1 a6989586621681333008 :: TyFun [a] ([b] ~> m ()) -> Type) (a6989586621681333009 :: [a]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym1 a6989586621681333008 :: TyFun [a] ([b] ~> m ()) -> Type) (a6989586621681333009 :: [a]) = ZipWithM_Sym2 a6989586621681333008 a6989586621681333009

data ZipWithM_Sym2 (a6989586621681333008 :: (~>) a ((~>) b (m c))) (a6989586621681333009 :: [a]) :: (~>) [b] (m ()) Source #

Instances

Instances details
(SApplicative m, SingI d) => SingI1 (ZipWithM_Sym2 d :: [a] -> TyFun [b] (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithM_Sym2 d x)

SApplicative m => SingI2 (ZipWithM_Sym2 :: (a ~> (b ~> m c)) -> [a] -> TyFun [b] (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWithM_Sym2 x y)

(SApplicative m, SingI d1, SingI d2) => SingI (ZipWithM_Sym2 d1 d2 :: TyFun [b] (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ZipWithM_Sym2 d1 d2)

SuppressUnusedWarnings (ZipWithM_Sym2 a6989586621681333008 a6989586621681333009 :: TyFun [b] (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym2 a6989586621681333008 a6989586621681333009 :: TyFun [b] (m ()) -> Type) (a6989586621681333010 :: [b]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym2 a6989586621681333008 a6989586621681333009 :: TyFun [b] (m ()) -> Type) (a6989586621681333010 :: [b]) = ZipWithM_ a6989586621681333008 a6989586621681333009 a6989586621681333010

type family ZipWithM_Sym3 (a6989586621681333008 :: (~>) a ((~>) b (m c))) (a6989586621681333009 :: [a]) (a6989586621681333010 :: [b]) :: m () where ... Source #

Equations

ZipWithM_Sym3 a6989586621681333008 a6989586621681333009 a6989586621681333010 = ZipWithM_ a6989586621681333008 a6989586621681333009 a6989586621681333010 

data FoldlMSym0 :: (~>) ((~>) b ((~>) a (m b))) ((~>) b ((~>) (t a) (m b))) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing FoldlMSym0

SuppressUnusedWarnings (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) (a6989586621680427196 :: b ~> (a ~> m b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) (a6989586621680427196 :: b ~> (a ~> m b)) = FoldlMSym1 a6989586621680427196 :: TyFun b (t a ~> m b) -> Type

data FoldlMSym1 (a6989586621680427196 :: (~>) b ((~>) a (m b))) :: (~>) b ((~>) (t a) (m b)) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI1 (FoldlMSym1 :: (b ~> (a ~> m b)) -> TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldlMSym1 x)

(SFoldable t, SMonad m, SingI d) => SingI (FoldlMSym1 d :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlMSym1 d)

SuppressUnusedWarnings (FoldlMSym1 a6989586621680427196 :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym1 a6989586621680427196 :: TyFun b (t a ~> m b) -> Type) (a6989586621680427197 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym1 a6989586621680427196 :: TyFun b (t a ~> m b) -> Type) (a6989586621680427197 :: b) = FoldlMSym2 a6989586621680427196 a6989586621680427197 :: TyFun (t a) (m b) -> Type

data FoldlMSym2 (a6989586621680427196 :: (~>) b ((~>) a (m b))) (a6989586621680427197 :: b) :: (~>) (t a) (m b) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI1 (FoldlMSym2 d :: b -> TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldlMSym2 d x)

(SFoldable t, SMonad m) => SingI2 (FoldlMSym2 :: (b ~> (a ~> m b)) -> b -> TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (FoldlMSym2 x y)

(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldlMSym2 d1 d2 :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlMSym2 d1 d2)

SuppressUnusedWarnings (FoldlMSym2 a6989586621680427196 a6989586621680427197 :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym2 a6989586621680427196 a6989586621680427197 :: TyFun (t a) (m b) -> Type) (a6989586621680427198 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym2 a6989586621680427196 a6989586621680427197 :: TyFun (t a) (m b) -> Type) (a6989586621680427198 :: t a) = FoldlM a6989586621680427196 a6989586621680427197 a6989586621680427198

type family FoldlMSym3 (a6989586621680427196 :: (~>) b ((~>) a (m b))) (a6989586621680427197 :: b) (a6989586621680427198 :: t a) :: m b where ... Source #

Equations

FoldlMSym3 a6989586621680427196 a6989586621680427197 a6989586621680427198 = FoldlM a6989586621680427196 a6989586621680427197 a6989586621680427198 

data ReplicateMSym0 :: (~>) Natural ((~>) (m a) (m [a])) Source #

Instances

Instances details
SApplicative m => SingI (ReplicateMSym0 :: TyFun Natural (m a ~> m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

SuppressUnusedWarnings (ReplicateMSym0 :: TyFun Natural (m a ~> m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateMSym0 :: TyFun Natural (m a ~> m [a]) -> Type) (a6989586621681332963 :: Natural) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateMSym0 :: TyFun Natural (m a ~> m [a]) -> Type) (a6989586621681332963 :: Natural) = ReplicateMSym1 a6989586621681332963 :: TyFun (m a) (m [a]) -> Type

data ReplicateMSym1 (a6989586621681332963 :: Natural) :: (~>) (m a) (m [a]) Source #

Instances

Instances details
SApplicative m => SingI1 (ReplicateMSym1 :: Natural -> TyFun (m a) (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ReplicateMSym1 x)

(SApplicative m, SingI d) => SingI (ReplicateMSym1 d :: TyFun (m a) (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ReplicateMSym1 d)

SuppressUnusedWarnings (ReplicateMSym1 a6989586621681332963 :: TyFun (m a) (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateMSym1 a6989586621681332963 :: TyFun (m a) (m [a]) -> Type) (a6989586621681332964 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateMSym1 a6989586621681332963 :: TyFun (m a) (m [a]) -> Type) (a6989586621681332964 :: m a) = ReplicateM a6989586621681332963 a6989586621681332964

type family ReplicateMSym2 (a6989586621681332963 :: Natural) (a6989586621681332964 :: m a) :: m [a] where ... Source #

Equations

ReplicateMSym2 a6989586621681332963 a6989586621681332964 = ReplicateM a6989586621681332963 a6989586621681332964 

data ReplicateM_Sym0 :: (~>) Natural ((~>) (m a) (m ())) Source #

Instances

Instances details
SApplicative m => SingI (ReplicateM_Sym0 :: TyFun Natural (m a ~> m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

SuppressUnusedWarnings (ReplicateM_Sym0 :: TyFun Natural (m a ~> m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateM_Sym0 :: TyFun Natural (m a ~> m ()) -> Type) (a6989586621681332945 :: Natural) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateM_Sym0 :: TyFun Natural (m a ~> m ()) -> Type) (a6989586621681332945 :: Natural) = ReplicateM_Sym1 a6989586621681332945 :: TyFun (m a) (m ()) -> Type

data ReplicateM_Sym1 (a6989586621681332945 :: Natural) :: (~>) (m a) (m ()) Source #

Instances

Instances details
SApplicative m => SingI1 (ReplicateM_Sym1 :: Natural -> TyFun (m a) (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ReplicateM_Sym1 x)

(SApplicative m, SingI d) => SingI (ReplicateM_Sym1 d :: TyFun (m a) (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ReplicateM_Sym1 d)

SuppressUnusedWarnings (ReplicateM_Sym1 a6989586621681332945 :: TyFun (m a) (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateM_Sym1 a6989586621681332945 :: TyFun (m a) (m ()) -> Type) (a6989586621681332946 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateM_Sym1 a6989586621681332945 :: TyFun (m a) (m ()) -> Type) (a6989586621681332946 :: m a) = ReplicateM_ a6989586621681332945 a6989586621681332946

type family ReplicateM_Sym2 (a6989586621681332945 :: Natural) (a6989586621681332946 :: m a) :: m () where ... Source #

Equations

ReplicateM_Sym2 a6989586621681332945 a6989586621681332946 = ReplicateM_ a6989586621681332945 a6989586621681332946 

data GuardSym0 :: (~>) Bool (f ()) Source #

Instances

Instances details
SAlternative f => SingI (GuardSym0 :: TyFun Bool (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing GuardSym0

SuppressUnusedWarnings (GuardSym0 :: TyFun Bool (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (GuardSym0 :: TyFun Bool (f ()) -> Type) (a6989586621679336814 :: Bool) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (GuardSym0 :: TyFun Bool (f ()) -> Type) (a6989586621679336814 :: Bool) = Guard a6989586621679336814 :: f ()

type family GuardSym1 (a6989586621679336814 :: Bool) :: f () where ... Source #

Equations

GuardSym1 a6989586621679336814 = Guard a6989586621679336814 

data WhenSym0 :: (~>) Bool ((~>) (f ()) (f ())) Source #

Instances

Instances details
SApplicative f => SingI (WhenSym0 :: TyFun Bool (f () ~> f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing WhenSym0

SuppressUnusedWarnings (WhenSym0 :: TyFun Bool (f () ~> f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (WhenSym0 :: TyFun Bool (f () ~> f ()) -> Type) (a6989586621679336958 :: Bool) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (WhenSym0 :: TyFun Bool (f () ~> f ()) -> Type) (a6989586621679336958 :: Bool) = WhenSym1 a6989586621679336958 :: TyFun (f ()) (f ()) -> Type

data WhenSym1 (a6989586621679336958 :: Bool) :: (~>) (f ()) (f ()) Source #

Instances

Instances details
SApplicative f => SingI1 (WhenSym1 :: Bool -> TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (WhenSym1 x)

(SApplicative f, SingI d) => SingI (WhenSym1 d :: TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (WhenSym1 d)

SuppressUnusedWarnings (WhenSym1 a6989586621679336958 :: TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (WhenSym1 a6989586621679336958 :: TyFun (f ()) (f ()) -> Type) (a6989586621679336959 :: f ()) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (WhenSym1 a6989586621679336958 :: TyFun (f ()) (f ()) -> Type) (a6989586621679336959 :: f ()) = When a6989586621679336958 a6989586621679336959

type family WhenSym2 (a6989586621679336958 :: Bool) (a6989586621679336959 :: f ()) :: f () where ... Source #

Equations

WhenSym2 a6989586621679336958 a6989586621679336959 = When a6989586621679336958 a6989586621679336959 

data UnlessSym0 :: (~>) Bool ((~>) (f ()) (f ())) Source #

Instances

Instances details
SApplicative f => SingI (UnlessSym0 :: TyFun Bool (f () ~> f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing UnlessSym0

SuppressUnusedWarnings (UnlessSym0 :: TyFun Bool (f () ~> f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (UnlessSym0 :: TyFun Bool (f () ~> f ()) -> Type) (a6989586621681332935 :: Bool) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (UnlessSym0 :: TyFun Bool (f () ~> f ()) -> Type) (a6989586621681332935 :: Bool) = UnlessSym1 a6989586621681332935 :: TyFun (f ()) (f ()) -> Type

data UnlessSym1 (a6989586621681332935 :: Bool) :: (~>) (f ()) (f ()) Source #

Instances

Instances details
SApplicative f => SingI1 (UnlessSym1 :: Bool -> TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UnlessSym1 x)

(SApplicative f, SingI d) => SingI (UnlessSym1 d :: TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (UnlessSym1 d)

SuppressUnusedWarnings (UnlessSym1 a6989586621681332935 :: TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (UnlessSym1 a6989586621681332935 :: TyFun (f ()) (f ()) -> Type) (a6989586621681332936 :: f ()) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (UnlessSym1 a6989586621681332935 :: TyFun (f ()) (f ()) -> Type) (a6989586621681332936 :: f ()) = Unless a6989586621681332935 a6989586621681332936

type family UnlessSym2 (a6989586621681332935 :: Bool) (a6989586621681332936 :: f ()) :: f () where ... Source #

Equations

UnlessSym2 a6989586621681332935 a6989586621681332936 = Unless a6989586621681332935 a6989586621681332936 

data LiftMSym0 :: (~>) ((~>) a1 r) ((~>) (m a1) (m r)) Source #

Instances

Instances details
SMonad m => SingI (LiftMSym0 :: TyFun (a1 ~> r) (m a1 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing LiftMSym0

SuppressUnusedWarnings (LiftMSym0 :: TyFun (a1 ~> r) (m a1 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftMSym0 :: TyFun (a1 ~> r) (m a1 ~> m r) -> Type) (a6989586621679336947 :: a1 ~> r) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftMSym0 :: TyFun (a1 ~> r) (m a1 ~> m r) -> Type) (a6989586621679336947 :: a1 ~> r) = LiftMSym1 a6989586621679336947 :: TyFun (m a1) (m r) -> Type

data LiftMSym1 (a6989586621679336947 :: (~>) a1 r) :: (~>) (m a1) (m r) Source #

Instances

Instances details
SMonad m => SingI1 (LiftMSym1 :: (a1 ~> r) -> TyFun (m a1) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftMSym1 x)

(SMonad m, SingI d) => SingI (LiftMSym1 d :: TyFun (m a1) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftMSym1 d)

SuppressUnusedWarnings (LiftMSym1 a6989586621679336947 :: TyFun (m a1) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftMSym1 a6989586621679336947 :: TyFun (m a1) (m r) -> Type) (a6989586621679336948 :: m a1) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftMSym1 a6989586621679336947 :: TyFun (m a1) (m r) -> Type) (a6989586621679336948 :: m a1) = LiftM a6989586621679336947 a6989586621679336948

type family LiftMSym2 (a6989586621679336947 :: (~>) a1 r) (a6989586621679336948 :: m a1) :: m r where ... Source #

Equations

LiftMSym2 a6989586621679336947 a6989586621679336948 = LiftM a6989586621679336947 a6989586621679336948 

data LiftM2Sym0 :: (~>) ((~>) a1 ((~>) a2 r)) ((~>) (m a1) ((~>) (m a2) (m r))) Source #

Instances

Instances details
SMonad m => SingI (LiftM2Sym0 :: TyFun (a1 ~> (a2 ~> r)) (m a1 ~> (m a2 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing LiftM2Sym0

SuppressUnusedWarnings (LiftM2Sym0 :: TyFun (a1 ~> (a2 ~> r)) (m a1 ~> (m a2 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym0 :: TyFun (a1 ~> (a2 ~> r)) (m a1 ~> (m a2 ~> m r)) -> Type) (a6989586621679336930 :: a1 ~> (a2 ~> r)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym0 :: TyFun (a1 ~> (a2 ~> r)) (m a1 ~> (m a2 ~> m r)) -> Type) (a6989586621679336930 :: a1 ~> (a2 ~> r)) = LiftM2Sym1 a6989586621679336930 :: TyFun (m a1) (m a2 ~> m r) -> Type

data LiftM2Sym1 (a6989586621679336930 :: (~>) a1 ((~>) a2 r)) :: (~>) (m a1) ((~>) (m a2) (m r)) Source #

Instances

Instances details
SMonad m => SingI1 (LiftM2Sym1 :: (a1 ~> (a2 ~> r)) -> TyFun (m a1) (m a2 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM2Sym1 x)

(SMonad m, SingI d) => SingI (LiftM2Sym1 d :: TyFun (m a1) (m a2 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM2Sym1 d)

SuppressUnusedWarnings (LiftM2Sym1 a6989586621679336930 :: TyFun (m a1) (m a2 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym1 a6989586621679336930 :: TyFun (m a1) (m a2 ~> m r) -> Type) (a6989586621679336931 :: m a1) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym1 a6989586621679336930 :: TyFun (m a1) (m a2 ~> m r) -> Type) (a6989586621679336931 :: m a1) = LiftM2Sym2 a6989586621679336930 a6989586621679336931

data LiftM2Sym2 (a6989586621679336930 :: (~>) a1 ((~>) a2 r)) (a6989586621679336931 :: m a1) :: (~>) (m a2) (m r) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI1 (LiftM2Sym2 d :: m a1 -> TyFun (m a2) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM2Sym2 d x)

SMonad m => SingI2 (LiftM2Sym2 :: (a1 ~> (a2 ~> r)) -> m a1 -> TyFun (m a2) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftM2Sym2 x y)

(SMonad m, SingI d1, SingI d2) => SingI (LiftM2Sym2 d1 d2 :: TyFun (m a2) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM2Sym2 d1 d2)

SuppressUnusedWarnings (LiftM2Sym2 a6989586621679336930 a6989586621679336931 :: TyFun (m a2) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym2 a6989586621679336930 a6989586621679336931 :: TyFun (m a2) (m r) -> Type) (a6989586621679336932 :: m a2) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym2 a6989586621679336930 a6989586621679336931 :: TyFun (m a2) (m r) -> Type) (a6989586621679336932 :: m a2) = LiftM2 a6989586621679336930 a6989586621679336931 a6989586621679336932

type family LiftM2Sym3 (a6989586621679336930 :: (~>) a1 ((~>) a2 r)) (a6989586621679336931 :: m a1) (a6989586621679336932 :: m a2) :: m r where ... Source #

Equations

LiftM2Sym3 a6989586621679336930 a6989586621679336931 a6989586621679336932 = LiftM2 a6989586621679336930 a6989586621679336931 a6989586621679336932 

data LiftM3Sym0 :: (~>) ((~>) a1 ((~>) a2 ((~>) a3 r))) ((~>) (m a1) ((~>) (m a2) ((~>) (m a3) (m r)))) Source #

Instances

Instances details
SMonad m => SingI (LiftM3Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> r))) (m a1 ~> (m a2 ~> (m a3 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing LiftM3Sym0

SuppressUnusedWarnings (LiftM3Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> r))) (m a1 ~> (m a2 ~> (m a3 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> r))) (m a1 ~> (m a2 ~> (m a3 ~> m r))) -> Type) (a6989586621679336906 :: a1 ~> (a2 ~> (a3 ~> r))) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> r))) (m a1 ~> (m a2 ~> (m a3 ~> m r))) -> Type) (a6989586621679336906 :: a1 ~> (a2 ~> (a3 ~> r))) = LiftM3Sym1 a6989586621679336906 :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type

data LiftM3Sym1 (a6989586621679336906 :: (~>) a1 ((~>) a2 ((~>) a3 r))) :: (~>) (m a1) ((~>) (m a2) ((~>) (m a3) (m r))) Source #

Instances

Instances details
SMonad m => SingI1 (LiftM3Sym1 :: (a1 ~> (a2 ~> (a3 ~> r))) -> TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM3Sym1 x)

(SMonad m, SingI d) => SingI (LiftM3Sym1 d :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM3Sym1 d)

SuppressUnusedWarnings (LiftM3Sym1 a6989586621679336906 :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym1 a6989586621679336906 :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) (a6989586621679336907 :: m a1) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym1 a6989586621679336906 :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) (a6989586621679336907 :: m a1) = LiftM3Sym2 a6989586621679336906 a6989586621679336907

data LiftM3Sym2 (a6989586621679336906 :: (~>) a1 ((~>) a2 ((~>) a3 r))) (a6989586621679336907 :: m a1) :: (~>) (m a2) ((~>) (m a3) (m r)) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI1 (LiftM3Sym2 d :: m a1 -> TyFun (m a2) (m a3 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM3Sym2 d x)

SMonad m => SingI2 (LiftM3Sym2 :: (a1 ~> (a2 ~> (a3 ~> r))) -> m a1 -> TyFun (m a2) (m a3 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftM3Sym2 x y)

(SMonad m, SingI d1, SingI d2) => SingI (LiftM3Sym2 d1 d2 :: TyFun (m a2) (m a3 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM3Sym2 d1 d2)

SuppressUnusedWarnings (LiftM3Sym2 a6989586621679336906 a6989586621679336907 :: TyFun (m a2) (m a3 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym2 a6989586621679336906 a6989586621679336907 :: TyFun (m a2) (m a3 ~> m r) -> Type) (a6989586621679336908 :: m a2) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym2 a6989586621679336906 a6989586621679336907 :: TyFun (m a2) (m a3 ~> m r) -> Type) (a6989586621679336908 :: m a2) = LiftM3Sym3 a6989586621679336906 a6989586621679336907 a6989586621679336908

data LiftM3Sym3 (a6989586621679336906 :: (~>) a1 ((~>) a2 ((~>) a3 r))) (a6989586621679336907 :: m a1) (a6989586621679336908 :: m a2) :: (~>) (m a3) (m r) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI2 (LiftM3Sym3 d :: m a1 -> m a2 -> TyFun (m a3) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftM3Sym3 d x y)

(SMonad m, SingI d1, SingI d2) => SingI1 (LiftM3Sym3 d1 d2 :: m a2 -> TyFun (m a3) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM3Sym3 d1 d2 x)

(SMonad m, SingI d1, SingI d2, SingI d3) => SingI (LiftM3Sym3 d1 d2 d3 :: TyFun (m a3) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM3Sym3 d1 d2 d3)

SuppressUnusedWarnings (LiftM3Sym3 a6989586621679336906 a6989586621679336907 a6989586621679336908 :: TyFun (m a3) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym3 a6989586621679336906 a6989586621679336907 a6989586621679336908 :: TyFun (m a3) (m r) -> Type) (a6989586621679336909 :: m a3) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym3 a6989586621679336906 a6989586621679336907 a6989586621679336908 :: TyFun (m a3) (m r) -> Type) (a6989586621679336909 :: m a3) = LiftM3 a6989586621679336906 a6989586621679336907 a6989586621679336908 a6989586621679336909

type family LiftM3Sym4 (a6989586621679336906 :: (~>) a1 ((~>) a2 ((~>) a3 r))) (a6989586621679336907 :: m a1) (a6989586621679336908 :: m a2) (a6989586621679336909 :: m a3) :: m r where ... Source #

Equations

LiftM3Sym4 a6989586621679336906 a6989586621679336907 a6989586621679336908 a6989586621679336909 = LiftM3 a6989586621679336906 a6989586621679336907 a6989586621679336908 a6989586621679336909 

data LiftM4Sym0 :: (~>) ((~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) ((~>) (m a1) ((~>) (m a2) ((~>) (m a3) ((~>) (m a4) (m r))))) Source #

Instances

Instances details
SMonad m => SingI (LiftM4Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> m r)))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing LiftM4Sym0

SuppressUnusedWarnings (LiftM4Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> m r)))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> m r)))) -> Type) (a6989586621679336875 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> m r)))) -> Type) (a6989586621679336875 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) = LiftM4Sym1 a6989586621679336875 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type

data LiftM4Sym1 (a6989586621679336875 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) :: (~>) (m a1) ((~>) (m a2) ((~>) (m a3) ((~>) (m a4) (m r)))) Source #

Instances

Instances details
SMonad m => SingI1 (LiftM4Sym1 :: (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) -> TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM4Sym1 x)

(SMonad m, SingI d) => SingI (LiftM4Sym1 d :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM4Sym1 d)

SuppressUnusedWarnings (LiftM4Sym1 a6989586621679336875 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym1 a6989586621679336875 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) (a6989586621679336876 :: m a1) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym1 a6989586621679336875 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) (a6989586621679336876 :: m a1) = LiftM4Sym2 a6989586621679336875 a6989586621679336876

data LiftM4Sym2 (a6989586621679336875 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a6989586621679336876 :: m a1) :: (~>) (m a2) ((~>) (m a3) ((~>) (m a4) (m r))) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI1 (LiftM4Sym2 d :: m a1 -> TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM4Sym2 d x)

SMonad m => SingI2 (LiftM4Sym2 :: (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) -> m a1 -> TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftM4Sym2 x y)

(SMonad m, SingI d1, SingI d2) => SingI (LiftM4Sym2 d1 d2 :: TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM4Sym2 d1 d2)

SuppressUnusedWarnings (LiftM4Sym2 a6989586621679336875 a6989586621679336876 :: TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym2 a6989586621679336875 a6989586621679336876 :: TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) (a6989586621679336877 :: m a2) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym2 a6989586621679336875 a6989586621679336876 :: TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) (a6989586621679336877 :: m a2) = LiftM4Sym3 a6989586621679336875 a6989586621679336876 a6989586621679336877

data LiftM4Sym3 (a6989586621679336875 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a6989586621679336876 :: m a1) (a6989586621679336877 :: m a2) :: (~>) (m a3) ((~>) (m a4) (m r)) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI2 (LiftM4Sym3 d :: m a1 -> m a2 -> TyFun (m a3) (m a4 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftM4Sym3 d x y)

(SMonad m, SingI d1, SingI d2) => SingI1 (LiftM4Sym3 d1 d2 :: m a2 -> TyFun (m a3) (m a4 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM4Sym3 d1 d2 x)

(SMonad m, SingI d1, SingI d2, SingI d3) => SingI (LiftM4Sym3 d1 d2 d3 :: TyFun (m a3) (m a4 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM4Sym3 d1 d2 d3)

SuppressUnusedWarnings (LiftM4Sym3 a6989586621679336875 a6989586621679336876 a6989586621679336877 :: TyFun (m a3) (m a4 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym3 a6989586621679336875 a6989586621679336876 a6989586621679336877 :: TyFun (m a3) (m a4 ~> m r) -> Type) (a6989586621679336878 :: m a3) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym3 a6989586621679336875 a6989586621679336876 a6989586621679336877 :: TyFun (m a3) (m a4 ~> m r) -> Type) (a6989586621679336878 :: m a3) = LiftM4Sym4 a6989586621679336875 a6989586621679336876 a6989586621679336877 a6989586621679336878

data LiftM4Sym4 (a6989586621679336875 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a6989586621679336876 :: m a1) (a6989586621679336877 :: m a2) (a6989586621679336878 :: m a3) :: (~>) (m a4) (m r) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2) => SingI2 (LiftM4Sym4 d1 d2 :: m a2 -> m a3 -> TyFun (m a4) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftM4Sym4 d1 d2 x y)

(SMonad m, SingI d1, SingI d2, SingI d3) => SingI1 (LiftM4Sym4 d1 d2 d3 :: m a3 -> TyFun (m a4) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM4Sym4 d1 d2 d3 x)

(SMonad m, SingI d1, SingI d2, SingI d3, SingI d4) => SingI (LiftM4Sym4 d1 d2 d3 d4 :: TyFun (m a4) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM4Sym4 d1 d2 d3 d4)

SuppressUnusedWarnings (LiftM4Sym4 a6989586621679336875 a6989586621679336876 a6989586621679336877 a6989586621679336878 :: TyFun (m a4) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym4 a6989586621679336875 a6989586621679336876 a6989586621679336877 a6989586621679336878 :: TyFun (m a4) (m r) -> Type) (a6989586621679336879 :: m a4) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym4 a6989586621679336875 a6989586621679336876 a6989586621679336877 a6989586621679336878 :: TyFun (m a4) (m r) -> Type) (a6989586621679336879 :: m a4) = LiftM4 a6989586621679336875 a6989586621679336876 a6989586621679336877 a6989586621679336878 a6989586621679336879

type family LiftM4Sym5 (a6989586621679336875 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a6989586621679336876 :: m a1) (a6989586621679336877 :: m a2) (a6989586621679336878 :: m a3) (a6989586621679336879 :: m a4) :: m r where ... Source #

Equations

LiftM4Sym5 a6989586621679336875 a6989586621679336876 a6989586621679336877 a6989586621679336878 a6989586621679336879 = LiftM4 a6989586621679336875 a6989586621679336876 a6989586621679336877 a6989586621679336878 a6989586621679336879 

data LiftM5Sym0 :: (~>) ((~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) ((~>) (m a1) ((~>) (m a2) ((~>) (m a3) ((~>) (m a4) ((~>) (m a5) (m r)))))) Source #

Instances

Instances details
SMonad m => SingI (LiftM5Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r))))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing LiftM5Sym0

SuppressUnusedWarnings (LiftM5Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r))))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r))))) -> Type) (a6989586621679336837 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r))))) -> Type) (a6989586621679336837 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) = LiftM5Sym1 a6989586621679336837 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type

data LiftM5Sym1 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) :: (~>) (m a1) ((~>) (m a2) ((~>) (m a3) ((~>) (m a4) ((~>) (m a5) (m r))))) Source #

Instances

Instances details
SMonad m => SingI1 (LiftM5Sym1 :: (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) -> TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM5Sym1 x)

(SMonad m, SingI d) => SingI (LiftM5Sym1 d :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM5Sym1 d)

SuppressUnusedWarnings (LiftM5Sym1 a6989586621679336837 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym1 a6989586621679336837 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) (a6989586621679336838 :: m a1) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym1 a6989586621679336837 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) (a6989586621679336838 :: m a1) = LiftM5Sym2 a6989586621679336837 a6989586621679336838

data LiftM5Sym2 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a6989586621679336838 :: m a1) :: (~>) (m a2) ((~>) (m a3) ((~>) (m a4) ((~>) (m a5) (m r)))) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI1 (LiftM5Sym2 d :: m a1 -> TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM5Sym2 d x)

SMonad m => SingI2 (LiftM5Sym2 :: (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) -> m a1 -> TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftM5Sym2 x y)

(SMonad m, SingI d1, SingI d2) => SingI (LiftM5Sym2 d1 d2 :: TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM5Sym2 d1 d2)

SuppressUnusedWarnings (LiftM5Sym2 a6989586621679336837 a6989586621679336838 :: TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym2 a6989586621679336837 a6989586621679336838 :: TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) (a6989586621679336839 :: m a2) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym2 a6989586621679336837 a6989586621679336838 :: TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) (a6989586621679336839 :: m a2) = LiftM5Sym3 a6989586621679336837 a6989586621679336838 a6989586621679336839

data LiftM5Sym3 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a6989586621679336838 :: m a1) (a6989586621679336839 :: m a2) :: (~>) (m a3) ((~>) (m a4) ((~>) (m a5) (m r))) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI2 (LiftM5Sym3 d :: m a1 -> m a2 -> TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftM5Sym3 d x y)

(SMonad m, SingI d1, SingI d2) => SingI1 (LiftM5Sym3 d1 d2 :: m a2 -> TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM5Sym3 d1 d2 x)

(SMonad m, SingI d1, SingI d2, SingI d3) => SingI (LiftM5Sym3 d1 d2 d3 :: TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM5Sym3 d1 d2 d3)

SuppressUnusedWarnings (LiftM5Sym3 a6989586621679336837 a6989586621679336838 a6989586621679336839 :: TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym3 a6989586621679336837 a6989586621679336838 a6989586621679336839 :: TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) (a6989586621679336840 :: m a3) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym3 a6989586621679336837 a6989586621679336838 a6989586621679336839 :: TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) (a6989586621679336840 :: m a3) = LiftM5Sym4 a6989586621679336837 a6989586621679336838 a6989586621679336839 a6989586621679336840

data LiftM5Sym4 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a6989586621679336838 :: m a1) (a6989586621679336839 :: m a2) (a6989586621679336840 :: m a3) :: (~>) (m a4) ((~>) (m a5) (m r)) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2) => SingI2 (LiftM5Sym4 d1 d2 :: m a2 -> m a3 -> TyFun (m a4) (m a5 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftM5Sym4 d1 d2 x y)

(SMonad m, SingI d1, SingI d2, SingI d3) => SingI1 (LiftM5Sym4 d1 d2 d3 :: m a3 -> TyFun (m a4) (m a5 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM5Sym4 d1 d2 d3 x)

(SMonad m, SingI d1, SingI d2, SingI d3, SingI d4) => SingI (LiftM5Sym4 d1 d2 d3 d4 :: TyFun (m a4) (m a5 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM5Sym4 d1 d2 d3 d4)

SuppressUnusedWarnings (LiftM5Sym4 a6989586621679336837 a6989586621679336838 a6989586621679336839 a6989586621679336840 :: TyFun (m a4) (m a5 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym4 a6989586621679336837 a6989586621679336838 a6989586621679336839 a6989586621679336840 :: TyFun (m a4) (m a5 ~> m r) -> Type) (a6989586621679336841 :: m a4) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym4 a6989586621679336837 a6989586621679336838 a6989586621679336839 a6989586621679336840 :: TyFun (m a4) (m a5 ~> m r) -> Type) (a6989586621679336841 :: m a4) = LiftM5Sym5 a6989586621679336837 a6989586621679336838 a6989586621679336839 a6989586621679336840 a6989586621679336841

data LiftM5Sym5 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a6989586621679336838 :: m a1) (a6989586621679336839 :: m a2) (a6989586621679336840 :: m a3) (a6989586621679336841 :: m a4) :: (~>) (m a5) (m r) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2, SingI d3) => SingI2 (LiftM5Sym5 d1 d2 d3 :: m a3 -> m a4 -> TyFun (m a5) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftM5Sym5 d1 d2 d3 x y)

(SMonad m, SingI d1, SingI d2, SingI d3, SingI d4) => SingI1 (LiftM5Sym5 d1 d2 d3 d4 :: m a4 -> TyFun (m a5) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftM5Sym5 d1 d2 d3 d4 x)

(SMonad m, SingI d1, SingI d2, SingI d3, SingI d4, SingI d5) => SingI (LiftM5Sym5 d1 d2 d3 d4 d5 :: TyFun (m a5) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM5Sym5 d1 d2 d3 d4 d5)

SuppressUnusedWarnings (LiftM5Sym5 a6989586621679336837 a6989586621679336838 a6989586621679336839 a6989586621679336840 a6989586621679336841 :: TyFun (m a5) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym5 a6989586621679336837 a6989586621679336838 a6989586621679336839 a6989586621679336840 a6989586621679336841 :: TyFun (m a5) (m r) -> Type) (a6989586621679336842 :: m a5) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym5 a6989586621679336837 a6989586621679336838 a6989586621679336839 a6989586621679336840 a6989586621679336841 :: TyFun (m a5) (m r) -> Type) (a6989586621679336842 :: m a5) = LiftM5 a6989586621679336837 a6989586621679336838 a6989586621679336839 a6989586621679336840 a6989586621679336841 a6989586621679336842

type family LiftM5Sym6 (a6989586621679336837 :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a6989586621679336838 :: m a1) (a6989586621679336839 :: m a2) (a6989586621679336840 :: m a3) (a6989586621679336841 :: m a4) (a6989586621679336842 :: m a5) :: m r where ... Source #

Equations

LiftM5Sym6 a6989586621679336837 a6989586621679336838 a6989586621679336839 a6989586621679336840 a6989586621679336841 a6989586621679336842 = LiftM5 a6989586621679336837 a6989586621679336838 a6989586621679336839 a6989586621679336840 a6989586621679336841 a6989586621679336842 

data ApSym0 :: (~>) (m ((~>) a b)) ((~>) (m a) (m b)) Source #

Instances

Instances details
SMonad m => SingI (ApSym0 :: TyFun (m (a ~> b)) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ApSym0

SuppressUnusedWarnings (ApSym0 :: TyFun (m (a ~> b)) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ApSym0 :: TyFun (m (a ~> b)) (m a ~> m b) -> Type) (a6989586621679336818 :: m (a ~> b)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ApSym0 :: TyFun (m (a ~> b)) (m a ~> m b) -> Type) (a6989586621679336818 :: m (a ~> b)) = ApSym1 a6989586621679336818

data ApSym1 (a6989586621679336818 :: m ((~>) a b)) :: (~>) (m a) (m b) Source #

Instances

Instances details
SMonad m => SingI1 (ApSym1 :: m (a ~> b) -> TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ApSym1 x)

(SMonad m, SingI d) => SingI (ApSym1 d :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (ApSym1 d)

SuppressUnusedWarnings (ApSym1 a6989586621679336818 :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ApSym1 a6989586621679336818 :: TyFun (m a) (m b) -> Type) (a6989586621679336819 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ApSym1 a6989586621679336818 :: TyFun (m a) (m b) -> Type) (a6989586621679336819 :: m a) = Ap a6989586621679336818 a6989586621679336819

type family ApSym2 (a6989586621679336818 :: m ((~>) a b)) (a6989586621679336819 :: m a) :: m b where ... Source #

Equations

ApSym2 a6989586621679336818 a6989586621679336819 = Ap a6989586621679336818 a6989586621679336819 

data (<$!>@#@$) :: (~>) ((~>) a b) ((~>) (m a) (m b)) infixl 4 Source #

Instances

Instances details
SMonad m => SingI ((<$!>@#@$) :: TyFun (a ~> b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (<$!>@#@$)

SuppressUnusedWarnings ((<$!>@#@$) :: TyFun (a ~> b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<$!>@#@$) :: TyFun (a ~> b) (m a ~> m b) -> Type) (a6989586621681332922 :: a ~> b) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<$!>@#@$) :: TyFun (a ~> b) (m a ~> m b) -> Type) (a6989586621681332922 :: a ~> b) = (<$!>@#@$$) a6989586621681332922 :: TyFun (m a) (m b) -> Type

data (<$!>@#@$$) (a6989586621681332922 :: (~>) a b) :: (~>) (m a) (m b) infixl 4 Source #

Instances

Instances details
SMonad m => SingI1 ((<$!>@#@$$) :: (a ~> b) -> TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<$!>@#@$$) x)

(SMonad m, SingI d) => SingI ((<$!>@#@$$) d :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing ((<$!>@#@$$) d)

SuppressUnusedWarnings ((<$!>@#@$$) a6989586621681332922 :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<$!>@#@$$) a6989586621681332922 :: TyFun (m a) (m b) -> Type) (a6989586621681332923 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<$!>@#@$$) a6989586621681332922 :: TyFun (m a) (m b) -> Type) (a6989586621681332923 :: m a) = a6989586621681332922 <$!> a6989586621681332923

type family (a6989586621681332922 :: (~>) a b) <$!>@#@$$$ (a6989586621681332923 :: m a) :: m b where ... infixl 4 Source #

Equations

a6989586621681332922 <$!>@#@$$$ a6989586621681332923 = (<$!>) a6989586621681332922 a6989586621681332923 

Orphan instances

PMonad Down Source # 
Instance details

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

SMonad Down Source # 
Instance details

Methods

(%>>=) :: forall a b (t :: Down a) (t :: a ~> Down b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

PMonad ((,) a) Source # 
Instance details

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

SMonoid a => SMonad ((,) a) Source # 
Instance details

Methods

(%>>=) :: forall a0 b (t :: (a, a0)) (t :: a0 ~> (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a0 (t :: a0). Sing t -> Sing (Apply ReturnSym0 t) Source #