singletons-base-3.1: A promoted and singled version of the base library
Copyright(C) 2013-2014 Richard Eisenberg Jan Stolarek
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.List.Singletons

Description

Defines functions and datatypes relating to the singleton for '[]', including singled versions of a few of the definitions in Data.List.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.List. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis
  • type family Sing :: k -> Type
  • data SList :: forall (a :: Type). [a] -> Type where
  • type family (a :: [a]) ++ (a :: [a]) :: [a] where ...
  • (%++) :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (++@#@$) t) t :: [a])
  • type family Head (a :: [a]) :: a where ...
  • sHead :: forall a (t :: [a]). Sing t -> Sing (Apply HeadSym0 t :: a)
  • type family Last (a :: [a]) :: a where ...
  • sLast :: forall a (t :: [a]). Sing t -> Sing (Apply LastSym0 t :: a)
  • type family Tail (a :: [a]) :: [a] where ...
  • sTail :: forall a (t :: [a]). Sing t -> Sing (Apply TailSym0 t :: [a])
  • type family Init (a :: [a]) :: [a] where ...
  • sInit :: forall a (t :: [a]). Sing t -> Sing (Apply InitSym0 t :: [a])
  • type family Null (arg :: t a) :: Bool
  • sNull :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply NullSym0 t :: Bool)
  • type family Length (arg :: t a) :: Natural
  • sLength :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply LengthSym0 t :: Natural)
  • type family Map (a :: (~>) a b) (a :: [a]) :: [b] where ...
  • sMap :: forall a b (t :: (~>) a b) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MapSym0 t) t :: [b])
  • type family Reverse (a :: [a]) :: [a] where ...
  • sReverse :: forall a (t :: [a]). Sing t -> Sing (Apply ReverseSym0 t :: [a])
  • type family Intersperse (a :: a) (a :: [a]) :: [a] where ...
  • sIntersperse :: forall a (t :: a) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply IntersperseSym0 t) t :: [a])
  • type family Intercalate (a :: [a]) (a :: [[a]]) :: [a] where ...
  • sIntercalate :: forall a (t :: [a]) (t :: [[a]]). Sing t -> Sing t -> Sing (Apply (Apply IntercalateSym0 t) t :: [a])
  • type family Transpose (a :: [[a]]) :: [[a]] where ...
  • sTranspose :: forall a (t :: [[a]]). Sing t -> Sing (Apply TransposeSym0 t :: [[a]])
  • type family Subsequences (a :: [a]) :: [[a]] where ...
  • sSubsequences :: forall a (t :: [a]). Sing t -> Sing (Apply SubsequencesSym0 t :: [[a]])
  • type family Permutations (a :: [a]) :: [[a]] where ...
  • sPermutations :: forall a (t :: [a]). Sing t -> Sing (Apply PermutationsSym0 t :: [[a]])
  • type family Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b
  • sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b)
  • type family Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b
  • sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b)
  • type family Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
  • sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a)
  • type family Foldl1' (a :: (~>) a ((~>) a a)) (a :: [a]) :: a where ...
  • sFoldl1' :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldl1'Sym0 t) t :: a)
  • type family Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b
  • sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b)
  • type family Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
  • sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a)
  • type family Concat (a :: t [a]) :: [a] where ...
  • sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a])
  • type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ...
  • sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b])
  • type family And (a :: t Bool) :: Bool where ...
  • sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool)
  • type family Or (a :: t Bool) :: Bool where ...
  • sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool)
  • type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool)
  • type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool)
  • type family Sum (arg :: t a) :: a
  • sSum :: forall a (t :: t a). (SFoldable t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a)
  • type family Product (arg :: t a) :: a
  • sProduct :: forall a (t :: t a). (SFoldable t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a)
  • type family Maximum (arg :: t a) :: a
  • sMaximum :: forall a (t :: t a). (SFoldable t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a)
  • type family Minimum (arg :: t a) :: a
  • sMinimum :: forall a (t :: t a). (SFoldable t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a)
  • type family Scanl (a :: (~>) b ((~>) a b)) (a :: b) (a :: [a]) :: [b] where ...
  • sScanl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t :: [b])
  • type family Scanl1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ...
  • sScanl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanl1Sym0 t) t :: [a])
  • type family Scanr (a :: (~>) a ((~>) b b)) (a :: b) (a :: [a]) :: [b] where ...
  • sScanr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t :: [b])
  • type family Scanr1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ...
  • sScanr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanr1Sym0 t) t :: [a])
  • type family MapAccumL (a :: (~>) a ((~>) b (a, c))) (a :: a) (a :: t b) :: (a, t c) where ...
  • sMapAccumL :: forall t a b c (t :: (~>) a ((~>) b (a, c))) (t :: a) (t :: t b). STraversable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumLSym0 t) t) t :: (a, t c))
  • type family MapAccumR (a :: (~>) a ((~>) b (a, c))) (a :: a) (a :: t b) :: (a, t c) where ...
  • sMapAccumR :: forall a b c t (t :: (~>) a ((~>) b (a, c))) (t :: a) (t :: t b). STraversable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumRSym0 t) t) t :: (a, t c))
  • type family Replicate (a :: Natural) (a :: a) :: [a] where ...
  • sReplicate :: forall a (t :: Natural) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ReplicateSym0 t) t :: [a])
  • type family Unfoldr (a :: (~>) b (Maybe (a, b))) (a :: b) :: [a] where ...
  • sUnfoldr :: forall b a (t :: (~>) b (Maybe (a, b))) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply UnfoldrSym0 t) t :: [a])
  • type family Take (a :: Natural) (a :: [a]) :: [a] where ...
  • sTake :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeSym0 t) t :: [a])
  • type family Drop (a :: Natural) (a :: [a]) :: [a] where ...
  • sDrop :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropSym0 t) t :: [a])
  • type family SplitAt (a :: Natural) (a :: [a]) :: ([a], [a]) where ...
  • sSplitAt :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SplitAtSym0 t) t :: ([a], [a]))
  • type family TakeWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
  • sTakeWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeWhileSym0 t) t :: [a])
  • type family DropWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
  • sDropWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropWhileSym0 t) t :: [a])
  • type family DropWhileEnd (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
  • sDropWhileEnd :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropWhileEndSym0 t) t :: [a])
  • type family Span (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ...
  • sSpan :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SpanSym0 t) t :: ([a], [a]))
  • type family Break (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ...
  • sBreak :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply BreakSym0 t) t :: ([a], [a]))
  • type family StripPrefix (a :: [a]) (a :: [a]) :: Maybe [a] where ...
  • type family Group (a :: [a]) :: [[a]] where ...
  • sGroup :: forall a (t :: [a]). SEq a => Sing t -> Sing (Apply GroupSym0 t :: [[a]])
  • type family Inits (a :: [a]) :: [[a]] where ...
  • sInits :: forall a (t :: [a]). Sing t -> Sing (Apply InitsSym0 t :: [[a]])
  • type family Tails (a :: [a]) :: [[a]] where ...
  • sTails :: forall a (t :: [a]). Sing t -> Sing (Apply TailsSym0 t :: [[a]])
  • type family IsPrefixOf (a :: [a]) (a :: [a]) :: Bool where ...
  • sIsPrefixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsPrefixOfSym0 t) t :: Bool)
  • type family IsSuffixOf (a :: [a]) (a :: [a]) :: Bool where ...
  • sIsSuffixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsSuffixOfSym0 t) t :: Bool)
  • type family IsInfixOf (a :: [a]) (a :: [a]) :: Bool where ...
  • sIsInfixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsInfixOfSym0 t) t :: Bool)
  • type family Elem (arg :: a) (arg :: t a) :: Bool
  • sElem :: forall a (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool)
  • type family NotElem (a :: a) (a :: t a) :: Bool where ...
  • sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool)
  • type family Lookup (a :: a) (a :: [(a, b)]) :: Maybe b where ...
  • sLookup :: forall a b (t :: a) (t :: [(a, b)]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply LookupSym0 t) t :: Maybe b)
  • type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ...
  • sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a)
  • type family Filter (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
  • sFilter :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FilterSym0 t) t :: [a])
  • type family Partition (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ...
  • sPartition :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply PartitionSym0 t) t :: ([a], [a]))
  • type family (a :: [a]) !! (a :: Natural) :: a where ...
  • (%!!) :: forall a (t :: [a]) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply (!!@#@$) t) t :: a)
  • type family ElemIndex (a :: a) (a :: [a]) :: Maybe Natural where ...
  • sElemIndex :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemIndexSym0 t) t :: Maybe Natural)
  • type family ElemIndices (a :: a) (a :: [a]) :: [Natural] where ...
  • sElemIndices :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemIndicesSym0 t) t :: [Natural])
  • type family FindIndex (a :: (~>) a Bool) (a :: [a]) :: Maybe Natural where ...
  • sFindIndex :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FindIndexSym0 t) t :: Maybe Natural)
  • type family FindIndices (a :: (~>) a Bool) (a :: [a]) :: [Natural] where ...
  • sFindIndices :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FindIndicesSym0 t) t :: [Natural])
  • type family Zip (a :: [a]) (a :: [b]) :: [(a, b)] where ...
  • sZip :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply ZipSym0 t) t :: [(a, b)])
  • type family Zip3 (a :: [a]) (a :: [b]) (a :: [c]) :: [(a, b, c)] where ...
  • sZip3 :: forall a b c (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t :: [(a, b, c)])
  • type family Zip4 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) :: [(a, b, c, d)] where ...
  • type family Zip5 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) :: [(a, b, c, d, e)] where ...
  • type family Zip6 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) :: [(a, b, c, d, e, f)] where ...
  • type family Zip7 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) (a :: [g]) :: [(a, b, c, d, e, f, g)] where ...
  • type family ZipWith (a :: (~>) a ((~>) b c)) (a :: [a]) (a :: [b]) :: [c] where ...
  • sZipWith :: forall a b c (t :: (~>) a ((~>) b c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t :: [c])
  • type family ZipWith3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: [a]) (a :: [b]) (a :: [c]) :: [d] where ...
  • sZipWith3 :: forall a b c d (t :: (~>) a ((~>) b ((~>) c d))) (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t :: [d])
  • type family ZipWith4 (a :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) :: [e] where ...
  • type family ZipWith5 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) :: [f] where ...
  • type family ZipWith6 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) :: [g] where ...
  • type family ZipWith7 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) (a :: [g]) :: [h] where ...
  • type family Unzip (a :: [(a, b)]) :: ([a], [b]) where ...
  • sUnzip :: forall a b (t :: [(a, b)]). Sing t -> Sing (Apply UnzipSym0 t :: ([a], [b]))
  • type family Unzip3 (a :: [(a, b, c)]) :: ([a], [b], [c]) where ...
  • sUnzip3 :: forall a b c (t :: [(a, b, c)]). Sing t -> Sing (Apply Unzip3Sym0 t :: ([a], [b], [c]))
  • type family Unzip4 (a :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ...
  • sUnzip4 :: forall a b c d (t :: [(a, b, c, d)]). Sing t -> Sing (Apply Unzip4Sym0 t :: ([a], [b], [c], [d]))
  • type family Unzip5 (a :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ...
  • sUnzip5 :: forall a b c d e (t :: [(a, b, c, d, e)]). Sing t -> Sing (Apply Unzip5Sym0 t :: ([a], [b], [c], [d], [e]))
  • type family Unzip6 (a :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ...
  • sUnzip6 :: forall a b c d e f (t :: [(a, b, c, d, e, f)]). Sing t -> Sing (Apply Unzip6Sym0 t :: ([a], [b], [c], [d], [e], [f]))
  • type family Unzip7 (a :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ...
  • sUnzip7 :: forall a b c d e f g (t :: [(a, b, c, d, e, f, g)]). Sing t -> Sing (Apply Unzip7Sym0 t :: ([a], [b], [c], [d], [e], [f], [g]))
  • type family Unlines (a :: [Symbol]) :: Symbol where ...
  • sUnlines :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnlinesSym0 t :: Symbol)
  • type family Unwords (a :: [Symbol]) :: Symbol where ...
  • sUnwords :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnwordsSym0 t :: Symbol)
  • type family Nub (a :: [a]) :: [a] where ...
  • sNub :: forall a (t :: [a]). SEq a => Sing t -> Sing (Apply NubSym0 t :: [a])
  • type family Delete (a :: a) (a :: [a]) :: [a] where ...
  • sDelete :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply DeleteSym0 t) t :: [a])
  • type family (a :: [a]) \\ (a :: [a]) :: [a] where ...
  • (%\\) :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply (\\@#@$) t) t :: [a])
  • type family Union (a :: [a]) (a :: [a]) :: [a] where ...
  • sUnion :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply UnionSym0 t) t :: [a])
  • type family Intersect (a :: [a]) (a :: [a]) :: [a] where ...
  • sIntersect :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IntersectSym0 t) t :: [a])
  • type family Insert (a :: a) (a :: [a]) :: [a] where ...
  • sInsert :: forall a (t :: a) (t :: [a]). SOrd a => Sing t -> Sing t -> Sing (Apply (Apply InsertSym0 t) t :: [a])
  • type family Sort (a :: [a]) :: [a] where ...
  • sSort :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply SortSym0 t :: [a])
  • type family NubBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) :: [a] where ...
  • sNubBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply NubBySym0 t) t :: [a])
  • type family DeleteBy (a :: (~>) a ((~>) a Bool)) (a :: a) (a :: [a]) :: [a] where ...
  • sDeleteBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: a) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteBySym0 t) t) t :: [a])
  • type family DeleteFirstsBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ...
  • sDeleteFirstsBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteFirstsBySym0 t) t) t :: [a])
  • type family UnionBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ...
  • sUnionBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply UnionBySym0 t) t) t :: [a])
  • type family IntersectBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ...
  • sIntersectBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply IntersectBySym0 t) t) t :: [a])
  • type family GroupBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) :: [[a]] where ...
  • sGroupBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply GroupBySym0 t) t :: [[a]])
  • type family SortBy (a :: (~>) a ((~>) a Ordering)) (a :: [a]) :: [a] where ...
  • sSortBy :: forall a (t :: (~>) a ((~>) a Ordering)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SortBySym0 t) t :: [a])
  • type family InsertBy (a :: (~>) a ((~>) a Ordering)) (a :: a) (a :: [a]) :: [a] where ...
  • sInsertBy :: forall a (t :: (~>) a ((~>) a Ordering)) (t :: a) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply InsertBySym0 t) t) t :: [a])
  • type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
  • sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a)
  • type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
  • sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a)
  • type family GenericLength (a :: [a]) :: i where ...
  • sGenericLength :: forall a i (t :: [a]). SNum i => Sing t -> Sing (Apply GenericLengthSym0 t :: i)
  • type family NilSym0 :: [a :: Type] where ...
  • data (:@#@$) :: (~>) a ((~>) [a] [a :: Type])
  • data (:@#@$$) (a6989586621679042108 :: a) :: (~>) [a] [a :: Type]
  • type family (a6989586621679042108 :: a) :@#@$$$ (a6989586621679042109 :: [a]) :: [a :: Type] where ...
  • type family (a6989586621679287772 :: [a]) ++@#@$$$ (a6989586621679287773 :: [a]) :: [a] where ...
  • data (++@#@$$) (a6989586621679287772 :: [a]) :: (~>) [a] [a]
  • data (++@#@$) :: (~>) [a] ((~>) [a] [a])
  • data HeadSym0 :: (~>) [a] a
  • type family HeadSym1 (a6989586621679849189 :: [a]) :: a where ...
  • data LastSym0 :: (~>) [a] a
  • type family LastSym1 (a6989586621679849183 :: [a]) :: a where ...
  • data TailSym0 :: (~>) [a] [a]
  • type family TailSym1 (a6989586621679849179 :: [a]) :: [a] where ...
  • data InitSym0 :: (~>) [a] [a]
  • type family InitSym1 (a6989586621679849167 :: [a]) :: [a] where ...
  • data NullSym0 :: (~>) (t a) Bool
  • type family NullSym1 (a6989586621680427279 :: t a) :: Bool where ...
  • data LengthSym0 :: (~>) (t a) Natural
  • type family LengthSym1 (a6989586621680427282 :: t a) :: Natural where ...
  • data MapSym0 :: (~>) ((~>) a b) ((~>) [a] [b])
  • data MapSym1 (a6989586621679287781 :: (~>) a b) :: (~>) [a] [b]
  • type family MapSym2 (a6989586621679287781 :: (~>) a b) (a6989586621679287782 :: [a]) :: [b] where ...
  • data ReverseSym0 :: (~>) [a] [a]
  • type family ReverseSym1 (a6989586621679849152 :: [a]) :: [a] where ...
  • data IntersperseSym0 :: (~>) a ((~>) [a] [a])
  • data IntersperseSym1 (a6989586621679849145 :: a) :: (~>) [a] [a]
  • type family IntersperseSym2 (a6989586621679849145 :: a) (a6989586621679849146 :: [a]) :: [a] where ...
  • data IntercalateSym0 :: (~>) [a] ((~>) [[a]] [a])
  • data IntercalateSym1 (a6989586621679849138 :: [a]) :: (~>) [[a]] [a]
  • type family IntercalateSym2 (a6989586621679849138 :: [a]) (a6989586621679849139 :: [[a]]) :: [a] where ...
  • data TransposeSym0 :: (~>) [[a]] [[a]]
  • type family TransposeSym1 (a6989586621679848039 :: [[a]]) :: [[a]] where ...
  • data SubsequencesSym0 :: (~>) [a] [[a]]
  • type family SubsequencesSym1 (a6989586621679849133 :: [a]) :: [[a]] where ...
  • data PermutationsSym0 :: (~>) [a] [[a]]
  • type family PermutationsSym1 (a6989586621679849059 :: [a]) :: [[a]] where ...
  • data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b))
  • data FoldlSym1 (a6989586621680427254 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b)
  • data FoldlSym2 (a6989586621680427254 :: (~>) b ((~>) a b)) (a6989586621680427255 :: b) :: (~>) (t a) b
  • type family FoldlSym3 (a6989586621680427254 :: (~>) b ((~>) a b)) (a6989586621680427255 :: b) (a6989586621680427256 :: t a) :: b where ...
  • data Foldl'Sym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b))
  • data Foldl'Sym1 (a6989586621680427261 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b)
  • data Foldl'Sym2 (a6989586621680427261 :: (~>) b ((~>) a b)) (a6989586621680427262 :: b) :: (~>) (t a) b
  • type family Foldl'Sym3 (a6989586621680427261 :: (~>) b ((~>) a b)) (a6989586621680427262 :: b) (a6989586621680427263 :: t a) :: b where ...
  • data Foldl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a)
  • data Foldl1Sym1 (a6989586621680427272 :: (~>) a ((~>) a a)) :: (~>) (t a) a
  • type family Foldl1Sym2 (a6989586621680427272 :: (~>) a ((~>) a a)) (a6989586621680427273 :: t a) :: a where ...
  • data Foldl1'Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] a)
  • data Foldl1'Sym1 (a6989586621679849024 :: (~>) a ((~>) a a)) :: (~>) [a] a
  • type family Foldl1'Sym2 (a6989586621679849024 :: (~>) a ((~>) a a)) (a6989586621679849025 :: [a]) :: a where ...
  • data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b))
  • data FoldrSym1 (a6989586621680427240 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b)
  • data FoldrSym2 (a6989586621680427240 :: (~>) a ((~>) b b)) (a6989586621680427241 :: b) :: (~>) (t a) b
  • type family FoldrSym3 (a6989586621680427240 :: (~>) a ((~>) b b)) (a6989586621680427241 :: b) (a6989586621680427242 :: t a) :: b where ...
  • data Foldr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a)
  • data Foldr1Sym1 (a6989586621680427267 :: (~>) a ((~>) a a)) :: (~>) (t a) a
  • type family Foldr1Sym2 (a6989586621680427267 :: (~>) a ((~>) a a)) (a6989586621680427268 :: t a) :: a where ...
  • data ConcatSym0 :: (~>) (t [a]) [a]
  • type family ConcatSym1 (a6989586621680427121 :: t [a]) :: [a] where ...
  • data ConcatMapSym0 :: (~>) ((~>) a [b]) ((~>) (t a) [b])
  • data ConcatMapSym1 (a6989586621680427110 :: (~>) a [b]) :: (~>) (t a) [b]
  • type family ConcatMapSym2 (a6989586621680427110 :: (~>) a [b]) (a6989586621680427111 :: t a) :: [b] where ...
  • data AndSym0 :: (~>) (t Bool) Bool
  • type family AndSym1 (a6989586621680427105 :: t Bool) :: Bool where ...
  • data OrSym0 :: (~>) (t Bool) Bool
  • type family OrSym1 (a6989586621680427099 :: t Bool) :: Bool where ...
  • data AnySym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool)
  • data AnySym1 (a6989586621680427091 :: (~>) a Bool) :: (~>) (t a) Bool
  • type family AnySym2 (a6989586621680427091 :: (~>) a Bool) (a6989586621680427092 :: t a) :: Bool where ...
  • data AllSym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool)
  • data AllSym1 (a6989586621680427082 :: (~>) a Bool) :: (~>) (t a) Bool
  • type family AllSym2 (a6989586621680427082 :: (~>) a Bool) (a6989586621680427083 :: t a) :: Bool where ...
  • data SumSym0 :: (~>) (t a) a
  • type family SumSym1 (a6989586621680427296 :: t a) :: a where ...
  • data ProductSym0 :: (~>) (t a) a
  • type family ProductSym1 (a6989586621680427299 :: t a) :: a where ...
  • data MaximumSym0 :: (~>) (t a) a
  • type family MaximumSym1 (a6989586621680427290 :: t a) :: a where ...
  • data MinimumSym0 :: (~>) (t a) a
  • type family MinimumSym1 (a6989586621680427293 :: t a) :: a where ...
  • data ScanlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) [a] [b]))
  • data ScanlSym1 (a6989586621679848957 :: (~>) b ((~>) a b)) :: (~>) b ((~>) [a] [b])
  • data ScanlSym2 (a6989586621679848957 :: (~>) b ((~>) a b)) (a6989586621679848958 :: b) :: (~>) [a] [b]
  • type family ScanlSym3 (a6989586621679848957 :: (~>) b ((~>) a b)) (a6989586621679848958 :: b) (a6989586621679848959 :: [a]) :: [b] where ...
  • data Scanl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a])
  • data Scanl1Sym1 (a6989586621679848948 :: (~>) a ((~>) a a)) :: (~>) [a] [a]
  • type family Scanl1Sym2 (a6989586621679848948 :: (~>) a ((~>) a a)) (a6989586621679848949 :: [a]) :: [a] where ...
  • data ScanrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) [a] [b]))
  • data ScanrSym1 (a6989586621679848930 :: (~>) a ((~>) b b)) :: (~>) b ((~>) [a] [b])
  • data ScanrSym2 (a6989586621679848930 :: (~>) a ((~>) b b)) (a6989586621679848931 :: b) :: (~>) [a] [b]
  • type family ScanrSym3 (a6989586621679848930 :: (~>) a ((~>) b b)) (a6989586621679848931 :: b) (a6989586621679848932 :: [a]) :: [b] where ...
  • data Scanr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a])
  • data Scanr1Sym1 (a6989586621679848910 :: (~>) a ((~>) a a)) :: (~>) [a] [a]
  • type family Scanr1Sym2 (a6989586621679848910 :: (~>) a ((~>) a a)) (a6989586621679848911 :: [a]) :: [a] where ...
  • data MapAccumLSym0 :: (~>) ((~>) a ((~>) b (a, c))) ((~>) a ((~>) (t b) (a, t c)))
  • data MapAccumLSym1 (a6989586621680784594 :: (~>) a ((~>) b (a, c))) :: (~>) a ((~>) (t b) (a, t c))
  • data MapAccumLSym2 (a6989586621680784594 :: (~>) a ((~>) b (a, c))) (a6989586621680784595 :: a) :: (~>) (t b) (a, t c)
  • type family MapAccumLSym3 (a6989586621680784594 :: (~>) a ((~>) b (a, c))) (a6989586621680784595 :: a) (a6989586621680784596 :: t b) :: (a, t c) where ...
  • data MapAccumRSym0 :: (~>) ((~>) a ((~>) b (a, c))) ((~>) a ((~>) (t b) (a, t c)))
  • data MapAccumRSym1 (a6989586621680784584 :: (~>) a ((~>) b (a, c))) :: (~>) a ((~>) (t b) (a, t c))
  • data MapAccumRSym2 (a6989586621680784584 :: (~>) a ((~>) b (a, c))) (a6989586621680784585 :: a) :: (~>) (t b) (a, t c)
  • type family MapAccumRSym3 (a6989586621680784584 :: (~>) a ((~>) b (a, c))) (a6989586621680784585 :: a) (a6989586621680784586 :: t b) :: (a, t c) where ...
  • data ReplicateSym0 :: (~>) Natural ((~>) a [a])
  • data ReplicateSym1 (a6989586621679848047 :: Natural) :: (~>) a [a]
  • type family ReplicateSym2 (a6989586621679848047 :: Natural) (a6989586621679848048 :: a) :: [a] where ...
  • data UnfoldrSym0 :: (~>) ((~>) b (Maybe (a, b))) ((~>) b [a])
  • data UnfoldrSym1 (a6989586621679848802 :: (~>) b (Maybe (a, b))) :: (~>) b [a]
  • type family UnfoldrSym2 (a6989586621679848802 :: (~>) b (Maybe (a, b))) (a6989586621679848803 :: b) :: [a] where ...
  • data TakeSym0 :: (~>) Natural ((~>) [a] [a])
  • data TakeSym1 (a6989586621679848202 :: Natural) :: (~>) [a] [a]
  • type family TakeSym2 (a6989586621679848202 :: Natural) (a6989586621679848203 :: [a]) :: [a] where ...
  • data DropSym0 :: (~>) Natural ((~>) [a] [a])
  • data DropSym1 (a6989586621679848189 :: Natural) :: (~>) [a] [a]
  • type family DropSym2 (a6989586621679848189 :: Natural) (a6989586621679848190 :: [a]) :: [a] where ...
  • data SplitAtSym0 :: (~>) Natural ((~>) [a] ([a], [a]))
  • data SplitAtSym1 (a6989586621679848182 :: Natural) :: (~>) [a] ([a], [a])
  • type family SplitAtSym2 (a6989586621679848182 :: Natural) (a6989586621679848183 :: [a]) :: ([a], [a]) where ...
  • data TakeWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
  • data TakeWhileSym1 (a6989586621679848319 :: (~>) a Bool) :: (~>) [a] [a]
  • type family TakeWhileSym2 (a6989586621679848319 :: (~>) a Bool) (a6989586621679848320 :: [a]) :: [a] where ...
  • data DropWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
  • data DropWhileSym1 (a6989586621679848304 :: (~>) a Bool) :: (~>) [a] [a]
  • type family DropWhileSym2 (a6989586621679848304 :: (~>) a Bool) (a6989586621679848305 :: [a]) :: [a] where ...
  • data DropWhileEndSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
  • data DropWhileEndSym1 (a6989586621679848287 :: (~>) a Bool) :: (~>) [a] [a]
  • type family DropWhileEndSym2 (a6989586621679848287 :: (~>) a Bool) (a6989586621679848288 :: [a]) :: [a] where ...
  • data SpanSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a]))
  • data SpanSym1 (a6989586621679848250 :: (~>) a Bool) :: (~>) [a] ([a], [a])
  • type family SpanSym2 (a6989586621679848250 :: (~>) a Bool) (a6989586621679848251 :: [a]) :: ([a], [a]) where ...
  • data BreakSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a]))
  • data BreakSym1 (a6989586621679848215 :: (~>) a Bool) :: (~>) [a] ([a], [a])
  • type family BreakSym2 (a6989586621679848215 :: (~>) a Bool) (a6989586621679848216 :: [a]) :: ([a], [a]) where ...
  • data StripPrefixSym0 :: (~>) [a] ((~>) [a] (Maybe [a]))
  • data StripPrefixSym1 (a6989586621679997490 :: [a]) :: (~>) [a] (Maybe [a])
  • type family StripPrefixSym2 (a6989586621679997490 :: [a]) (a6989586621679997491 :: [a]) :: Maybe [a] where ...
  • data GroupSym0 :: (~>) [a] [[a]]
  • type family GroupSym1 (a6989586621679848177 :: [a]) :: [[a]] where ...
  • data InitsSym0 :: (~>) [a] [[a]]
  • type family InitsSym1 (a6989586621679848792 :: [a]) :: [[a]] where ...
  • data TailsSym0 :: (~>) [a] [[a]]
  • type family TailsSym1 (a6989586621679848784 :: [a]) :: [[a]] where ...
  • data IsPrefixOfSym0 :: (~>) [a] ((~>) [a] Bool)
  • data IsPrefixOfSym1 (a6989586621679848776 :: [a]) :: (~>) [a] Bool
  • type family IsPrefixOfSym2 (a6989586621679848776 :: [a]) (a6989586621679848777 :: [a]) :: Bool where ...
  • data IsSuffixOfSym0 :: (~>) [a] ((~>) [a] Bool)
  • data IsSuffixOfSym1 (a6989586621679848769 :: [a]) :: (~>) [a] Bool
  • type family IsSuffixOfSym2 (a6989586621679848769 :: [a]) (a6989586621679848770 :: [a]) :: Bool where ...
  • data IsInfixOfSym0 :: (~>) [a] ((~>) [a] Bool)
  • data IsInfixOfSym1 (a6989586621679848762 :: [a]) :: (~>) [a] Bool
  • type family IsInfixOfSym2 (a6989586621679848762 :: [a]) (a6989586621679848763 :: [a]) :: Bool where ...
  • data ElemSym0 :: (~>) a ((~>) (t a) Bool)
  • data ElemSym1 (a6989586621680427286 :: a) :: (~>) (t a) Bool
  • type family ElemSym2 (a6989586621680427286 :: a) (a6989586621680427287 :: t a) :: Bool where ...
  • data NotElemSym0 :: (~>) a ((~>) (t a) Bool)
  • data NotElemSym1 (a6989586621680427033 :: a) :: (~>) (t a) Bool
  • type family NotElemSym2 (a6989586621680427033 :: a) (a6989586621680427034 :: t a) :: Bool where ...
  • data LookupSym0 :: (~>) a ((~>) [(a, b)] (Maybe b))
  • data LookupSym1 (a6989586621679848110 :: a) :: (~>) [(a, b)] (Maybe b)
  • type family LookupSym2 (a6989586621679848110 :: a) (a6989586621679848111 :: [(a, b)]) :: Maybe b where ...
  • data FindSym0 :: (~>) ((~>) a Bool) ((~>) (t a) (Maybe a))
  • data FindSym1 (a6989586621680427015 :: (~>) a Bool) :: (~>) (t a) (Maybe a)
  • type family FindSym2 (a6989586621680427015 :: (~>) a Bool) (a6989586621680427016 :: t a) :: Maybe a where ...
  • data FilterSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
  • data FilterSym1 (a6989586621679848419 :: (~>) a Bool) :: (~>) [a] [a]
  • type family FilterSym2 (a6989586621679848419 :: (~>) a Bool) (a6989586621679848420 :: [a]) :: [a] where ...
  • data PartitionSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a]))
  • data PartitionSym1 (a6989586621679848103 :: (~>) a Bool) :: (~>) [a] ([a], [a])
  • type family PartitionSym2 (a6989586621679848103 :: (~>) a Bool) (a6989586621679848104 :: [a]) :: ([a], [a]) where ...
  • data (!!@#@$) :: (~>) [a] ((~>) Natural a)
  • data (!!@#@$$) (a6989586621679848027 :: [a]) :: (~>) Natural a
  • type family (a6989586621679848027 :: [a]) !!@#@$$$ (a6989586621679848028 :: Natural) :: a where ...
  • data ElemIndexSym0 :: (~>) a ((~>) [a] (Maybe Natural))
  • data ElemIndexSym1 (a6989586621679848403 :: a) :: (~>) [a] (Maybe Natural)
  • type family ElemIndexSym2 (a6989586621679848403 :: a) (a6989586621679848404 :: [a]) :: Maybe Natural where ...
  • data ElemIndicesSym0 :: (~>) a ((~>) [a] [Natural])
  • data ElemIndicesSym1 (a6989586621679848394 :: a) :: (~>) [a] [Natural]
  • type family ElemIndicesSym2 (a6989586621679848394 :: a) (a6989586621679848395 :: [a]) :: [Natural] where ...
  • data FindIndexSym0 :: (~>) ((~>) a Bool) ((~>) [a] (Maybe Natural))
  • data FindIndexSym1 (a6989586621679848385 :: (~>) a Bool) :: (~>) [a] (Maybe Natural)
  • type family FindIndexSym2 (a6989586621679848385 :: (~>) a Bool) (a6989586621679848386 :: [a]) :: Maybe Natural where ...
  • data FindIndicesSym0 :: (~>) ((~>) a Bool) ((~>) [a] [Natural])
  • data FindIndicesSym1 (a6989586621679848362 :: (~>) a Bool) :: (~>) [a] [Natural]
  • type family FindIndicesSym2 (a6989586621679848362 :: (~>) a Bool) (a6989586621679848363 :: [a]) :: [Natural] where ...
  • data ZipSym0 :: (~>) [a] ((~>) [b] [(a, b)])
  • data ZipSym1 (a6989586621679848737 :: [a]) :: (~>) [b] [(a, b)]
  • type family ZipSym2 (a6989586621679848737 :: [a]) (a6989586621679848738 :: [b]) :: [(a, b)] where ...
  • data Zip3Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] [(a, b, c)]))
  • data Zip3Sym1 (a6989586621679848725 :: [a]) :: (~>) [b] ((~>) [c] [(a, b, c)])
  • data Zip3Sym2 (a6989586621679848725 :: [a]) (a6989586621679848726 :: [b]) :: (~>) [c] [(a, b, c)]
  • type family Zip3Sym3 (a6989586621679848725 :: [a]) (a6989586621679848726 :: [b]) (a6989586621679848727 :: [c]) :: [(a, b, c)] where ...
  • data Zip4Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [(a, b, c, d)])))
  • data Zip4Sym1 (a6989586621679997479 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] [(a, b, c, d)]))
  • data Zip4Sym2 (a6989586621679997479 :: [a]) (a6989586621679997480 :: [b]) :: (~>) [c] ((~>) [d] [(a, b, c, d)])
  • data Zip4Sym3 (a6989586621679997479 :: [a]) (a6989586621679997480 :: [b]) (a6989586621679997481 :: [c]) :: (~>) [d] [(a, b, c, d)]
  • type family Zip4Sym4 (a6989586621679997479 :: [a]) (a6989586621679997480 :: [b]) (a6989586621679997481 :: [c]) (a6989586621679997482 :: [d]) :: [(a, b, c, d)] where ...
  • data Zip5Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)]))))
  • data Zip5Sym1 (a6989586621679997456 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)])))
  • data Zip5Sym2 (a6989586621679997456 :: [a]) (a6989586621679997457 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)]))
  • data Zip5Sym3 (a6989586621679997456 :: [a]) (a6989586621679997457 :: [b]) (a6989586621679997458 :: [c]) :: (~>) [d] ((~>) [e] [(a, b, c, d, e)])
  • data Zip5Sym4 (a6989586621679997456 :: [a]) (a6989586621679997457 :: [b]) (a6989586621679997458 :: [c]) (a6989586621679997459 :: [d]) :: (~>) [e] [(a, b, c, d, e)]
  • type family Zip5Sym5 (a6989586621679997456 :: [a]) (a6989586621679997457 :: [b]) (a6989586621679997458 :: [c]) (a6989586621679997459 :: [d]) (a6989586621679997460 :: [e]) :: [(a, b, c, d, e)] where ...
  • data Zip6Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)])))))
  • data Zip6Sym1 (a6989586621679997428 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)]))))
  • data Zip6Sym2 (a6989586621679997428 :: [a]) (a6989586621679997429 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)])))
  • data Zip6Sym3 (a6989586621679997428 :: [a]) (a6989586621679997429 :: [b]) (a6989586621679997430 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)]))
  • data Zip6Sym4 (a6989586621679997428 :: [a]) (a6989586621679997429 :: [b]) (a6989586621679997430 :: [c]) (a6989586621679997431 :: [d]) :: (~>) [e] ((~>) [f] [(a, b, c, d, e, f)])
  • data Zip6Sym5 (a6989586621679997428 :: [a]) (a6989586621679997429 :: [b]) (a6989586621679997430 :: [c]) (a6989586621679997431 :: [d]) (a6989586621679997432 :: [e]) :: (~>) [f] [(a, b, c, d, e, f)]
  • type family Zip6Sym6 (a6989586621679997428 :: [a]) (a6989586621679997429 :: [b]) (a6989586621679997430 :: [c]) (a6989586621679997431 :: [d]) (a6989586621679997432 :: [e]) (a6989586621679997433 :: [f]) :: [(a, b, c, d, e, f)] where ...
  • data Zip7Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]))))))
  • data Zip7Sym1 (a6989586621679997395 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])))))
  • data Zip7Sym2 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]))))
  • data Zip7Sym3 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) (a6989586621679997397 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])))
  • data Zip7Sym4 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) (a6989586621679997397 :: [c]) (a6989586621679997398 :: [d]) :: (~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]))
  • data Zip7Sym5 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) (a6989586621679997397 :: [c]) (a6989586621679997398 :: [d]) (a6989586621679997399 :: [e]) :: (~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])
  • data Zip7Sym6 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) (a6989586621679997397 :: [c]) (a6989586621679997398 :: [d]) (a6989586621679997399 :: [e]) (a6989586621679997400 :: [f]) :: (~>) [g] [(a, b, c, d, e, f, g)]
  • type family Zip7Sym7 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) (a6989586621679997397 :: [c]) (a6989586621679997398 :: [d]) (a6989586621679997399 :: [e]) (a6989586621679997400 :: [f]) (a6989586621679997401 :: [g]) :: [(a, b, c, d, e, f, g)] where ...
  • data ZipWithSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) [a] ((~>) [b] [c]))
  • data ZipWithSym1 (a6989586621679848713 :: (~>) a ((~>) b c)) :: (~>) [a] ((~>) [b] [c])
  • data ZipWithSym2 (a6989586621679848713 :: (~>) a ((~>) b c)) (a6989586621679848714 :: [a]) :: (~>) [b] [c]
  • type family ZipWithSym3 (a6989586621679848713 :: (~>) a ((~>) b c)) (a6989586621679848714 :: [a]) (a6989586621679848715 :: [b]) :: [c] where ...
  • data ZipWith3Sym0 :: (~>) ((~>) a ((~>) b ((~>) c d))) ((~>) [a] ((~>) [b] ((~>) [c] [d])))
  • data ZipWith3Sym1 (a6989586621679848698 :: (~>) a ((~>) b ((~>) c d))) :: (~>) [a] ((~>) [b] ((~>) [c] [d]))
  • data ZipWith3Sym2 (a6989586621679848698 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679848699 :: [a]) :: (~>) [b] ((~>) [c] [d])
  • data ZipWith3Sym3 (a6989586621679848698 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679848699 :: [a]) (a6989586621679848700 :: [b]) :: (~>) [c] [d]
  • type family ZipWith3Sym4 (a6989586621679848698 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679848699 :: [a]) (a6989586621679848700 :: [b]) (a6989586621679848701 :: [c]) :: [d] where ...
  • data ZipWith4Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d e)))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [e]))))
  • data ZipWith4Sym1 (a6989586621679997359 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [e])))
  • data ZipWith4Sym2 (a6989586621679997359 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621679997360 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] [e]))
  • data ZipWith4Sym3 (a6989586621679997359 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621679997360 :: [a]) (a6989586621679997361 :: [b]) :: (~>) [c] ((~>) [d] [e])
  • data ZipWith4Sym4 (a6989586621679997359 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621679997360 :: [a]) (a6989586621679997361 :: [b]) (a6989586621679997362 :: [c]) :: (~>) [d] [e]
  • type family ZipWith4Sym5 (a6989586621679997359 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621679997360 :: [a]) (a6989586621679997361 :: [b]) (a6989586621679997362 :: [c]) (a6989586621679997363 :: [d]) :: [e] where ...
  • data ZipWith5Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f])))))
  • data ZipWith5Sym1 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f]))))
  • data ZipWith5Sym2 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621679997337 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f])))
  • data ZipWith5Sym3 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621679997337 :: [a]) (a6989586621679997338 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] [f]))
  • data ZipWith5Sym4 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621679997337 :: [a]) (a6989586621679997338 :: [b]) (a6989586621679997339 :: [c]) :: (~>) [d] ((~>) [e] [f])
  • data ZipWith5Sym5 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621679997337 :: [a]) (a6989586621679997338 :: [b]) (a6989586621679997339 :: [c]) (a6989586621679997340 :: [d]) :: (~>) [e] [f]
  • type family ZipWith5Sym6 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621679997337 :: [a]) (a6989586621679997338 :: [b]) (a6989586621679997339 :: [c]) (a6989586621679997340 :: [d]) (a6989586621679997341 :: [e]) :: [f] where ...
  • data ZipWith6Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g]))))))
  • data ZipWith6Sym1 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g])))))
  • data ZipWith6Sym2 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g]))))
  • data ZipWith6Sym3 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) (a6989586621679997311 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g])))
  • data ZipWith6Sym4 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) (a6989586621679997311 :: [b]) (a6989586621679997312 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] [g]))
  • data ZipWith6Sym5 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) (a6989586621679997311 :: [b]) (a6989586621679997312 :: [c]) (a6989586621679997313 :: [d]) :: (~>) [e] ((~>) [f] [g])
  • data ZipWith6Sym6 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) (a6989586621679997311 :: [b]) (a6989586621679997312 :: [c]) (a6989586621679997313 :: [d]) (a6989586621679997314 :: [e]) :: (~>) [f] [g]
  • type family ZipWith6Sym7 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) (a6989586621679997311 :: [b]) (a6989586621679997312 :: [c]) (a6989586621679997313 :: [d]) (a6989586621679997314 :: [e]) (a6989586621679997315 :: [f]) :: [g] where ...
  • data ZipWith7Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h])))))))
  • data ZipWith7Sym1 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h]))))))
  • data ZipWith7Sym2 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h])))))
  • data ZipWith7Sym3 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h]))))
  • data ZipWith7Sym4 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) (a6989586621679997281 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h])))
  • data ZipWith7Sym5 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) (a6989586621679997281 :: [c]) (a6989586621679997282 :: [d]) :: (~>) [e] ((~>) [f] ((~>) [g] [h]))
  • data ZipWith7Sym6 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) (a6989586621679997281 :: [c]) (a6989586621679997282 :: [d]) (a6989586621679997283 :: [e]) :: (~>) [f] ((~>) [g] [h])
  • data ZipWith7Sym7 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) (a6989586621679997281 :: [c]) (a6989586621679997282 :: [d]) (a6989586621679997283 :: [e]) (a6989586621679997284 :: [f]) :: (~>) [g] [h]
  • type family ZipWith7Sym8 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) (a6989586621679997281 :: [c]) (a6989586621679997282 :: [d]) (a6989586621679997283 :: [e]) (a6989586621679997284 :: [f]) (a6989586621679997285 :: [g]) :: [h] where ...
  • data UnzipSym0 :: (~>) [(a, b)] ([a], [b])
  • type family UnzipSym1 (a6989586621679848679 :: [(a, b)]) :: ([a], [b]) where ...
  • data Unzip3Sym0 :: (~>) [(a, b, c)] ([a], [b], [c])
  • type family Unzip3Sym1 (a6989586621679848661 :: [(a, b, c)]) :: ([a], [b], [c]) where ...
  • data Unzip4Sym0 :: (~>) [(a, b, c, d)] ([a], [b], [c], [d])
  • type family Unzip4Sym1 (a6989586621679848641 :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ...
  • data Unzip5Sym0 :: (~>) [(a, b, c, d, e)] ([a], [b], [c], [d], [e])
  • type family Unzip5Sym1 (a6989586621679848619 :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ...
  • data Unzip6Sym0 :: (~>) [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f])
  • type family Unzip6Sym1 (a6989586621679848595 :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ...
  • data Unzip7Sym0 :: (~>) [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g])
  • type family Unzip7Sym1 (a6989586621679848569 :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ...
  • data UnlinesSym0 :: (~>) [Symbol] Symbol
  • type family UnlinesSym1 (a6989586621679848564 :: [Symbol]) :: Symbol where ...
  • data UnwordsSym0 :: (~>) [Symbol] Symbol
  • type family UnwordsSym1 (a6989586621679848554 :: [Symbol]) :: Symbol where ...
  • data NubSym0 :: (~>) [a] [a]
  • type family NubSym1 (a6989586621679848010 :: [a]) :: [a] where ...
  • data DeleteSym0 :: (~>) a ((~>) [a] [a])
  • data DeleteSym1 (a6989586621679848548 :: a) :: (~>) [a] [a]
  • type family DeleteSym2 (a6989586621679848548 :: a) (a6989586621679848549 :: [a]) :: [a] where ...
  • data (\\@#@$) :: (~>) [a] ((~>) [a] [a])
  • data (\\@#@$$) (a6989586621679848537 :: [a]) :: (~>) [a] [a]
  • type family (a6989586621679848537 :: [a]) \\@#@$$$ (a6989586621679848538 :: [a]) :: [a] where ...
  • data UnionSym0 :: (~>) [a] ((~>) [a] [a])
  • data UnionSym1 (a6989586621679847964 :: [a]) :: (~>) [a] [a]
  • type family UnionSym2 (a6989586621679847964 :: [a]) (a6989586621679847965 :: [a]) :: [a] where ...
  • data IntersectSym0 :: (~>) [a] ((~>) [a] [a])
  • data IntersectSym1 (a6989586621679848355 :: [a]) :: (~>) [a] [a]
  • type family IntersectSym2 (a6989586621679848355 :: [a]) (a6989586621679848356 :: [a]) :: [a] where ...
  • data InsertSym0 :: (~>) a ((~>) [a] [a])
  • data InsertSym1 (a6989586621679848157 :: a) :: (~>) [a] [a]
  • type family InsertSym2 (a6989586621679848157 :: a) (a6989586621679848158 :: [a]) :: [a] where ...
  • data SortSym0 :: (~>) [a] [a]
  • type family SortSym1 (a6989586621679848152 :: [a]) :: [a] where ...
  • data NubBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] [a])
  • data NubBySym1 (a6989586621679847992 :: (~>) a ((~>) a Bool)) :: (~>) [a] [a]
  • type family NubBySym2 (a6989586621679847992 :: (~>) a ((~>) a Bool)) (a6989586621679847993 :: [a]) :: [a] where ...
  • data DeleteBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) a ((~>) [a] [a]))
  • data DeleteBySym1 (a6989586621679848518 :: (~>) a ((~>) a Bool)) :: (~>) a ((~>) [a] [a])
  • data DeleteBySym2 (a6989586621679848518 :: (~>) a ((~>) a Bool)) (a6989586621679848519 :: a) :: (~>) [a] [a]
  • type family DeleteBySym3 (a6989586621679848518 :: (~>) a ((~>) a Bool)) (a6989586621679848519 :: a) (a6989586621679848520 :: [a]) :: [a] where ...
  • data DeleteFirstsBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a]))
  • data DeleteFirstsBySym1 (a6989586621679848508 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a])
  • data DeleteFirstsBySym2 (a6989586621679848508 :: (~>) a ((~>) a Bool)) (a6989586621679848509 :: [a]) :: (~>) [a] [a]
  • type family DeleteFirstsBySym3 (a6989586621679848508 :: (~>) a ((~>) a Bool)) (a6989586621679848509 :: [a]) (a6989586621679848510 :: [a]) :: [a] where ...
  • data UnionBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a]))
  • data UnionBySym1 (a6989586621679847972 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a])
  • data UnionBySym2 (a6989586621679847972 :: (~>) a ((~>) a Bool)) (a6989586621679847973 :: [a]) :: (~>) [a] [a]
  • type family UnionBySym3 (a6989586621679847972 :: (~>) a ((~>) a Bool)) (a6989586621679847973 :: [a]) (a6989586621679847974 :: [a]) :: [a] where ...
  • data IntersectBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a]))
  • data IntersectBySym1 (a6989586621679848333 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a])
  • data IntersectBySym2 (a6989586621679848333 :: (~>) a ((~>) a Bool)) (a6989586621679848334 :: [a]) :: (~>) [a] [a]
  • type family IntersectBySym3 (a6989586621679848333 :: (~>) a ((~>) a Bool)) (a6989586621679848334 :: [a]) (a6989586621679848335 :: [a]) :: [a] where ...
  • data GroupBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] [[a]])
  • data GroupBySym1 (a6989586621679848125 :: (~>) a ((~>) a Bool)) :: (~>) [a] [[a]]
  • type family GroupBySym2 (a6989586621679848125 :: (~>) a ((~>) a Bool)) (a6989586621679848126 :: [a]) :: [[a]] where ...
  • data SortBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) [a] [a])
  • data SortBySym1 (a6989586621679848496 :: (~>) a ((~>) a Ordering)) :: (~>) [a] [a]
  • type family SortBySym2 (a6989586621679848496 :: (~>) a ((~>) a Ordering)) (a6989586621679848497 :: [a]) :: [a] where ...
  • data InsertBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) a ((~>) [a] [a]))
  • data InsertBySym1 (a6989586621679848476 :: (~>) a ((~>) a Ordering)) :: (~>) a ((~>) [a] [a])
  • data InsertBySym2 (a6989586621679848476 :: (~>) a ((~>) a Ordering)) (a6989586621679848477 :: a) :: (~>) [a] [a]
  • type family InsertBySym3 (a6989586621679848476 :: (~>) a ((~>) a Ordering)) (a6989586621679848477 :: a) (a6989586621679848478 :: [a]) :: [a] where ...
  • data MaximumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a)
  • data MaximumBySym1 (a6989586621680427062 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a
  • type family MaximumBySym2 (a6989586621680427062 :: (~>) a ((~>) a Ordering)) (a6989586621680427063 :: t a) :: a where ...
  • data MinimumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a)
  • data MinimumBySym1 (a6989586621680427042 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a
  • type family MinimumBySym2 (a6989586621680427042 :: (~>) a ((~>) a Ordering)) (a6989586621680427043 :: t a) :: a where ...
  • data GenericLengthSym0 :: (~>) [a] i
  • type family GenericLengthSym1 (a6989586621679847955 :: [a]) :: i where ...

The singleton for lists

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SWrappedSing :: WrappedSing a -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SList :: forall (a :: Type). [a] -> Type where Source #

Constructors

SNil :: forall (a :: Type). SList ('[] :: [a :: Type]) 
SCons :: forall (a :: Type) (n :: a) (n :: [a]). (Sing n) -> (Sing n) -> SList ('(:) n n :: [a :: Type]) infixr 5 

Instances

Instances details
(SDecide a, SDecide [a]) => TestCoercion (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b :: k). SList a0 -> SList b -> Maybe (Coercion a0 b) #

(SDecide a, SDecide [a]) => TestEquality (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b :: k). SList a0 -> SList b -> Maybe (a0 :~: b) #

(ShowSing a, ShowSing [a]) => Show (SList z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> SList z -> ShowS #

show :: SList z -> String #

showList :: [SList z] -> ShowS #

Basic functions

type family (a :: [a]) ++ (a :: [a]) :: [a] where ... infixr 5 Source #

Equations

'[] ++ ys = ys 
('(:) x xs) ++ ys = Apply (Apply (:@#@$) x) (Apply (Apply (++@#@$) xs) ys) 

(%++) :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (++@#@$) t) t :: [a]) infixr 5 Source #

type family Head (a :: [a]) :: a where ... Source #

Equations

Head ('(:) a _) = a 
Head '[] = Apply ErrorSym0 "Data.Singletons.List.head: empty list" 

sHead :: forall a (t :: [a]). Sing t -> Sing (Apply HeadSym0 t :: a) Source #

type family Last (a :: [a]) :: a where ... Source #

Equations

Last '[] = Apply ErrorSym0 "Data.Singletons.List.last: empty list" 
Last '[x] = x 
Last ('(:) _ ('(:) x xs)) = Apply LastSym0 (Apply (Apply (:@#@$) x) xs) 

sLast :: forall a (t :: [a]). Sing t -> Sing (Apply LastSym0 t :: a) Source #

type family Tail (a :: [a]) :: [a] where ... Source #

Equations

Tail ('(:) _ t) = t 
Tail '[] = Apply ErrorSym0 "Data.Singletons.List.tail: empty list" 

sTail :: forall a (t :: [a]). Sing t -> Sing (Apply TailSym0 t :: [a]) Source #

type family Init (a :: [a]) :: [a] where ... Source #

Equations

Init '[] = Apply ErrorSym0 "Data.Singletons.List.init: empty list" 
Init ('(:) x xs) = Apply (Apply (Let6989586621679849170Init'Sym2 x xs) x) xs 

sInit :: forall a (t :: [a]). Sing t -> Sing (Apply InitSym0 t :: [a]) Source #

type family Null (arg :: t a) :: Bool Source #

Instances

Instances details
type Null (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Null (a2 :: Identity a1)
type Null (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: First a)
type Null (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: Last a)
type Null (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: First a)
type Null (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Last a)
type Null (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Max a)
type Null (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Min a)
type Null (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Dual a1)
type Null (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Product a1)
type Null (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Sum a1)
type Null (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: NonEmpty a)
type Null (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: Maybe a)
type Null (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: [a1])
type Null (a3 :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a3 :: Either a1 a2)
type Null (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Proxy a1)
type Null (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Arg a1 a2)
type Null (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: (a1, a2))
type Null (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Null (arg :: Const m a)
type Null (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Null (arg :: Product f g a)
type Null (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Null (arg :: Sum f g a)
type Null (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Null (arg :: Compose f g a)

sNull :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply NullSym0 t :: Bool) Source #

type family Length (arg :: t a) :: Natural Source #

Instances

Instances details
type Length (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Length (a2 :: Identity a1)
type Length (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: First a)
type Length (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: Last a)
type Length (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: First a)
type Length (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Last a)
type Length (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Max a)
type Length (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Min a)
type Length (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Dual a1)
type Length (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Product a1)
type Length (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Sum a1)
type Length (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: NonEmpty a)
type Length (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: Maybe a)
type Length (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: [a1])
type Length (a3 :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a3 :: Either a1 a2)
type Length (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Proxy a1)
type Length (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Arg a1 a2)
type Length (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: (a1, a2))
type Length (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Length (arg :: Const m a)
type Length (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Length (arg :: Product f g a)
type Length (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Length (arg :: Sum f g a)
type Length (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Length (arg :: Compose f g a)

sLength :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply LengthSym0 t :: Natural) Source #

List transformations

type family Map (a :: (~>) a b) (a :: [a]) :: [b] where ... Source #

Equations

Map _ '[] = NilSym0 
Map f ('(:) x xs) = Apply (Apply (:@#@$) (Apply f x)) (Apply (Apply MapSym0 f) xs) 

sMap :: forall a b (t :: (~>) a b) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MapSym0 t) t :: [b]) Source #

type family Reverse (a :: [a]) :: [a] where ... Source #

Equations

Reverse l = Apply (Apply (Let6989586621679849154RevSym1 l) l) NilSym0 

sReverse :: forall a (t :: [a]). Sing t -> Sing (Apply ReverseSym0 t :: [a]) Source #

type family Intersperse (a :: a) (a :: [a]) :: [a] where ... Source #

Equations

Intersperse _ '[] = NilSym0 
Intersperse sep ('(:) x xs) = Apply (Apply (:@#@$) x) (Apply (Apply PrependToAllSym0 sep) xs) 

sIntersperse :: forall a (t :: a) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply IntersperseSym0 t) t :: [a]) Source #

type family Intercalate (a :: [a]) (a :: [[a]]) :: [a] where ... Source #

Equations

Intercalate xs xss = Apply ConcatSym0 (Apply (Apply IntersperseSym0 xs) xss) 

sIntercalate :: forall a (t :: [a]) (t :: [[a]]). Sing t -> Sing t -> Sing (Apply (Apply IntercalateSym0 t) t :: [a]) Source #

type family Transpose (a :: [[a]]) :: [[a]] where ... Source #

Equations

Transpose '[] = NilSym0 
Transpose ('(:) '[] xss) = Apply TransposeSym0 xss 
Transpose ('(:) ('(:) x xs) xss) = Apply (Apply (:@#@$) (Apply (Apply (:@#@$) x) (Apply (Apply MapSym0 HeadSym0) xss))) (Apply TransposeSym0 (Apply (Apply (:@#@$) xs) (Apply (Apply MapSym0 TailSym0) xss))) 

sTranspose :: forall a (t :: [[a]]). Sing t -> Sing (Apply TransposeSym0 t :: [[a]]) Source #

type family Subsequences (a :: [a]) :: [[a]] where ... Source #

Equations

Subsequences xs = Apply (Apply (:@#@$) NilSym0) (Apply NonEmptySubsequencesSym0 xs) 

sSubsequences :: forall a (t :: [a]). Sing t -> Sing (Apply SubsequencesSym0 t :: [[a]]) Source #

type family Permutations (a :: [a]) :: [[a]] where ... Source #

Equations

Permutations xs0 = Apply (Apply (:@#@$) xs0) (Apply (Apply (Let6989586621679849061PermsSym1 xs0) xs0) NilSym0) 

sPermutations :: forall a (t :: [a]). Sing t -> Sing (Apply PermutationsSym0 t :: [[a]]) Source #

Reducing lists (folds)

type family Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

Instances

Instances details
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Max a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Min a)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Maybe a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Maybe a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1])
type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1)
type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Arg a2 a1)
type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1))
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Proxy a1)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Const m a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Product f g a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Sum f g a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Compose f g a)

sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

type family Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

Instances

Instances details
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Max a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Min a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: NonEmpty a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Maybe a)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1])
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Proxy a)
type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1)
type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Arg a2 a1)
type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1))
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Const m a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Product f g a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Sum f g a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Compose f g a)

sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #

type family Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

Instances

Instances details
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Max a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Min a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2])
type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1)
type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Arg a2 a1)
type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1))
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Const m a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Product f g a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Sum f g a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Compose f g a)

sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

type family Foldl1' (a :: (~>) a ((~>) a a)) (a :: [a]) :: a where ... Source #

Equations

Foldl1' f ('(:) x xs) = Apply (Apply (Apply Foldl'Sym0 f) x) xs 
Foldl1' _ '[] = Apply ErrorSym0 "Data.Singletons.List.foldl1': empty list" 

sFoldl1' :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldl1'Sym0 t) t :: a) Source #

type family Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #

Instances

Instances details
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Identity a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Max a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Max a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Min a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Min a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Dual a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Product a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Sum a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Maybe a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Maybe a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: [a1])
type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Either a2 a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Proxy a1)
type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Arg a2 a1)
type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: (a2, a1))
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Const m a1)
type Foldr (arg1 :: a ~> (b ~> b)) (arg2 :: b) (arg3 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldr (arg1 :: a ~> (b ~> b)) (arg2 :: b) (arg3 :: Product f g a)
type Foldr (arg1 :: a ~> (b ~> b)) (arg2 :: b) (arg3 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldr (arg1 :: a ~> (b ~> b)) (arg2 :: b) (arg3 :: Sum f g a)
type Foldr (arg1 :: a ~> (b ~> b)) (arg2 :: b) (arg3 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldr (arg1 :: a ~> (b ~> b)) (arg2 :: b) (arg3 :: Compose f g a)

sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

type family Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

Instances

Instances details
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Max a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Min a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2])
type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1)
type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Arg a2 a1)
type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1))
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Const m a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Product f g a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Sum f g a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Compose f g a)

sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

Special folds

type family Concat (a :: t [a]) :: [a] where ... Source #

Equations

Concat xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621680427123Sym0 xs)) NilSym0) xs 

sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a]) Source #

type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ... Source #

Equations

ConcatMap f xs = Apply (Apply (Apply FoldrSym0 (Apply (Apply Lambda_6989586621680427114Sym0 f) xs)) NilSym0) xs 

sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b]) Source #

type family And (a :: t Bool) :: Bool where ... Source #

Equations

And a_6989586621680427101 = Apply (Apply (Apply (.@#@$) GetAllSym0) (Apply FoldMapSym0 All_Sym0)) a_6989586621680427101 

sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool) Source #

type family Or (a :: t Bool) :: Bool where ... Source #

Equations

Or a_6989586621680427095 = Apply (Apply (Apply (.@#@$) GetAnySym0) (Apply FoldMapSym0 Any_Sym0)) a_6989586621680427095 

sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool) Source #

type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

Any p a_6989586621680427086 = Apply (Apply (Apply (.@#@$) GetAnySym0) (Apply FoldMapSym0 (Apply (Apply (.@#@$) Any_Sym0) p))) a_6989586621680427086 

sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool) Source #

type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

All p a_6989586621680427077 = Apply (Apply (Apply (.@#@$) GetAllSym0) (Apply FoldMapSym0 (Apply (Apply (.@#@$) All_Sym0) p))) a_6989586621680427077 

sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool) Source #

type family Sum (arg :: t a) :: a Source #

Instances

Instances details
type Sum (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Sum (a :: Identity k2)
type Sum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: First a)
type Sum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Last a)
type Sum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: First a)
type Sum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Last a)
type Sum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Max a)
type Sum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Min a)
type Sum (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Dual k2)
type Sum (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Product k2)
type Sum (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Sum k2)
type Sum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: NonEmpty a)
type Sum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Maybe a)
type Sum (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: [k2])
type Sum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Either a1 a2)
type Sum (a :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Proxy k2)
type Sum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Arg a1 a2)
type Sum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: (a1, a2))
type Sum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sum (arg :: Const m a)
type Sum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sum (arg :: Product f g a)
type Sum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sum (arg :: Sum f g a)
type Sum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sum (arg :: Compose f g a)

sSum :: forall a (t :: t a). (SFoldable t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a) Source #

type family Product (arg :: t a) :: a Source #

Instances

Instances details
type Product (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Product (a :: Identity k2)
type Product (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: First a)
type Product (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Last a)
type Product (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: First a)
type Product (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Last a)
type Product (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Max a)
type Product (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Min a)
type Product (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Dual k2)
type Product (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Product k2)
type Product (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Sum k2)
type Product (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: NonEmpty a)
type Product (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Maybe a)
type Product (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: [k2])
type Product (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Either a1 a2)
type Product (a :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Proxy k2)
type Product (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Arg a1 a2)
type Product (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: (a1, a2))
type Product (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Product (arg :: Const m a)
type Product (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Product (arg :: Product f g a)
type Product (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Product (arg :: Sum f g a)
type Product (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Product (arg :: Compose f g a)

sProduct :: forall a (t :: t a). (SFoldable t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

type family Maximum (arg :: t a) :: a Source #

Instances

Instances details
type Maximum (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Maximum (a :: Identity k2)
type Maximum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: First a)
type Maximum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Last a)
type Maximum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: First a)
type Maximum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Last a)
type Maximum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Max a)
type Maximum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Min a)
type Maximum (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: Dual k2)
type Maximum (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: Product k2)
type Maximum (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: Sum k2)
type Maximum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: NonEmpty a)
type Maximum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Maybe a)
type Maximum (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: [k2])
type Maximum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Either a1 a2)
type Maximum (arg :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Proxy a)
type Maximum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Arg a1 a2)
type Maximum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: (a1, a2))
type Maximum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Maximum (arg :: Const m a)
type Maximum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Maximum (arg :: Product f g a)
type Maximum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Maximum (arg :: Sum f g a)
type Maximum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Maximum (arg :: Compose f g a)

sMaximum :: forall a (t :: t a). (SFoldable t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

type family Minimum (arg :: t a) :: a Source #

Instances

Instances details
type Minimum (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Minimum (a :: Identity k2)
type Minimum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: First a)
type Minimum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Last a)
type Minimum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: First a)
type Minimum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Last a)
type Minimum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Max a)
type Minimum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Min a)
type Minimum (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: Dual k2)
type Minimum (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: Product k2)
type Minimum (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: Sum k2)
type Minimum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: NonEmpty a)
type Minimum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Maybe a)
type Minimum (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: [k2])
type Minimum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Either a1 a2)
type Minimum (arg :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Proxy a)
type Minimum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Arg a1 a2)
type Minimum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: (a1, a2))
type Minimum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Minimum (arg :: Const m a)
type Minimum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Minimum (arg :: Product f g a)
type Minimum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Minimum (arg :: Sum f g a)
type Minimum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Minimum (arg :: Compose f g a)

sMinimum :: forall a (t :: t a). (SFoldable t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

Building lists

Scans

type family Scanl (a :: (~>) b ((~>) a b)) (a :: b) (a :: [a]) :: [b] where ... Source #

Equations

Scanl f q ls = Apply (Apply (:@#@$) q) (Case_6989586621679848963 f q ls ls) 

sScanl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t :: [b]) Source #

type family Scanl1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ... Source #

Equations

Scanl1 f ('(:) x xs) = Apply (Apply (Apply ScanlSym0 f) x) xs 
Scanl1 _ '[] = NilSym0 

sScanl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanl1Sym0 t) t :: [a]) Source #

type family Scanr (a :: (~>) a ((~>) b b)) (a :: b) (a :: [a]) :: [b] where ... Source #

Equations

Scanr _ q0 '[] = Apply (Apply (:@#@$) q0) NilSym0 
Scanr f q0 ('(:) x xs) = Case_6989586621679848940 f q0 x xs (Let6989586621679848938Scrutinee_6989586621679844388Sym4 f q0 x xs) 

sScanr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t :: [b]) Source #

type family Scanr1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ... Source #

Equations

Scanr1 _ '[] = NilSym0 
Scanr1 _ '[x] = Apply (Apply (:@#@$) x) NilSym0 
Scanr1 f ('(:) x ('(:) wild_6989586621679844400 wild_6989586621679844402)) = Case_6989586621679848921 f x wild_6989586621679844400 wild_6989586621679844402 (Let6989586621679848919Scrutinee_6989586621679844394Sym4 f x wild_6989586621679844400 wild_6989586621679844402) 

sScanr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanr1Sym0 t) t :: [a]) Source #

Accumulating maps

type family MapAccumL (a :: (~>) a ((~>) b (a, c))) (a :: a) (a :: t b) :: (a, t c) where ... Source #

Equations

MapAccumL f s t = Apply (Apply RunStateLSym0 (Apply (Apply TraverseSym0 (Apply (Apply (.@#@$) StateLSym0) (Apply FlipSym0 f))) t)) s 

sMapAccumL :: forall t a b c (t :: (~>) a ((~>) b (a, c))) (t :: a) (t :: t b). STraversable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumLSym0 t) t) t :: (a, t c)) Source #

type family MapAccumR (a :: (~>) a ((~>) b (a, c))) (a :: a) (a :: t b) :: (a, t c) where ... Source #

Equations

MapAccumR f s t = Apply (Apply RunStateRSym0 (Apply (Apply TraverseSym0 (Apply (Apply (.@#@$) StateRSym0) (Apply FlipSym0 f))) t)) s 

sMapAccumR :: forall a b c t (t :: (~>) a ((~>) b (a, c))) (t :: a) (t :: t b). STraversable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumRSym0 t) t) t :: (a, t c)) Source #

Cyclical lists

type family Replicate (a :: Natural) (a :: a) :: [a] where ... Source #

Equations

Replicate n x = Case_6989586621679848053 n x (Let6989586621679848051Scrutinee_6989586621679844496Sym2 n x) 

sReplicate :: forall a (t :: Natural) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ReplicateSym0 t) t :: [a]) Source #

Unfolding

type family Unfoldr (a :: (~>) b (Maybe (a, b))) (a :: b) :: [a] where ... Source #

Equations

Unfoldr f b = Case_6989586621679848808 f b (Let6989586621679848806Scrutinee_6989586621679844404Sym2 f b) 

sUnfoldr :: forall b a (t :: (~>) b (Maybe (a, b))) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply UnfoldrSym0 t) t :: [a]) Source #

Sublists

Extracting sublists

type family Take (a :: Natural) (a :: [a]) :: [a] where ... Source #

Equations

Take _ '[] = NilSym0 
Take n ('(:) x xs) = Case_6989586621679848209 n x xs (Let6989586621679848207Scrutinee_6989586621679844480Sym3 n x xs) 

sTake :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeSym0 t) t :: [a]) Source #

type family Drop (a :: Natural) (a :: [a]) :: [a] where ... Source #

Equations

Drop _ '[] = NilSym0 
Drop n ('(:) x xs) = Case_6989586621679848196 n x xs (Let6989586621679848194Scrutinee_6989586621679844482Sym3 n x xs) 

sDrop :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropSym0 t) t :: [a]) Source #

type family SplitAt (a :: Natural) (a :: [a]) :: ([a], [a]) where ... Source #

Equations

SplitAt n xs = Apply (Apply Tuple2Sym0 (Apply (Apply TakeSym0 n) xs)) (Apply (Apply DropSym0 n) xs) 

sSplitAt :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SplitAtSym0 t) t :: ([a], [a])) Source #

type family TakeWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ... Source #

Equations

TakeWhile _ '[] = NilSym0 
TakeWhile p ('(:) x xs) = Case_6989586621679848326 p x xs (Let6989586621679848324Scrutinee_6989586621679844470Sym3 p x xs) 

sTakeWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeWhileSym0 t) t :: [a]) Source #

type family DropWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ... Source #

Equations

DropWhile _ '[] = NilSym0 
DropWhile p ('(:) x xs') = Case_6989586621679848313 p x xs' (Let6989586621679848311Scrutinee_6989586621679844472Sym3 p x xs') 

sDropWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropWhileSym0 t) t :: [a]) Source #

type family DropWhileEnd (a :: (~>) a Bool) (a :: [a]) :: [a] where ... Source #

Equations

DropWhileEnd p a_6989586621679848282 = Apply (Apply (Apply FoldrSym0 (Apply (Apply Lambda_6989586621679848291Sym0 p) a_6989586621679848282)) NilSym0) a_6989586621679848282 

sDropWhileEnd :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropWhileEndSym0 t) t :: [a]) Source #

type family Span (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ... Source #

Equations

Span _ '[] = Apply (Apply Tuple2Sym0 Let6989586621679848252XsSym0) Let6989586621679848252XsSym0 
Span p ('(:) x xs') = Case_6989586621679848261 p x xs' (Let6989586621679848259Scrutinee_6989586621679844476Sym3 p x xs') 

sSpan :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SpanSym0 t) t :: ([a], [a])) Source #

type family Break (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ... Source #

Equations

Break _ '[] = Apply (Apply Tuple2Sym0 Let6989586621679848217XsSym0) Let6989586621679848217XsSym0 
Break p ('(:) x xs') = Case_6989586621679848226 p x xs' (Let6989586621679848224Scrutinee_6989586621679844478Sym3 p x xs') 

sBreak :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply BreakSym0 t) t :: ([a], [a])) Source #

type family StripPrefix (a :: [a]) (a :: [a]) :: Maybe [a] where ... Source #

Equations

StripPrefix '[] ys = Apply JustSym0 ys 
StripPrefix arg_6989586621679996023 arg_6989586621679996025 = Case_6989586621679997495 arg_6989586621679996023 arg_6989586621679996025 (Apply (Apply Tuple2Sym0 arg_6989586621679996023) arg_6989586621679996025) 

type family Group (a :: [a]) :: [[a]] where ... Source #

Equations

Group xs = Apply (Apply GroupBySym0 (==@#@$)) xs 

sGroup :: forall a (t :: [a]). SEq a => Sing t -> Sing (Apply GroupSym0 t :: [[a]]) Source #

type family Inits (a :: [a]) :: [[a]] where ... Source #

Equations

Inits xs = Apply (Apply (:@#@$) NilSym0) (Case_6989586621679848794 xs xs) 

sInits :: forall a (t :: [a]). Sing t -> Sing (Apply InitsSym0 t :: [[a]]) Source #

type family Tails (a :: [a]) :: [[a]] where ... Source #

Equations

Tails xs = Apply (Apply (:@#@$) xs) (Case_6989586621679848786 xs xs) 

sTails :: forall a (t :: [a]). Sing t -> Sing (Apply TailsSym0 t :: [[a]]) Source #

Predicates

type family IsPrefixOf (a :: [a]) (a :: [a]) :: Bool where ... Source #

Equations

IsPrefixOf '[] '[] = TrueSym0 
IsPrefixOf '[] ('(:) _ _) = TrueSym0 
IsPrefixOf ('(:) _ _) '[] = FalseSym0 
IsPrefixOf ('(:) x xs) ('(:) y ys) = Apply (Apply (&&@#@$) (Apply (Apply (==@#@$) x) y)) (Apply (Apply IsPrefixOfSym0 xs) ys) 

sIsPrefixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsPrefixOfSym0 t) t :: Bool) Source #

type family IsSuffixOf (a :: [a]) (a :: [a]) :: Bool where ... Source #

Equations

IsSuffixOf x y = Apply (Apply IsPrefixOfSym0 (Apply ReverseSym0 x)) (Apply ReverseSym0 y) 

sIsSuffixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsSuffixOfSym0 t) t :: Bool) Source #

type family IsInfixOf (a :: [a]) (a :: [a]) :: Bool where ... Source #

Equations

IsInfixOf needle haystack = Apply (Apply AnySym0 (Apply IsPrefixOfSym0 needle)) (Apply TailsSym0 haystack) 

sIsInfixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsInfixOfSym0 t) t :: Bool) Source #

Searching lists

Searching by equality

type family Elem (arg :: a) (arg :: t a) :: Bool Source #

Instances

Instances details
type Elem (arg1 :: a) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: First a)
type Elem (arg1 :: a) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: Last a)
type Elem (arg1 :: a) (arg2 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg1 :: a) (arg2 :: First a)
type Elem (arg1 :: a) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg1 :: a) (arg2 :: Last a)
type Elem (arg1 :: a) (arg2 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg1 :: a) (arg2 :: Max a)
type Elem (arg1 :: a) (arg2 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg1 :: a) (arg2 :: Min a)
type Elem (arg1 :: a) (arg2 :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: NonEmpty a)
type Elem (arg1 :: a) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: Maybe a)
type Elem (a1 :: k1) (a2 :: Identity k1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Elem (a1 :: k1) (a2 :: Identity k1)
type Elem (a1 :: k1) (a2 :: Dual k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Dual k1)
type Elem (a1 :: k1) (a2 :: Product k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Product k1)
type Elem (a1 :: k1) (a2 :: Sum k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Sum k1)
type Elem (a1 :: k1) (a2 :: [k1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: [k1])
type Elem (arg1 :: a1) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a1) (arg2 :: Either a2 a1)
type Elem (arg1 :: a1) (arg2 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg1 :: a1) (arg2 :: Arg a2 a1)
type Elem (arg1 :: a1) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a1) (arg2 :: (a2, a1))
type Elem (a1 :: k1) (a2 :: Proxy k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Proxy k1)
type Elem (arg1 :: a) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Elem (arg1 :: a) (arg2 :: Const m a)
type Elem (arg1 :: a) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Elem (arg1 :: a) (arg2 :: Product f g a)
type Elem (arg1 :: a) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Elem (arg1 :: a) (arg2 :: Sum f g a)
type Elem (arg1 :: a) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Elem (arg1 :: a) (arg2 :: Compose f g a)

sElem :: forall a (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

type family NotElem (a :: a) (a :: t a) :: Bool where ... Source #

Equations

NotElem x a_6989586621680427028 = Apply (Apply (Apply (.@#@$) NotSym0) (Apply ElemSym0 x)) a_6989586621680427028 

sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool) Source #

type family Lookup (a :: a) (a :: [(a, b)]) :: Maybe b where ... Source #

Equations

Lookup _key '[] = NothingSym0 
Lookup key ('(:) '(x, y) xys) = Case_6989586621679848119 key x y xys (Let6989586621679848117Scrutinee_6989586621679844492Sym4 key x y xys) 

sLookup :: forall a b (t :: a) (t :: [(a, b)]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply LookupSym0 t) t :: Maybe b) Source #

Searching with a predicate

type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ... Source #

Equations

Find p a_6989586621680427010 = Apply (Apply (Apply (.@#@$) GetFirstSym0) (Apply FoldMapSym0 (Apply (Apply Lambda_6989586621680427019Sym0 p) a_6989586621680427010))) a_6989586621680427010 

sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a) Source #

type family Filter (a :: (~>) a Bool) (a :: [a]) :: [a] where ... Source #

Equations

Filter _p '[] = NilSym0 
Filter p ('(:) x xs) = Case_6989586621679848427 p x xs (Let6989586621679848425Scrutinee_6989586621679844458Sym3 p x xs) 

sFilter :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FilterSym0 t) t :: [a]) Source #

type family Partition (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ... Source #

Equations

Partition p xs = Apply (Apply (Apply FoldrSym0 (Apply SelectSym0 p)) (Apply (Apply Tuple2Sym0 NilSym0) NilSym0)) xs 

sPartition :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply PartitionSym0 t) t :: ([a], [a])) Source #

Indexing lists

type family (a :: [a]) !! (a :: Natural) :: a where ... infixl 9 Source #

Equations

'[] !! _ = Apply ErrorSym0 "Data.Singletons.List.!!: index too large" 
('(:) x xs) !! n = Case_6989586621679848034 x xs n (Let6989586621679848032Scrutinee_6989586621679844498Sym3 x xs n) 

(%!!) :: forall a (t :: [a]) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply (!!@#@$) t) t :: a) infixl 9 Source #

type family ElemIndex (a :: a) (a :: [a]) :: Maybe Natural where ... Source #

Equations

ElemIndex x a_6989586621679848398 = Apply (Apply FindIndexSym0 (Apply (==@#@$) x)) a_6989586621679848398 

sElemIndex :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemIndexSym0 t) t :: Maybe Natural) Source #

type family ElemIndices (a :: a) (a :: [a]) :: [Natural] where ... Source #

Equations

ElemIndices x a_6989586621679848389 = Apply (Apply FindIndicesSym0 (Apply (==@#@$) x)) a_6989586621679848389 

sElemIndices :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemIndicesSym0 t) t :: [Natural]) Source #

type family FindIndex (a :: (~>) a Bool) (a :: [a]) :: Maybe Natural where ... Source #

Equations

FindIndex p a_6989586621679848380 = Apply (Apply (Apply (.@#@$) ListToMaybeSym0) (Apply FindIndicesSym0 p)) a_6989586621679848380 

sFindIndex :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FindIndexSym0 t) t :: Maybe Natural) Source #

type family FindIndices (a :: (~>) a Bool) (a :: [a]) :: [Natural] where ... Source #

Equations

FindIndices p xs = Apply (Apply MapSym0 SndSym0) (Apply (Apply FilterSym0 (Apply (Apply Lambda_6989586621679848372Sym0 p) xs)) (Apply (Apply ZipSym0 xs) (Apply (Apply (Let6989586621679848366BuildListSym2 p xs) (FromInteger 0)) xs))) 

sFindIndices :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FindIndicesSym0 t) t :: [Natural]) Source #

Zipping and unzipping lists

type family Zip (a :: [a]) (a :: [b]) :: [(a, b)] where ... Source #

Equations

Zip ('(:) x xs) ('(:) y ys) = Apply (Apply (:@#@$) (Apply (Apply Tuple2Sym0 x) y)) (Apply (Apply ZipSym0 xs) ys) 
Zip '[] '[] = NilSym0 
Zip ('(:) _ _) '[] = NilSym0 
Zip '[] ('(:) _ _) = NilSym0 

sZip :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply ZipSym0 t) t :: [(a, b)]) Source #

type family Zip3 (a :: [a]) (a :: [b]) (a :: [c]) :: [(a, b, c)] where ... Source #

Equations

Zip3 ('(:) a as) ('(:) b bs) ('(:) c cs) = Apply (Apply (:@#@$) (Apply (Apply (Apply Tuple3Sym0 a) b) c)) (Apply (Apply (Apply Zip3Sym0 as) bs) cs) 
Zip3 '[] '[] '[] = NilSym0 
Zip3 '[] '[] ('(:) _ _) = NilSym0 
Zip3 '[] ('(:) _ _) '[] = NilSym0 
Zip3 '[] ('(:) _ _) ('(:) _ _) = NilSym0 
Zip3 ('(:) _ _) '[] '[] = NilSym0 
Zip3 ('(:) _ _) '[] ('(:) _ _) = NilSym0 
Zip3 ('(:) _ _) ('(:) _ _) '[] = NilSym0 

sZip3 :: forall a b c (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t :: [(a, b, c)]) Source #

type family Zip4 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) :: [(a, b, c, d)] where ... Source #

Equations

Zip4 a_6989586621679997466 a_6989586621679997468 a_6989586621679997470 a_6989586621679997472 = Apply (Apply (Apply (Apply (Apply ZipWith4Sym0 Tuple4Sym0) a_6989586621679997466) a_6989586621679997468) a_6989586621679997470) a_6989586621679997472 

type family Zip5 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) :: [(a, b, c, d, e)] where ... Source #

Equations

Zip5 a_6989586621679997440 a_6989586621679997442 a_6989586621679997444 a_6989586621679997446 a_6989586621679997448 = Apply (Apply (Apply (Apply (Apply (Apply ZipWith5Sym0 Tuple5Sym0) a_6989586621679997440) a_6989586621679997442) a_6989586621679997444) a_6989586621679997446) a_6989586621679997448 

type family Zip6 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) :: [(a, b, c, d, e, f)] where ... Source #

Equations

Zip6 a_6989586621679997409 a_6989586621679997411 a_6989586621679997413 a_6989586621679997415 a_6989586621679997417 a_6989586621679997419 = Apply (Apply (Apply (Apply (Apply (Apply (Apply ZipWith6Sym0 Tuple6Sym0) a_6989586621679997409) a_6989586621679997411) a_6989586621679997413) a_6989586621679997415) a_6989586621679997417) a_6989586621679997419 

type family Zip7 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) (a :: [g]) :: [(a, b, c, d, e, f, g)] where ... Source #

Equations

Zip7 a_6989586621679997373 a_6989586621679997375 a_6989586621679997377 a_6989586621679997379 a_6989586621679997381 a_6989586621679997383 a_6989586621679997385 = Apply (Apply (Apply (Apply (Apply (Apply (Apply (Apply ZipWith7Sym0 Tuple7Sym0) a_6989586621679997373) a_6989586621679997375) a_6989586621679997377) a_6989586621679997379) a_6989586621679997381) a_6989586621679997383) a_6989586621679997385 

type family ZipWith (a :: (~>) a ((~>) b c)) (a :: [a]) (a :: [b]) :: [c] where ... Source #

Equations

ZipWith f ('(:) x xs) ('(:) y ys) = Apply (Apply (:@#@$) (Apply (Apply f x) y)) (Apply (Apply (Apply ZipWithSym0 f) xs) ys) 
ZipWith _ '[] '[] = NilSym0 
ZipWith _ ('(:) _ _) '[] = NilSym0 
ZipWith _ '[] ('(:) _ _) = NilSym0 

sZipWith :: forall a b c (t :: (~>) a ((~>) b c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t :: [c]) Source #

type family ZipWith3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: [a]) (a :: [b]) (a :: [c]) :: [d] where ... Source #

Equations

ZipWith3 z ('(:) a as) ('(:) b bs) ('(:) c cs) = Apply (Apply (:@#@$) (Apply (Apply (Apply z a) b) c)) (Apply (Apply (Apply (Apply ZipWith3Sym0 z) as) bs) cs) 
ZipWith3 _ '[] '[] '[] = NilSym0 
ZipWith3 _ '[] '[] ('(:) _ _) = NilSym0 
ZipWith3 _ '[] ('(:) _ _) '[] = NilSym0 
ZipWith3 _ '[] ('(:) _ _) ('(:) _ _) = NilSym0 
ZipWith3 _ ('(:) _ _) '[] '[] = NilSym0 
ZipWith3 _ ('(:) _ _) '[] ('(:) _ _) = NilSym0 
ZipWith3 _ ('(:) _ _) ('(:) _ _) '[] = NilSym0 

sZipWith3 :: forall a b c d (t :: (~>) a ((~>) b ((~>) c d))) (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t :: [d]) Source #

type family ZipWith4 (a :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) :: [e] where ... Source #

Equations

ZipWith4 z ('(:) a as) ('(:) b bs) ('(:) c cs) ('(:) d ds) = Apply (Apply (:@#@$) (Apply (Apply (Apply (Apply z a) b) c) d)) (Apply (Apply (Apply (Apply (Apply ZipWith4Sym0 z) as) bs) cs) ds) 
ZipWith4 _ _ _ _ _ = NilSym0 

type family ZipWith5 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) :: [f] where ... Source #

Equations

ZipWith5 z ('(:) a as) ('(:) b bs) ('(:) c cs) ('(:) d ds) ('(:) e es) = Apply (Apply (:@#@$) (Apply (Apply (Apply (Apply (Apply z a) b) c) d) e)) (Apply (Apply (Apply (Apply (Apply (Apply ZipWith5Sym0 z) as) bs) cs) ds) es) 
ZipWith5 _ _ _ _ _ _ = NilSym0 

type family ZipWith6 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) :: [g] where ... Source #

Equations

ZipWith6 z ('(:) a as) ('(:) b bs) ('(:) c cs) ('(:) d ds) ('(:) e es) ('(:) f fs) = Apply (Apply (:@#@$) (Apply (Apply (Apply (Apply (Apply (Apply z a) b) c) d) e) f)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply ZipWith6Sym0 z) as) bs) cs) ds) es) fs) 
ZipWith6 _ _ _ _ _ _ _ = NilSym0 

type family ZipWith7 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) (a :: [g]) :: [h] where ... Source #

Equations

ZipWith7 z ('(:) a as) ('(:) b bs) ('(:) c cs) ('(:) d ds) ('(:) e es) ('(:) f fs) ('(:) g gs) = Apply (Apply (:@#@$) (Apply (Apply (Apply (Apply (Apply (Apply (Apply z a) b) c) d) e) f) g)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply (Apply ZipWith7Sym0 z) as) bs) cs) ds) es) fs) gs) 
ZipWith7 _ _ _ _ _ _ _ _ = NilSym0 

type family Unzip (a :: [(a, b)]) :: ([a], [b]) where ... Source #

Equations

Unzip xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679848681Sym0 xs)) (Apply (Apply Tuple2Sym0 NilSym0) NilSym0)) xs 

sUnzip :: forall a b (t :: [(a, b)]). Sing t -> Sing (Apply UnzipSym0 t :: ([a], [b])) Source #

type family Unzip3 (a :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #

Equations

Unzip3 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679848663Sym0 xs)) (Apply (Apply (Apply Tuple3Sym0 NilSym0) NilSym0) NilSym0)) xs 

sUnzip3 :: forall a b c (t :: [(a, b, c)]). Sing t -> Sing (Apply Unzip3Sym0 t :: ([a], [b], [c])) Source #

type family Unzip4 (a :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ... Source #

Equations

Unzip4 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679848643Sym0 xs)) (Apply (Apply (Apply (Apply Tuple4Sym0 NilSym0) NilSym0) NilSym0) NilSym0)) xs 

sUnzip4 :: forall a b c d (t :: [(a, b, c, d)]). Sing t -> Sing (Apply Unzip4Sym0 t :: ([a], [b], [c], [d])) Source #

type family Unzip5 (a :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ... Source #

Equations

Unzip5 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679848621Sym0 xs)) (Apply (Apply (Apply (Apply (Apply Tuple5Sym0 NilSym0) NilSym0) NilSym0) NilSym0) NilSym0)) xs 

sUnzip5 :: forall a b c d e (t :: [(a, b, c, d, e)]). Sing t -> Sing (Apply Unzip5Sym0 t :: ([a], [b], [c], [d], [e])) Source #

type family Unzip6 (a :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ... Source #

Equations

Unzip6 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679848597Sym0 xs)) (Apply (Apply (Apply (Apply (Apply (Apply Tuple6Sym0 NilSym0) NilSym0) NilSym0) NilSym0) NilSym0) NilSym0)) xs 

sUnzip6 :: forall a b c d e f (t :: [(a, b, c, d, e, f)]). Sing t -> Sing (Apply Unzip6Sym0 t :: ([a], [b], [c], [d], [e], [f])) Source #

type family Unzip7 (a :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ... Source #

Equations

Unzip7 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679848571Sym0 xs)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply Tuple7Sym0 NilSym0) NilSym0) NilSym0) NilSym0) NilSym0) NilSym0) NilSym0)) xs 

sUnzip7 :: forall a b c d e f g (t :: [(a, b, c, d, e, f, g)]). Sing t -> Sing (Apply Unzip7Sym0 t :: ([a], [b], [c], [d], [e], [f], [g])) Source #

Special lists

Functions on Symbols

type family Unlines (a :: [Symbol]) :: Symbol where ... Source #

Equations

Unlines '[] = "" 
Unlines ('(:) l ls) = Apply (Apply (<>@#@$) l) (Apply (Apply (<>@#@$) "\n") (Apply UnlinesSym0 ls)) 

sUnlines :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnlinesSym0 t :: Symbol) Source #

type family Unwords (a :: [Symbol]) :: Symbol where ... Source #

Equations

Unwords '[] = "" 
Unwords ('(:) w ws) = Apply (Apply (<>@#@$) w) (Apply (Let6989586621679848557GoSym2 w ws) ws) 

sUnwords :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnwordsSym0 t :: Symbol) Source #

"Set" operations

type family Nub (a :: [a]) :: [a] where ... Source #

Equations

Nub l = Apply (Apply (Let6989586621679848012Nub'Sym1 l) l) NilSym0 

sNub :: forall a (t :: [a]). SEq a => Sing t -> Sing (Apply NubSym0 t :: [a]) Source #

type family Delete (a :: a) (a :: [a]) :: [a] where ... Source #

Equations

Delete a_6989586621679848541 a_6989586621679848543 = Apply (Apply (Apply DeleteBySym0 (==@#@$)) a_6989586621679848541) a_6989586621679848543 

sDelete :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply DeleteSym0 t) t :: [a]) Source #

type family (a :: [a]) \\ (a :: [a]) :: [a] where ... infix 5 Source #

Equations

a_6989586621679848530 \\ a_6989586621679848532 = Apply (Apply (Apply FoldlSym0 (Apply FlipSym0 DeleteSym0)) a_6989586621679848530) a_6989586621679848532 

(%\\) :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply (\\@#@$) t) t :: [a]) infix 5 Source #

type family Union (a :: [a]) (a :: [a]) :: [a] where ... Source #

Equations

Union a_6989586621679847957 a_6989586621679847959 = Apply (Apply (Apply UnionBySym0 (==@#@$)) a_6989586621679847957) a_6989586621679847959 

sUnion :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply UnionSym0 t) t :: [a]) Source #

type family Intersect (a :: [a]) (a :: [a]) :: [a] where ... Source #

Equations

Intersect a_6989586621679848348 a_6989586621679848350 = Apply (Apply (Apply IntersectBySym0 (==@#@$)) a_6989586621679848348) a_6989586621679848350 

sIntersect :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IntersectSym0 t) t :: [a]) Source #

Ordered lists

type family Insert (a :: a) (a :: [a]) :: [a] where ... Source #

Equations

Insert e ls = Apply (Apply (Apply InsertBySym0 CompareSym0) e) ls 

sInsert :: forall a (t :: a) (t :: [a]). SOrd a => Sing t -> Sing t -> Sing (Apply (Apply InsertSym0 t) t :: [a]) Source #

type family Sort (a :: [a]) :: [a] where ... Source #

Equations

Sort a_6989586621679848148 = Apply (Apply SortBySym0 CompareSym0) a_6989586621679848148 

sSort :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply SortSym0 t :: [a]) Source #

Generalized functions

The "By" operations

User-supplied equality (replacing an Eq context)

The predicate is assumed to define an equivalence.

type family NubBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) :: [a] where ... Source #

Equations

NubBy eq l = Apply (Apply (Let6989586621679847996NubBy'Sym2 eq l) l) NilSym0 

sNubBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply NubBySym0 t) t :: [a]) Source #

type family DeleteBy (a :: (~>) a ((~>) a Bool)) (a :: a) (a :: [a]) :: [a] where ... Source #

Equations

DeleteBy _ _ '[] = NilSym0 
DeleteBy eq x ('(:) y ys) = Case_6989586621679848527 eq x y ys (Let6989586621679848525Scrutinee_6989586621679844442Sym4 eq x y ys) 

sDeleteBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: a) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteBySym0 t) t) t :: [a]) Source #

type family DeleteFirstsBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ... Source #

Equations

DeleteFirstsBy eq a_6989586621679848500 a_6989586621679848502 = Apply (Apply (Apply FoldlSym0 (Apply FlipSym0 (Apply DeleteBySym0 eq))) a_6989586621679848500) a_6989586621679848502 

sDeleteFirstsBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteFirstsBySym0 t) t) t :: [a]) Source #

type family UnionBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ... Source #

Equations

UnionBy eq xs ys = Apply (Apply (++@#@$) xs) (Apply (Apply (Apply FoldlSym0 (Apply FlipSym0 (Apply DeleteBySym0 eq))) (Apply (Apply NubBySym0 eq) ys)) xs) 

sUnionBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply UnionBySym0 t) t) t :: [a]) Source #

type family IntersectBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ... Source #

Equations

IntersectBy _ '[] '[] = NilSym0 
IntersectBy _ '[] ('(:) _ _) = NilSym0 
IntersectBy _ ('(:) _ _) '[] = NilSym0 
IntersectBy eq ('(:) wild_6989586621679844462 wild_6989586621679844464) ('(:) wild_6989586621679844466 wild_6989586621679844468) = Apply (Apply (>>=@#@$) (Let6989586621679848341XsSym5 eq wild_6989586621679844462 wild_6989586621679844464 wild_6989586621679844466 wild_6989586621679844468)) (Apply (Apply (Apply (Apply (Apply Lambda_6989586621679848344Sym0 eq) wild_6989586621679844462) wild_6989586621679844464) wild_6989586621679844466) wild_6989586621679844468) 

sIntersectBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply IntersectBySym0 t) t) t :: [a]) Source #

type family GroupBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) :: [[a]] where ... Source #

Equations

GroupBy _ '[] = NilSym0 
GroupBy eq ('(:) x xs) = Apply (Apply (:@#@$) (Apply (Apply (:@#@$) x) (Let6989586621679848130YsSym3 eq x xs))) (Apply (Apply GroupBySym0 eq) (Let6989586621679848130ZsSym3 eq x xs)) 

sGroupBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply GroupBySym0 t) t :: [[a]]) Source #

User-supplied comparison (replacing an Ord context)

The function is assumed to define a total ordering.

type family SortBy (a :: (~>) a ((~>) a Ordering)) (a :: [a]) :: [a] where ... Source #

Equations

SortBy cmp a_6989586621679848491 = Apply (Apply (Apply FoldrSym0 (Apply InsertBySym0 cmp)) NilSym0) a_6989586621679848491 

sSortBy :: forall a (t :: (~>) a ((~>) a Ordering)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SortBySym0 t) t :: [a]) Source #

type family InsertBy (a :: (~>) a ((~>) a Ordering)) (a :: a) (a :: [a]) :: [a] where ... Source #

Equations

InsertBy _ x '[] = Apply (Apply (:@#@$) x) NilSym0 
InsertBy cmp x ('(:) y ys') = Case_6989586621679848488 cmp x y ys' (Let6989586621679848486Scrutinee_6989586621679844444Sym4 cmp x y ys') 

sInsertBy :: forall a (t :: (~>) a ((~>) a Ordering)) (t :: a) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply InsertBySym0 t) t) t :: [a]) Source #

type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #

Equations

MaximumBy cmp a_6989586621680427057 = Apply (Apply Foldl1Sym0 (Let6989586621680427066Max'Sym2 cmp a_6989586621680427057)) a_6989586621680427057 

sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a) Source #

type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #

Equations

MinimumBy cmp a_6989586621680427037 = Apply (Apply Foldl1Sym0 (Let6989586621680427046Min'Sym2 cmp a_6989586621680427037)) a_6989586621680427037 

sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a) Source #

The "generic" operations

The prefix `generic' indicates an overloaded function that is a generalized version of a Prelude function.

type family GenericLength (a :: [a]) :: i where ... Source #

Equations

GenericLength '[] = FromInteger 0 
GenericLength ('(:) _ xs) = Apply (Apply (+@#@$) (FromInteger 1)) (Apply GenericLengthSym0 xs) 

sGenericLength :: forall a i (t :: [a]). SNum i => Sing t -> Sing (Apply GenericLengthSym0 t :: i) Source #

Defunctionalization symbols

type family NilSym0 :: [a :: Type] where ... Source #

Equations

NilSym0 = '[] 

data (:@#@$) :: (~>) a ((~>) [a] [a :: Type]) infixr 5 Source #

Instances

Instances details
SingI ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (:@#@$)

SuppressUnusedWarnings ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679042108 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679042108 :: a) = (:@#@$$) a6989586621679042108

data (:@#@$$) (a6989586621679042108 :: a) :: (~>) [a] [a :: Type] infixr 5 Source #

Instances

Instances details
SingI1 ((:@#@$$) :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((:@#@$$) x)

SingI d => SingI ((:@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing ((:@#@$$) d)

SuppressUnusedWarnings ((:@#@$$) a6989586621679042108 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$$) a6989586621679042108 :: TyFun [a] [a] -> Type) (a6989586621679042109 :: [a]) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$$) a6989586621679042108 :: TyFun [a] [a] -> Type) (a6989586621679042109 :: [a]) = a6989586621679042108 ': a6989586621679042109

type family (a6989586621679042108 :: a) :@#@$$$ (a6989586621679042109 :: [a]) :: [a :: Type] where ... infixr 5 Source #

Equations

a6989586621679042108 :@#@$$$ a6989586621679042109 = '(:) a6989586621679042108 a6989586621679042109 

type family (a6989586621679287772 :: [a]) ++@#@$$$ (a6989586621679287773 :: [a]) :: [a] where ... infixr 5 Source #

Equations

a6989586621679287772 ++@#@$$$ a6989586621679287773 = (++) a6989586621679287772 a6989586621679287773 

data (++@#@$$) (a6989586621679287772 :: [a]) :: (~>) [a] [a] infixr 5 Source #

Instances

Instances details
SingI1 ((++@#@$$) :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((++@#@$$) x)

SingI d => SingI ((++@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ((++@#@$$) d)

SuppressUnusedWarnings ((++@#@$$) a6989586621679287772 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$$) a6989586621679287772 :: TyFun [a] [a] -> Type) (a6989586621679287773 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$$) a6989586621679287772 :: TyFun [a] [a] -> Type) (a6989586621679287773 :: [a]) = a6989586621679287772 ++ a6989586621679287773

data (++@#@$) :: (~>) [a] ((~>) [a] [a]) infixr 5 Source #

Instances

Instances details
SingI ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (++@#@$)

SuppressUnusedWarnings ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679287772 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679287772 :: [a]) = (++@#@$$) a6989586621679287772

data HeadSym0 :: (~>) [a] a Source #

Instances

Instances details
SingI (HeadSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing HeadSym0

SuppressUnusedWarnings (HeadSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (HeadSym0 :: TyFun [a] a -> Type) (a6989586621679849189 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (HeadSym0 :: TyFun [a] a -> Type) (a6989586621679849189 :: [a]) = Head a6989586621679849189

type family HeadSym1 (a6989586621679849189 :: [a]) :: a where ... Source #

Equations

HeadSym1 a6989586621679849189 = Head a6989586621679849189 

data LastSym0 :: (~>) [a] a Source #

Instances

Instances details
SingI (LastSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing LastSym0

SuppressUnusedWarnings (LastSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LastSym0 :: TyFun [a] a -> Type) (a6989586621679849183 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LastSym0 :: TyFun [a] a -> Type) (a6989586621679849183 :: [a]) = Last a6989586621679849183

type family LastSym1 (a6989586621679849183 :: [a]) :: a where ... Source #

Equations

LastSym1 a6989586621679849183 = Last a6989586621679849183 

data TailSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SingI (TailSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing TailSym0

SuppressUnusedWarnings (TailSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailSym0 :: TyFun [a] [a] -> Type) (a6989586621679849179 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailSym0 :: TyFun [a] [a] -> Type) (a6989586621679849179 :: [a]) = Tail a6989586621679849179

type family TailSym1 (a6989586621679849179 :: [a]) :: [a] where ... Source #

Equations

TailSym1 a6989586621679849179 = Tail a6989586621679849179 

data InitSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SingI (InitSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing InitSym0

SuppressUnusedWarnings (InitSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitSym0 :: TyFun [a] [a] -> Type) (a6989586621679849167 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitSym0 :: TyFun [a] [a] -> Type) (a6989586621679849167 :: [a]) = Init a6989586621679849167

type family InitSym1 (a6989586621679849167 :: [a]) :: [a] where ... Source #

Equations

InitSym1 a6989586621679849167 = Init a6989586621679849167 

data NullSym0 :: (~>) (t a) Bool Source #

Instances

Instances details
SFoldable t => SingI (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing NullSym0

SuppressUnusedWarnings (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680427279 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680427279 :: t a) = Null a6989586621680427279

type family NullSym1 (a6989586621680427279 :: t a) :: Bool where ... Source #

Equations

NullSym1 a6989586621680427279 = Null a6989586621680427279 

data LengthSym0 :: (~>) (t a) Natural Source #

Instances

Instances details
SFoldable t => SingI (LengthSym0 :: TyFun (t a) Natural -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing LengthSym0

SuppressUnusedWarnings (LengthSym0 :: TyFun (t a) Natural -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621680427282 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621680427282 :: t a) = Length a6989586621680427282

type family LengthSym1 (a6989586621680427282 :: t a) :: Natural where ... Source #

Equations

LengthSym1 a6989586621680427282 = Length a6989586621680427282 

data MapSym0 :: (~>) ((~>) a b) ((~>) [a] [b]) Source #

Instances

Instances details
SingI (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing MapSym0

SuppressUnusedWarnings (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) (a6989586621679287781 :: a ~> b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) (a6989586621679287781 :: a ~> b) = MapSym1 a6989586621679287781

data MapSym1 (a6989586621679287781 :: (~>) a b) :: (~>) [a] [b] Source #

Instances

Instances details
SingI1 (MapSym1 :: (a ~> b) -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapSym1 x)

SingI d => SingI (MapSym1 d :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (MapSym1 d)

SuppressUnusedWarnings (MapSym1 a6989586621679287781 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym1 a6989586621679287781 :: TyFun [a] [b] -> Type) (a6989586621679287782 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym1 a6989586621679287781 :: TyFun [a] [b] -> Type) (a6989586621679287782 :: [a]) = Map a6989586621679287781 a6989586621679287782

type family MapSym2 (a6989586621679287781 :: (~>) a b) (a6989586621679287782 :: [a]) :: [b] where ... Source #

Equations

MapSym2 a6989586621679287781 a6989586621679287782 = Map a6989586621679287781 a6989586621679287782 

data ReverseSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SingI (ReverseSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ReverseSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679849152 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679849152 :: [a]) = Reverse a6989586621679849152

type family ReverseSym1 (a6989586621679849152 :: [a]) :: [a] where ... Source #

Equations

ReverseSym1 a6989586621679849152 = Reverse a6989586621679849152 

data IntersperseSym0 :: (~>) a ((~>) [a] [a]) Source #

Instances

Instances details
SingI (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679849145 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679849145 :: a) = IntersperseSym1 a6989586621679849145

data IntersperseSym1 (a6989586621679849145 :: a) :: (~>) [a] [a] Source #

Instances

Instances details
SingI1 (IntersperseSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IntersperseSym1 x)

SingI d => SingI (IntersperseSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersperseSym1 d)

SuppressUnusedWarnings (IntersperseSym1 a6989586621679849145 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym1 a6989586621679849145 :: TyFun [a] [a] -> Type) (a6989586621679849146 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym1 a6989586621679849145 :: TyFun [a] [a] -> Type) (a6989586621679849146 :: [a]) = Intersperse a6989586621679849145 a6989586621679849146

type family IntersperseSym2 (a6989586621679849145 :: a) (a6989586621679849146 :: [a]) :: [a] where ... Source #

Equations

IntersperseSym2 a6989586621679849145 a6989586621679849146 = Intersperse a6989586621679849145 a6989586621679849146 

data IntercalateSym0 :: (~>) [a] ((~>) [[a]] [a]) Source #

Instances

Instances details
SingI (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) (a6989586621679849138 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) (a6989586621679849138 :: [a]) = IntercalateSym1 a6989586621679849138

data IntercalateSym1 (a6989586621679849138 :: [a]) :: (~>) [[a]] [a] Source #

Instances

Instances details
SingI1 (IntercalateSym1 :: [a] -> TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IntercalateSym1 x)

SingI d => SingI (IntercalateSym1 d :: TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntercalateSym1 d)

SuppressUnusedWarnings (IntercalateSym1 a6989586621679849138 :: TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym1 a6989586621679849138 :: TyFun [[a]] [a] -> Type) (a6989586621679849139 :: [[a]]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym1 a6989586621679849138 :: TyFun [[a]] [a] -> Type) (a6989586621679849139 :: [[a]]) = Intercalate a6989586621679849138 a6989586621679849139

type family IntercalateSym2 (a6989586621679849138 :: [a]) (a6989586621679849139 :: [[a]]) :: [a] where ... Source #

Equations

IntercalateSym2 a6989586621679849138 a6989586621679849139 = Intercalate a6989586621679849138 a6989586621679849139 

data TransposeSym0 :: (~>) [[a]] [[a]] Source #

Instances

Instances details
SingI (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) (a6989586621679848039 :: [[a]]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) (a6989586621679848039 :: [[a]]) = Transpose a6989586621679848039

type family TransposeSym1 (a6989586621679848039 :: [[a]]) :: [[a]] where ... Source #

Equations

TransposeSym1 a6989586621679848039 = Transpose a6989586621679848039 

data SubsequencesSym0 :: (~>) [a] [[a]] Source #

Instances

Instances details
SingI (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679849133 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679849133 :: [a]) = Subsequences a6989586621679849133

type family SubsequencesSym1 (a6989586621679849133 :: [a]) :: [[a]] where ... Source #

Equations

SubsequencesSym1 a6989586621679849133 = Subsequences a6989586621679849133 

data PermutationsSym0 :: (~>) [a] [[a]] Source #

Instances

Instances details
SingI (PermutationsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (PermutationsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PermutationsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679849059 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PermutationsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679849059 :: [a]) = Permutations a6989586621679849059

type family PermutationsSym1 (a6989586621679849059 :: [a]) :: [[a]] where ... Source #

Equations

PermutationsSym1 a6989586621679849059 = Permutations a6989586621679849059 

data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b)) Source #

Instances

Instances details
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing FoldlSym0

SuppressUnusedWarnings (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680427254 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680427254 :: b ~> (a ~> b)) = FoldlSym1 a6989586621680427254 :: TyFun b (t a ~> b) -> Type

data FoldlSym1 (a6989586621680427254 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b) Source #

Instances

Instances details
SFoldable t => SingI1 (FoldlSym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldlSym1 x)

(SFoldable t, SingI d) => SingI (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym1 d)

SuppressUnusedWarnings (FoldlSym1 a6989586621680427254 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym1 a6989586621680427254 :: TyFun b (t a ~> b) -> Type) (a6989586621680427255 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym1 a6989586621680427254 :: TyFun b (t a ~> b) -> Type) (a6989586621680427255 :: b) = FoldlSym2 a6989586621680427254 a6989586621680427255 :: TyFun (t a) b -> Type

data FoldlSym2 (a6989586621680427254 :: (~>) b ((~>) a b)) (a6989586621680427255 :: b) :: (~>) (t a) b Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (FoldlSym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldlSym2 d x)

SFoldable t => SingI2 (FoldlSym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (FoldlSym2 x y)

(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym2 d1 d2)

SuppressUnusedWarnings (FoldlSym2 a6989586621680427254 a6989586621680427255 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym2 a6989586621680427254 a6989586621680427255 :: TyFun (t a) b -> Type) (a6989586621680427256 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym2 a6989586621680427254 a6989586621680427255 :: TyFun (t a) b -> Type) (a6989586621680427256 :: t a) = Foldl a6989586621680427254 a6989586621680427255 a6989586621680427256

type family FoldlSym3 (a6989586621680427254 :: (~>) b ((~>) a b)) (a6989586621680427255 :: b) (a6989586621680427256 :: t a) :: b where ... Source #

Equations

FoldlSym3 a6989586621680427254 a6989586621680427255 a6989586621680427256 = Foldl a6989586621680427254 a6989586621680427255 a6989586621680427256 

data Foldl'Sym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b)) Source #

Instances

Instances details
SFoldable t => SingI (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing Foldl'Sym0

SuppressUnusedWarnings (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680427261 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680427261 :: b ~> (a ~> b)) = Foldl'Sym1 a6989586621680427261 :: TyFun b (t a ~> b) -> Type

data Foldl'Sym1 (a6989586621680427261 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b) Source #

Instances

Instances details
SFoldable t => SingI1 (Foldl'Sym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldl'Sym1 x)

(SFoldable t, SingI d) => SingI (Foldl'Sym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl'Sym1 d)

SuppressUnusedWarnings (Foldl'Sym1 a6989586621680427261 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym1 a6989586621680427261 :: TyFun b (t a ~> b) -> Type) (a6989586621680427262 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym1 a6989586621680427261 :: TyFun b (t a ~> b) -> Type) (a6989586621680427262 :: b) = Foldl'Sym2 a6989586621680427261 a6989586621680427262 :: TyFun (t a) b -> Type

data Foldl'Sym2 (a6989586621680427261 :: (~>) b ((~>) a b)) (a6989586621680427262 :: b) :: (~>) (t a) b Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (Foldl'Sym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldl'Sym2 d x)

SFoldable t => SingI2 (Foldl'Sym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Foldl'Sym2 x y)

(SFoldable t, SingI d1, SingI d2) => SingI (Foldl'Sym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl'Sym2 d1 d2)

SuppressUnusedWarnings (Foldl'Sym2 a6989586621680427261 a6989586621680427262 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym2 a6989586621680427261 a6989586621680427262 :: TyFun (t a) b -> Type) (a6989586621680427263 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym2 a6989586621680427261 a6989586621680427262 :: TyFun (t a) b -> Type) (a6989586621680427263 :: t a) = Foldl' a6989586621680427261 a6989586621680427262 a6989586621680427263

type family Foldl'Sym3 (a6989586621680427261 :: (~>) b ((~>) a b)) (a6989586621680427262 :: b) (a6989586621680427263 :: t a) :: b where ... Source #

Equations

Foldl'Sym3 a6989586621680427261 a6989586621680427262 a6989586621680427263 = Foldl' a6989586621680427261 a6989586621680427262 a6989586621680427263 

data Foldl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a) Source #

Instances

Instances details
SFoldable t => SingI (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing Foldl1Sym0

SuppressUnusedWarnings (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680427272 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680427272 :: a ~> (a ~> a)) = Foldl1Sym1 a6989586621680427272 :: TyFun (t a) a -> Type

data Foldl1Sym1 (a6989586621680427272 :: (~>) a ((~>) a a)) :: (~>) (t a) a Source #

Instances

Instances details
SFoldable t => SingI1 (Foldl1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldl1Sym1 x)

(SFoldable t, SingI d) => SingI (Foldl1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl1Sym1 d)

SuppressUnusedWarnings (Foldl1Sym1 a6989586621680427272 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym1 a6989586621680427272 :: TyFun (t a) a -> Type) (a6989586621680427273 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym1 a6989586621680427272 :: TyFun (t a) a -> Type) (a6989586621680427273 :: t a) = Foldl1 a6989586621680427272 a6989586621680427273

type family Foldl1Sym2 (a6989586621680427272 :: (~>) a ((~>) a a)) (a6989586621680427273 :: t a) :: a where ... Source #

Equations

Foldl1Sym2 a6989586621680427272 a6989586621680427273 = Foldl1 a6989586621680427272 a6989586621680427273 

data Foldl1'Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] a) Source #

Instances

Instances details
SingI (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) (a6989586621679849024 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) (a6989586621679849024 :: a ~> (a ~> a)) = Foldl1'Sym1 a6989586621679849024

data Foldl1'Sym1 (a6989586621679849024 :: (~>) a ((~>) a a)) :: (~>) [a] a Source #

Instances

Instances details
SingI d => SingI (Foldl1'Sym1 d :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Foldl1'Sym1 d)

SuppressUnusedWarnings (Foldl1'Sym1 a6989586621679849024 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Foldl1'Sym1 :: (a ~> (a ~> a)) -> TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldl1'Sym1 x)

type Apply (Foldl1'Sym1 a6989586621679849024 :: TyFun [a] a -> Type) (a6989586621679849025 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym1 a6989586621679849024 :: TyFun [a] a -> Type) (a6989586621679849025 :: [a]) = Foldl1' a6989586621679849024 a6989586621679849025

type family Foldl1'Sym2 (a6989586621679849024 :: (~>) a ((~>) a a)) (a6989586621679849025 :: [a]) :: a where ... Source #

Equations

Foldl1'Sym2 a6989586621679849024 a6989586621679849025 = Foldl1' a6989586621679849024 a6989586621679849025 

data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b)) Source #

Instances

Instances details
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing FoldrSym0

SuppressUnusedWarnings (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680427240 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680427240 :: a ~> (b ~> b)) = FoldrSym1 a6989586621680427240 :: TyFun b (t a ~> b) -> Type

data FoldrSym1 (a6989586621680427240 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b) Source #

Instances

Instances details
SFoldable t => SingI1 (FoldrSym1 :: (a ~> (b ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldrSym1 x)

(SFoldable t, SingI d) => SingI (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym1 d)

SuppressUnusedWarnings (FoldrSym1 a6989586621680427240 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym1 a6989586621680427240 :: TyFun b (t a ~> b) -> Type) (a6989586621680427241 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym1 a6989586621680427240 :: TyFun b (t a ~> b) -> Type) (a6989586621680427241 :: b) = FoldrSym2 a6989586621680427240 a6989586621680427241 :: TyFun (t a) b -> Type

data FoldrSym2 (a6989586621680427240 :: (~>) a ((~>) b b)) (a6989586621680427241 :: b) :: (~>) (t a) b Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (FoldrSym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldrSym2 d x)

SFoldable t => SingI2 (FoldrSym2 :: (a ~> (b ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (FoldrSym2 x y)

(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym2 d1 d2)

SuppressUnusedWarnings (FoldrSym2 a6989586621680427240 a6989586621680427241 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym2 a6989586621680427240 a6989586621680427241 :: TyFun (t a) b -> Type) (a6989586621680427242 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym2 a6989586621680427240 a6989586621680427241 :: TyFun (t a) b -> Type) (a6989586621680427242 :: t a) = Foldr a6989586621680427240 a6989586621680427241 a6989586621680427242

type family FoldrSym3 (a6989586621680427240 :: (~>) a ((~>) b b)) (a6989586621680427241 :: b) (a6989586621680427242 :: t a) :: b where ... Source #

Equations

FoldrSym3 a6989586621680427240 a6989586621680427241 a6989586621680427242 = Foldr a6989586621680427240 a6989586621680427241 a6989586621680427242 

data Foldr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a) Source #

Instances

Instances details
SFoldable t => SingI (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing Foldr1Sym0

SuppressUnusedWarnings (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680427267 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680427267 :: a ~> (a ~> a)) = Foldr1Sym1 a6989586621680427267 :: TyFun (t a) a -> Type

data Foldr1Sym1 (a6989586621680427267 :: (~>) a ((~>) a a)) :: (~>) (t a) a Source #

Instances

Instances details
SFoldable t => SingI1 (Foldr1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldr1Sym1 x)

(SFoldable t, SingI d) => SingI (Foldr1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldr1Sym1 d)

SuppressUnusedWarnings (Foldr1Sym1 a6989586621680427267 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym1 a6989586621680427267 :: TyFun (t a) a -> Type) (a6989586621680427268 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym1 a6989586621680427267 :: TyFun (t a) a -> Type) (a6989586621680427268 :: t a) = Foldr1 a6989586621680427267 a6989586621680427268

type family Foldr1Sym2 (a6989586621680427267 :: (~>) a ((~>) a a)) (a6989586621680427268 :: t a) :: a where ... Source #

Equations

Foldr1Sym2 a6989586621680427267 a6989586621680427268 = Foldr1 a6989586621680427267 a6989586621680427268 

data ConcatSym0 :: (~>) (t [a]) [a] Source #

Instances

Instances details
SFoldable t => SingI (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing ConcatSym0

SuppressUnusedWarnings (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680427121 :: t [a]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680427121 :: t [a]) = Concat a6989586621680427121

type family ConcatSym1 (a6989586621680427121 :: t [a]) :: [a] where ... Source #

Equations

ConcatSym1 a6989586621680427121 = Concat a6989586621680427121 

data ConcatMapSym0 :: (~>) ((~>) a [b]) ((~>) (t a) [b]) Source #

Instances

Instances details
SFoldable t => SingI (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680427110 :: a ~> [b]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680427110 :: a ~> [b]) = ConcatMapSym1 a6989586621680427110 :: TyFun (t a) [b] -> Type

data ConcatMapSym1 (a6989586621680427110 :: (~>) a [b]) :: (~>) (t a) [b] Source #

Instances

Instances details
SFoldable t => SingI1 (ConcatMapSym1 :: (a ~> [b]) -> TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ConcatMapSym1 x)

(SFoldable t, SingI d) => SingI (ConcatMapSym1 d :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ConcatMapSym1 d)

SuppressUnusedWarnings (ConcatMapSym1 a6989586621680427110 :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym1 a6989586621680427110 :: TyFun (t a) [b] -> Type) (a6989586621680427111 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym1 a6989586621680427110 :: TyFun (t a) [b] -> Type) (a6989586621680427111 :: t a) = ConcatMap a6989586621680427110 a6989586621680427111

type family ConcatMapSym2 (a6989586621680427110 :: (~>) a [b]) (a6989586621680427111 :: t a) :: [b] where ... Source #

Equations

ConcatMapSym2 a6989586621680427110 a6989586621680427111 = ConcatMap a6989586621680427110 a6989586621680427111 

data AndSym0 :: (~>) (t Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing AndSym0

SuppressUnusedWarnings (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680427105 :: t Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680427105 :: t Bool) = And a6989586621680427105

type family AndSym1 (a6989586621680427105 :: t Bool) :: Bool where ... Source #

Equations

AndSym1 a6989586621680427105 = And a6989586621680427105 

data OrSym0 :: (~>) (t Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing OrSym0

SuppressUnusedWarnings (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680427099 :: t Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680427099 :: t Bool) = Or a6989586621680427099

type family OrSym1 (a6989586621680427099 :: t Bool) :: Bool where ... Source #

Equations

OrSym1 a6989586621680427099 = Or a6989586621680427099 

data AnySym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing AnySym0

SuppressUnusedWarnings (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680427091 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680427091 :: a ~> Bool) = AnySym1 a6989586621680427091 :: TyFun (t a) Bool -> Type

data AnySym1 (a6989586621680427091 :: (~>) a Bool) :: (~>) (t a) Bool Source #

Instances

Instances details
SFoldable t => SingI1 (AnySym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (AnySym1 x)

(SFoldable t, SingI d) => SingI (AnySym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AnySym1 d)

SuppressUnusedWarnings (AnySym1 a6989586621680427091 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym1 a6989586621680427091 :: TyFun (t a) Bool -> Type) (a6989586621680427092 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym1 a6989586621680427091 :: TyFun (t a) Bool -> Type) (a6989586621680427092 :: t a) = Any a6989586621680427091 a6989586621680427092

type family AnySym2 (a6989586621680427091 :: (~>) a Bool) (a6989586621680427092 :: t a) :: Bool where ... Source #

Equations

AnySym2 a6989586621680427091 a6989586621680427092 = Any a6989586621680427091 a6989586621680427092 

data AllSym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing AllSym0

SuppressUnusedWarnings (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680427082 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680427082 :: a ~> Bool) = AllSym1 a6989586621680427082 :: TyFun (t a) Bool -> Type

data AllSym1 (a6989586621680427082 :: (~>) a Bool) :: (~>) (t a) Bool Source #

Instances

Instances details
SFoldable t => SingI1 (AllSym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (AllSym1 x)

(SFoldable t, SingI d) => SingI (AllSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AllSym1 d)

SuppressUnusedWarnings (AllSym1 a6989586621680427082 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym1 a6989586621680427082 :: TyFun (t a) Bool -> Type) (a6989586621680427083 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym1 a6989586621680427082 :: TyFun (t a) Bool -> Type) (a6989586621680427083 :: t a) = All a6989586621680427082 a6989586621680427083

type family AllSym2 (a6989586621680427082 :: (~>) a Bool) (a6989586621680427083 :: t a) :: Bool where ... Source #

Equations

AllSym2 a6989586621680427082 a6989586621680427083 = All a6989586621680427082 a6989586621680427083 

data SumSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing SumSym0

SuppressUnusedWarnings (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680427296 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680427296 :: t a) = Sum a6989586621680427296

type family SumSym1 (a6989586621680427296 :: t a) :: a where ... Source #

Equations

SumSym1 a6989586621680427296 = Sum a6989586621680427296 

data ProductSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680427299 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680427299 :: t a) = Product a6989586621680427299

type family ProductSym1 (a6989586621680427299 :: t a) :: a where ... Source #

Equations

ProductSym1 a6989586621680427299 = Product a6989586621680427299 

data MaximumSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680427290 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680427290 :: t a) = Maximum a6989586621680427290

type family MaximumSym1 (a6989586621680427290 :: t a) :: a where ... Source #

Equations

MaximumSym1 a6989586621680427290 = Maximum a6989586621680427290 

data MinimumSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680427293 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680427293 :: t a) = Minimum a6989586621680427293

type family MinimumSym1 (a6989586621680427293 :: t a) :: a where ... Source #

Equations

MinimumSym1 a6989586621680427293 = Minimum a6989586621680427293 

data ScanlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) [a] [b])) Source #

Instances

Instances details
SingI (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ScanlSym0

SuppressUnusedWarnings (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679848957 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679848957 :: b ~> (a ~> b)) = ScanlSym1 a6989586621679848957

data ScanlSym1 (a6989586621679848957 :: (~>) b ((~>) a b)) :: (~>) b ((~>) [a] [b]) Source #

Instances

Instances details
SingI1 (ScanlSym1 :: (b ~> (a ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanlSym1 x)

SingI d => SingI (ScanlSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym1 d)

SuppressUnusedWarnings (ScanlSym1 a6989586621679848957 :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym1 a6989586621679848957 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679848958 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym1 a6989586621679848957 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679848958 :: b) = ScanlSym2 a6989586621679848957 a6989586621679848958

data ScanlSym2 (a6989586621679848957 :: (~>) b ((~>) a b)) (a6989586621679848958 :: b) :: (~>) [a] [b] Source #

Instances

Instances details
SingI d => SingI1 (ScanlSym2 d :: b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanlSym2 d x)

SingI2 (ScanlSym2 :: (b ~> (a ~> b)) -> b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ScanlSym2 x y)

(SingI d1, SingI d2) => SingI (ScanlSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym2 d1 d2)

SuppressUnusedWarnings (ScanlSym2 a6989586621679848957 a6989586621679848958 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym2 a6989586621679848957 a6989586621679848958 :: TyFun [a] [b] -> Type) (a6989586621679848959 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym2 a6989586621679848957 a6989586621679848958 :: TyFun [a] [b] -> Type) (a6989586621679848959 :: [a]) = Scanl a6989586621679848957 a6989586621679848958 a6989586621679848959

type family ScanlSym3 (a6989586621679848957 :: (~>) b ((~>) a b)) (a6989586621679848958 :: b) (a6989586621679848959 :: [a]) :: [b] where ... Source #

Equations

ScanlSym3 a6989586621679848957 a6989586621679848958 a6989586621679848959 = Scanl a6989586621679848957 a6989586621679848958 a6989586621679848959 

data Scanl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Scanl1Sym0

SuppressUnusedWarnings (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679848948 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679848948 :: a ~> (a ~> a)) = Scanl1Sym1 a6989586621679848948

data Scanl1Sym1 (a6989586621679848948 :: (~>) a ((~>) a a)) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (Scanl1Sym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanl1Sym1 d)

SuppressUnusedWarnings (Scanl1Sym1 a6989586621679848948 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Scanl1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Scanl1Sym1 x)

type Apply (Scanl1Sym1 a6989586621679848948 :: TyFun [a] [a] -> Type) (a6989586621679848949 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym1 a6989586621679848948 :: TyFun [a] [a] -> Type) (a6989586621679848949 :: [a]) = Scanl1 a6989586621679848948 a6989586621679848949

type family Scanl1Sym2 (a6989586621679848948 :: (~>) a ((~>) a a)) (a6989586621679848949 :: [a]) :: [a] where ... Source #

Equations

Scanl1Sym2 a6989586621679848948 a6989586621679848949 = Scanl1 a6989586621679848948 a6989586621679848949 

data ScanrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) [a] [b])) Source #

Instances

Instances details
SingI (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ScanrSym0

SuppressUnusedWarnings (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679848930 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679848930 :: a ~> (b ~> b)) = ScanrSym1 a6989586621679848930

data ScanrSym1 (a6989586621679848930 :: (~>) a ((~>) b b)) :: (~>) b ((~>) [a] [b]) Source #

Instances

Instances details
SingI1 (ScanrSym1 :: (a ~> (b ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanrSym1 x)

SingI d => SingI (ScanrSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym1 d)

SuppressUnusedWarnings (ScanrSym1 a6989586621679848930 :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym1 a6989586621679848930 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679848931 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym1 a6989586621679848930 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679848931 :: b) = ScanrSym2 a6989586621679848930 a6989586621679848931

data ScanrSym2 (a6989586621679848930 :: (~>) a ((~>) b b)) (a6989586621679848931 :: b) :: (~>) [a] [b] Source #

Instances

Instances details
SingI d => SingI1 (ScanrSym2 d :: b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanrSym2 d x)

SingI2 (ScanrSym2 :: (a ~> (b ~> b)) -> b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ScanrSym2 x y)

(SingI d1, SingI d2) => SingI (ScanrSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym2 d1 d2)

SuppressUnusedWarnings (ScanrSym2 a6989586621679848930 a6989586621679848931 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym2 a6989586621679848930 a6989586621679848931 :: TyFun [a] [b] -> Type) (a6989586621679848932 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym2 a6989586621679848930 a6989586621679848931 :: TyFun [a] [b] -> Type) (a6989586621679848932 :: [a]) = Scanr a6989586621679848930 a6989586621679848931 a6989586621679848932

type family ScanrSym3 (a6989586621679848930 :: (~>) a ((~>) b b)) (a6989586621679848931 :: b) (a6989586621679848932 :: [a]) :: [b] where ... Source #

Equations

ScanrSym3 a6989586621679848930 a6989586621679848931 a6989586621679848932 = Scanr a6989586621679848930 a6989586621679848931 a6989586621679848932 

data Scanr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Scanr1Sym0

SuppressUnusedWarnings (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679848910 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679848910 :: a ~> (a ~> a)) = Scanr1Sym1 a6989586621679848910

data Scanr1Sym1 (a6989586621679848910 :: (~>) a ((~>) a a)) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (Scanr1Sym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanr1Sym1 d)

SuppressUnusedWarnings (Scanr1Sym1 a6989586621679848910 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Scanr1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Scanr1Sym1 x)

type Apply (Scanr1Sym1 a6989586621679848910 :: TyFun [a] [a] -> Type) (a6989586621679848911 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym1 a6989586621679848910 :: TyFun [a] [a] -> Type) (a6989586621679848911 :: [a]) = Scanr1 a6989586621679848910 a6989586621679848911

type family Scanr1Sym2 (a6989586621679848910 :: (~>) a ((~>) a a)) (a6989586621679848911 :: [a]) :: [a] where ... Source #

Equations

Scanr1Sym2 a6989586621679848910 a6989586621679848911 = Scanr1 a6989586621679848910 a6989586621679848911 

data MapAccumLSym0 :: (~>) ((~>) a ((~>) b (a, c))) ((~>) a ((~>) (t b) (a, t c))) Source #

Instances

Instances details
STraversable t => SingI (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

SuppressUnusedWarnings (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680784594 :: a ~> (b ~> (a, c))) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680784594 :: a ~> (b ~> (a, c))) = MapAccumLSym1 a6989586621680784594 :: TyFun a (t b ~> (a, t c)) -> Type

data MapAccumLSym1 (a6989586621680784594 :: (~>) a ((~>) b (a, c))) :: (~>) a ((~>) (t b) (a, t c)) Source #

Instances

Instances details
STraversable t => SingI1 (MapAccumLSym1 :: (a ~> (b ~> (a, c))) -> TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapAccumLSym1 x)

(STraversable t, SingI d) => SingI (MapAccumLSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumLSym1 d)

SuppressUnusedWarnings (MapAccumLSym1 a6989586621680784594 :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym1 a6989586621680784594 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680784595 :: a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym1 a6989586621680784594 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680784595 :: a) = MapAccumLSym2 a6989586621680784594 a6989586621680784595 :: TyFun (t b) (a, t c) -> Type

data MapAccumLSym2 (a6989586621680784594 :: (~>) a ((~>) b (a, c))) (a6989586621680784595 :: a) :: (~>) (t b) (a, t c) Source #

Instances

Instances details
(STraversable t, SingI d) => SingI1 (MapAccumLSym2 d :: a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapAccumLSym2 d x)

STraversable t => SingI2 (MapAccumLSym2 :: (a ~> (b ~> (a, c))) -> a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (MapAccumLSym2 x y)

(STraversable t, SingI d1, SingI d2) => SingI (MapAccumLSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumLSym2 d1 d2)

SuppressUnusedWarnings (MapAccumLSym2 a6989586621680784594 a6989586621680784595 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym2 a6989586621680784594 a6989586621680784595 :: TyFun (t b) (a, t c) -> Type) (a6989586621680784596 :: t b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym2 a6989586621680784594 a6989586621680784595 :: TyFun (t b) (a, t c) -> Type) (a6989586621680784596 :: t b) = MapAccumL a6989586621680784594 a6989586621680784595 a6989586621680784596

type family MapAccumLSym3 (a6989586621680784594 :: (~>) a ((~>) b (a, c))) (a6989586621680784595 :: a) (a6989586621680784596 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumLSym3 a6989586621680784594 a6989586621680784595 a6989586621680784596 = MapAccumL a6989586621680784594 a6989586621680784595 a6989586621680784596 

data MapAccumRSym0 :: (~>) ((~>) a ((~>) b (a, c))) ((~>) a ((~>) (t b) (a, t c))) Source #

Instances

Instances details
STraversable t => SingI (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

SuppressUnusedWarnings (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680784584 :: a ~> (b ~> (a, c))) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680784584 :: a ~> (b ~> (a, c))) = MapAccumRSym1 a6989586621680784584 :: TyFun a (t b ~> (a, t c)) -> Type

data MapAccumRSym1 (a6989586621680784584 :: (~>) a ((~>) b (a, c))) :: (~>) a ((~>) (t b) (a, t c)) Source #

Instances

Instances details
STraversable t => SingI1 (MapAccumRSym1 :: (a ~> (b ~> (a, c))) -> TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapAccumRSym1 x)

(STraversable t, SingI d) => SingI (MapAccumRSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumRSym1 d)

SuppressUnusedWarnings (MapAccumRSym1 a6989586621680784584 :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym1 a6989586621680784584 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680784585 :: a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym1 a6989586621680784584 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680784585 :: a) = MapAccumRSym2 a6989586621680784584 a6989586621680784585 :: TyFun (t b) (a, t c) -> Type

data MapAccumRSym2 (a6989586621680784584 :: (~>) a ((~>) b (a, c))) (a6989586621680784585 :: a) :: (~>) (t b) (a, t c) Source #

Instances

Instances details
(STraversable t, SingI d) => SingI1 (MapAccumRSym2 d :: a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapAccumRSym2 d x)

STraversable t => SingI2 (MapAccumRSym2 :: (a ~> (b ~> (a, c))) -> a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (MapAccumRSym2 x y)

(STraversable t, SingI d1, SingI d2) => SingI (MapAccumRSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumRSym2 d1 d2)

SuppressUnusedWarnings (MapAccumRSym2 a6989586621680784584 a6989586621680784585 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym2 a6989586621680784584 a6989586621680784585 :: TyFun (t b) (a, t c) -> Type) (a6989586621680784586 :: t b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym2 a6989586621680784584 a6989586621680784585 :: TyFun (t b) (a, t c) -> Type) (a6989586621680784586 :: t b) = MapAccumR a6989586621680784584 a6989586621680784585 a6989586621680784586

type family MapAccumRSym3 (a6989586621680784584 :: (~>) a ((~>) b (a, c))) (a6989586621680784585 :: a) (a6989586621680784586 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumRSym3 a6989586621680784584 a6989586621680784585 a6989586621680784586 = MapAccumR a6989586621680784584 a6989586621680784585 a6989586621680784586 

data ReplicateSym0 :: (~>) Natural ((~>) a [a]) Source #

Instances

Instances details
SingI (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679848047 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679848047 :: Natural) = ReplicateSym1 a6989586621679848047 :: TyFun a [a] -> Type

data ReplicateSym1 (a6989586621679848047 :: Natural) :: (~>) a [a] Source #

Instances

Instances details
SingI1 (ReplicateSym1 :: Natural -> TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ReplicateSym1 x)

SingI d => SingI (ReplicateSym1 d :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ReplicateSym1 d)

SuppressUnusedWarnings (ReplicateSym1 a6989586621679848047 :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym1 a6989586621679848047 :: TyFun a [a] -> Type) (a6989586621679848048 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym1 a6989586621679848047 :: TyFun a [a] -> Type) (a6989586621679848048 :: a) = Replicate a6989586621679848047 a6989586621679848048

type family ReplicateSym2 (a6989586621679848047 :: Natural) (a6989586621679848048 :: a) :: [a] where ... Source #

Equations

ReplicateSym2 a6989586621679848047 a6989586621679848048 = Replicate a6989586621679848047 a6989586621679848048 

data UnfoldrSym0 :: (~>) ((~>) b (Maybe (a, b))) ((~>) b [a]) Source #

Instances

Instances details
SingI (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) (a6989586621679848802 :: b ~> Maybe (a, b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) (a6989586621679848802 :: b ~> Maybe (a, b)) = UnfoldrSym1 a6989586621679848802

data UnfoldrSym1 (a6989586621679848802 :: (~>) b (Maybe (a, b))) :: (~>) b [a] Source #

Instances

Instances details
SingI1 (UnfoldrSym1 :: (b ~> Maybe (a, b)) -> TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UnfoldrSym1 x)

SingI d => SingI (UnfoldrSym1 d :: TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnfoldrSym1 d)

SuppressUnusedWarnings (UnfoldrSym1 a6989586621679848802 :: TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym1 a6989586621679848802 :: TyFun b [a] -> Type) (a6989586621679848803 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym1 a6989586621679848802 :: TyFun b [a] -> Type) (a6989586621679848803 :: b) = Unfoldr a6989586621679848802 a6989586621679848803

type family UnfoldrSym2 (a6989586621679848802 :: (~>) b (Maybe (a, b))) (a6989586621679848803 :: b) :: [a] where ... Source #

Equations

UnfoldrSym2 a6989586621679848802 a6989586621679848803 = Unfoldr a6989586621679848802 a6989586621679848803 

data TakeSym0 :: (~>) Natural ((~>) [a] [a]) Source #

Instances

Instances details
SingI (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing TakeSym0

SuppressUnusedWarnings (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679848202 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679848202 :: Natural) = TakeSym1 a6989586621679848202 :: TyFun [a] [a] -> Type

data TakeSym1 (a6989586621679848202 :: Natural) :: (~>) [a] [a] Source #

Instances

Instances details
SingI1 (TakeSym1 :: Natural -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (TakeSym1 x)

SingI d => SingI (TakeSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeSym1 d)

SuppressUnusedWarnings (TakeSym1 a6989586621679848202 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym1 a6989586621679848202 :: TyFun [a] [a] -> Type) (a6989586621679848203 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym1 a6989586621679848202 :: TyFun [a] [a] -> Type) (a6989586621679848203 :: [a]) = Take a6989586621679848202 a6989586621679848203

type family TakeSym2 (a6989586621679848202 :: Natural) (a6989586621679848203 :: [a]) :: [a] where ... Source #

Equations

TakeSym2 a6989586621679848202 a6989586621679848203 = Take a6989586621679848202 a6989586621679848203 

data DropSym0 :: (~>) Natural ((~>) [a] [a]) Source #

Instances

Instances details
SingI (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing DropSym0

SuppressUnusedWarnings (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679848189 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679848189 :: Natural) = DropSym1 a6989586621679848189 :: TyFun [a] [a] -> Type

data DropSym1 (a6989586621679848189 :: Natural) :: (~>) [a] [a] Source #

Instances

Instances details
SingI1 (DropSym1 :: Natural -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DropSym1 x)

SingI d => SingI (DropSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropSym1 d)

SuppressUnusedWarnings (DropSym1 a6989586621679848189 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym1 a6989586621679848189 :: TyFun [a] [a] -> Type) (a6989586621679848190 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym1 a6989586621679848189 :: TyFun [a] [a] -> Type) (a6989586621679848190 :: [a]) = Drop a6989586621679848189 a6989586621679848190

type family DropSym2 (a6989586621679848189 :: Natural) (a6989586621679848190 :: [a]) :: [a] where ... Source #

Equations

DropSym2 a6989586621679848189 a6989586621679848190 = Drop a6989586621679848189 a6989586621679848190 

data SplitAtSym0 :: (~>) Natural ((~>) [a] ([a], [a])) Source #

Instances

Instances details
SingI (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679848182 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679848182 :: Natural) = SplitAtSym1 a6989586621679848182 :: TyFun [a] ([a], [a]) -> Type

data SplitAtSym1 (a6989586621679848182 :: Natural) :: (~>) [a] ([a], [a]) Source #

Instances

Instances details
SingI1 (SplitAtSym1 :: Natural -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (SplitAtSym1 x)

SingI d => SingI (SplitAtSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SplitAtSym1 d)

SuppressUnusedWarnings (SplitAtSym1 a6989586621679848182 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym1 a6989586621679848182 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679848183 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym1 a6989586621679848182 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679848183 :: [a]) = SplitAt a6989586621679848182 a6989586621679848183

type family SplitAtSym2 (a6989586621679848182 :: Natural) (a6989586621679848183 :: [a]) :: ([a], [a]) where ... Source #

Equations

SplitAtSym2 a6989586621679848182 a6989586621679848183 = SplitAt a6989586621679848182 a6989586621679848183 

data TakeWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679848319 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679848319 :: a ~> Bool) = TakeWhileSym1 a6989586621679848319

data TakeWhileSym1 (a6989586621679848319 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (TakeWhileSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeWhileSym1 d)

SuppressUnusedWarnings (TakeWhileSym1 a6989586621679848319 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (TakeWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (TakeWhileSym1 x)

type Apply (TakeWhileSym1 a6989586621679848319 :: TyFun [a] [a] -> Type) (a6989586621679848320 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym1 a6989586621679848319 :: TyFun [a] [a] -> Type) (a6989586621679848320 :: [a]) = TakeWhile a6989586621679848319 a6989586621679848320

type family TakeWhileSym2 (a6989586621679848319 :: (~>) a Bool) (a6989586621679848320 :: [a]) :: [a] where ... Source #

Equations

TakeWhileSym2 a6989586621679848319 a6989586621679848320 = TakeWhile a6989586621679848319 a6989586621679848320 

data DropWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679848304 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679848304 :: a ~> Bool) = DropWhileSym1 a6989586621679848304

data DropWhileSym1 (a6989586621679848304 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (DropWhileSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileSym1 d)

SuppressUnusedWarnings (DropWhileSym1 a6989586621679848304 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DropWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DropWhileSym1 x)

type Apply (DropWhileSym1 a6989586621679848304 :: TyFun [a] [a] -> Type) (a6989586621679848305 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym1 a6989586621679848304 :: TyFun [a] [a] -> Type) (a6989586621679848305 :: [a]) = DropWhile a6989586621679848304 a6989586621679848305

type family DropWhileSym2 (a6989586621679848304 :: (~>) a Bool) (a6989586621679848305 :: [a]) :: [a] where ... Source #

Equations

DropWhileSym2 a6989586621679848304 a6989586621679848305 = DropWhile a6989586621679848304 a6989586621679848305 

data DropWhileEndSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679848287 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679848287 :: a ~> Bool) = DropWhileEndSym1 a6989586621679848287

data DropWhileEndSym1 (a6989586621679848287 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (DropWhileEndSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileEndSym1 d)

SuppressUnusedWarnings (DropWhileEndSym1 a6989586621679848287 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DropWhileEndSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DropWhileEndSym1 x)

type Apply (DropWhileEndSym1 a6989586621679848287 :: TyFun [a] [a] -> Type) (a6989586621679848288 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym1 a6989586621679848287 :: TyFun [a] [a] -> Type) (a6989586621679848288 :: [a]) = DropWhileEnd a6989586621679848287 a6989586621679848288

type family DropWhileEndSym2 (a6989586621679848287 :: (~>) a Bool) (a6989586621679848288 :: [a]) :: [a] where ... Source #

Equations

DropWhileEndSym2 a6989586621679848287 a6989586621679848288 = DropWhileEnd a6989586621679848287 a6989586621679848288 

data SpanSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a])) Source #

Instances

Instances details
SingI (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing SpanSym0

SuppressUnusedWarnings (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679848250 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679848250 :: a ~> Bool) = SpanSym1 a6989586621679848250

data SpanSym1 (a6989586621679848250 :: (~>) a Bool) :: (~>) [a] ([a], [a]) Source #

Instances

Instances details
SingI d => SingI (SpanSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SpanSym1 d)

SuppressUnusedWarnings (SpanSym1 a6989586621679848250 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (SpanSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (SpanSym1 x)

type Apply (SpanSym1 a6989586621679848250 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679848251 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym1 a6989586621679848250 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679848251 :: [a]) = Span a6989586621679848250 a6989586621679848251

type family SpanSym2 (a6989586621679848250 :: (~>) a Bool) (a6989586621679848251 :: [a]) :: ([a], [a]) where ... Source #

Equations

SpanSym2 a6989586621679848250 a6989586621679848251 = Span a6989586621679848250 a6989586621679848251 

data BreakSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a])) Source #

Instances

Instances details
SingI (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing BreakSym0

SuppressUnusedWarnings (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679848215 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679848215 :: a ~> Bool) = BreakSym1 a6989586621679848215

data BreakSym1 (a6989586621679848215 :: (~>) a Bool) :: (~>) [a] ([a], [a]) Source #

Instances

Instances details
SingI d => SingI (BreakSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (BreakSym1 d)

SuppressUnusedWarnings (BreakSym1 a6989586621679848215 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (BreakSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (BreakSym1 x)

type Apply (BreakSym1 a6989586621679848215 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679848216 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym1 a6989586621679848215 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679848216 :: [a]) = Break a6989586621679848215 a6989586621679848216

type family BreakSym2 (a6989586621679848215 :: (~>) a Bool) (a6989586621679848216 :: [a]) :: ([a], [a]) where ... Source #

Equations

BreakSym2 a6989586621679848215 a6989586621679848216 = Break a6989586621679848215 a6989586621679848216 

data StripPrefixSym0 :: (~>) [a] ((~>) [a] (Maybe [a])) Source #

Instances

Instances details
SuppressUnusedWarnings (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) (a6989586621679997490 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) (a6989586621679997490 :: [a]) = StripPrefixSym1 a6989586621679997490

data StripPrefixSym1 (a6989586621679997490 :: [a]) :: (~>) [a] (Maybe [a]) Source #

Instances

Instances details
SuppressUnusedWarnings (StripPrefixSym1 a6989586621679997490 :: TyFun [a] (Maybe [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym1 a6989586621679997490 :: TyFun [a] (Maybe [a]) -> Type) (a6989586621679997491 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym1 a6989586621679997490 :: TyFun [a] (Maybe [a]) -> Type) (a6989586621679997491 :: [a]) = StripPrefix a6989586621679997490 a6989586621679997491

type family StripPrefixSym2 (a6989586621679997490 :: [a]) (a6989586621679997491 :: [a]) :: Maybe [a] where ... Source #

Equations

StripPrefixSym2 a6989586621679997490 a6989586621679997491 = StripPrefix a6989586621679997490 a6989586621679997491 

data GroupSym0 :: (~>) [a] [[a]] Source #

Instances

Instances details
SEq a => SingI (GroupSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing GroupSym0

SuppressUnusedWarnings (GroupSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679848177 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679848177 :: [a]) = Group a6989586621679848177

type family GroupSym1 (a6989586621679848177 :: [a]) :: [[a]] where ... Source #

Equations

GroupSym1 a6989586621679848177 = Group a6989586621679848177 

data InitsSym0 :: (~>) [a] [[a]] Source #

Instances

Instances details
SingI (InitsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing InitsSym0

SuppressUnusedWarnings (InitsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679848792 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679848792 :: [a]) = Inits a6989586621679848792

type family InitsSym1 (a6989586621679848792 :: [a]) :: [[a]] where ... Source #

Equations

InitsSym1 a6989586621679848792 = Inits a6989586621679848792 

data TailsSym0 :: (~>) [a] [[a]] Source #

Instances

Instances details
SingI (TailsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing TailsSym0

SuppressUnusedWarnings (TailsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679848784 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679848784 :: [a]) = Tails a6989586621679848784

type family TailsSym1 (a6989586621679848784 :: [a]) :: [[a]] where ... Source #

Equations

TailsSym1 a6989586621679848784 = Tails a6989586621679848784 

data IsPrefixOfSym0 :: (~>) [a] ((~>) [a] Bool) Source #

Instances

Instances details
SEq a => SingI (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679848776 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679848776 :: [a]) = IsPrefixOfSym1 a6989586621679848776

data IsPrefixOfSym1 (a6989586621679848776 :: [a]) :: (~>) [a] Bool Source #

Instances

Instances details
SEq a => SingI1 (IsPrefixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IsPrefixOfSym1 x)

(SEq a, SingI d) => SingI (IsPrefixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsPrefixOfSym1 d)

SuppressUnusedWarnings (IsPrefixOfSym1 a6989586621679848776 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym1 a6989586621679848776 :: TyFun [a] Bool -> Type) (a6989586621679848777 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym1 a6989586621679848776 :: TyFun [a] Bool -> Type) (a6989586621679848777 :: [a]) = IsPrefixOf a6989586621679848776 a6989586621679848777

type family IsPrefixOfSym2 (a6989586621679848776 :: [a]) (a6989586621679848777 :: [a]) :: Bool where ... Source #

Equations

IsPrefixOfSym2 a6989586621679848776 a6989586621679848777 = IsPrefixOf a6989586621679848776 a6989586621679848777 

data IsSuffixOfSym0 :: (~>) [a] ((~>) [a] Bool) Source #

Instances

Instances details
SEq a => SingI (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679848769 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679848769 :: [a]) = IsSuffixOfSym1 a6989586621679848769

data IsSuffixOfSym1 (a6989586621679848769 :: [a]) :: (~>) [a] Bool Source #

Instances

Instances details
SEq a => SingI1 (IsSuffixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IsSuffixOfSym1 x)

(SEq a, SingI d) => SingI (IsSuffixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsSuffixOfSym1 d)

SuppressUnusedWarnings (IsSuffixOfSym1 a6989586621679848769 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym1 a6989586621679848769 :: TyFun [a] Bool -> Type) (a6989586621679848770 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym1 a6989586621679848769 :: TyFun [a] Bool -> Type) (a6989586621679848770 :: [a]) = IsSuffixOf a6989586621679848769 a6989586621679848770

type family IsSuffixOfSym2 (a6989586621679848769 :: [a]) (a6989586621679848770 :: [a]) :: Bool where ... Source #

Equations

IsSuffixOfSym2 a6989586621679848769 a6989586621679848770 = IsSuffixOf a6989586621679848769 a6989586621679848770 

data IsInfixOfSym0 :: (~>) [a] ((~>) [a] Bool) Source #

Instances

Instances details
SEq a => SingI (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679848762 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679848762 :: [a]) = IsInfixOfSym1 a6989586621679848762

data IsInfixOfSym1 (a6989586621679848762 :: [a]) :: (~>) [a] Bool Source #

Instances

Instances details
SEq a => SingI1 (IsInfixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IsInfixOfSym1 x)

(SEq a, SingI d) => SingI (IsInfixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsInfixOfSym1 d)

SuppressUnusedWarnings (IsInfixOfSym1 a6989586621679848762 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym1 a6989586621679848762 :: TyFun [a] Bool -> Type) (a6989586621679848763 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym1 a6989586621679848762 :: TyFun [a] Bool -> Type) (a6989586621679848763 :: [a]) = IsInfixOf a6989586621679848762 a6989586621679848763

type family IsInfixOfSym2 (a6989586621679848762 :: [a]) (a6989586621679848763 :: [a]) :: Bool where ... Source #

Equations

IsInfixOfSym2 a6989586621679848762 a6989586621679848763 = IsInfixOf a6989586621679848762 a6989586621679848763 

data ElemSym0 :: (~>) a ((~>) (t a) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing ElemSym0

SuppressUnusedWarnings (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680427286 :: a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680427286 :: a) = ElemSym1 a6989586621680427286 :: TyFun (t a) Bool -> Type

data ElemSym1 (a6989586621680427286 :: a) :: (~>) (t a) Bool Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI1 (ElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ElemSym1 x)

(SFoldable t, SEq a, SingI d) => SingI (ElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ElemSym1 d)

SuppressUnusedWarnings (ElemSym1 a6989586621680427286 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym1 a6989586621680427286 :: TyFun (t a) Bool -> Type) (a6989586621680427287 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym1 a6989586621680427286 :: TyFun (t a) Bool -> Type) (a6989586621680427287 :: t a) = Elem a6989586621680427286 a6989586621680427287

type family ElemSym2 (a6989586621680427286 :: a) (a6989586621680427287 :: t a) :: Bool where ... Source #

Equations

ElemSym2 a6989586621680427286 a6989586621680427287 = Elem a6989586621680427286 a6989586621680427287 

data NotElemSym0 :: (~>) a ((~>) (t a) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680427033 :: a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680427033 :: a) = NotElemSym1 a6989586621680427033 :: TyFun (t a) Bool -> Type

data NotElemSym1 (a6989586621680427033 :: a) :: (~>) (t a) Bool Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI1 (NotElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (NotElemSym1 x)

(SFoldable t, SEq a, SingI d) => SingI (NotElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (NotElemSym1 d)

SuppressUnusedWarnings (NotElemSym1 a6989586621680427033 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym1 a6989586621680427033 :: TyFun (t a) Bool -> Type) (a6989586621680427034 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym1 a6989586621680427033 :: TyFun (t a) Bool -> Type) (a6989586621680427034 :: t a) = NotElem a6989586621680427033 a6989586621680427034

type family NotElemSym2 (a6989586621680427033 :: a) (a6989586621680427034 :: t a) :: Bool where ... Source #

Equations

NotElemSym2 a6989586621680427033 a6989586621680427034 = NotElem a6989586621680427033 a6989586621680427034 

data LookupSym0 :: (~>) a ((~>) [(a, b)] (Maybe b)) Source #

Instances

Instances details
SEq a => SingI (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing LookupSym0

SuppressUnusedWarnings (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679848110 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679848110 :: a) = LookupSym1 a6989586621679848110 :: TyFun [(a, b)] (Maybe b) -> Type

data LookupSym1 (a6989586621679848110 :: a) :: (~>) [(a, b)] (Maybe b) Source #

Instances

Instances details
SEq a => SingI1 (LookupSym1 :: a -> TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LookupSym1 x)

(SEq a, SingI d) => SingI (LookupSym1 d :: TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (LookupSym1 d)

SuppressUnusedWarnings (LookupSym1 a6989586621679848110 :: TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym1 a6989586621679848110 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679848111 :: [(a, b)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym1 a6989586621679848110 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679848111 :: [(a, b)]) = Lookup a6989586621679848110 a6989586621679848111

type family LookupSym2 (a6989586621679848110 :: a) (a6989586621679848111 :: [(a, b)]) :: Maybe b where ... Source #

Equations

LookupSym2 a6989586621679848110 a6989586621679848111 = Lookup a6989586621679848110 a6989586621679848111 

data FindSym0 :: (~>) ((~>) a Bool) ((~>) (t a) (Maybe a)) Source #

Instances

Instances details
SFoldable t => SingI (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing FindSym0

SuppressUnusedWarnings (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) (a6989586621680427015 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) (a6989586621680427015 :: a ~> Bool) = FindSym1 a6989586621680427015 :: TyFun (t a) (Maybe a) -> Type

data FindSym1 (a6989586621680427015 :: (~>) a Bool) :: (~>) (t a) (Maybe a) Source #

Instances

Instances details
SFoldable t => SingI1 (FindSym1 :: (a ~> Bool) -> TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FindSym1 x)

(SFoldable t, SingI d) => SingI (FindSym1 d :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FindSym1 d)

SuppressUnusedWarnings (FindSym1 a6989586621680427015 :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym1 a6989586621680427015 :: TyFun (t a) (Maybe a) -> Type) (a6989586621680427016 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym1 a6989586621680427015 :: TyFun (t a) (Maybe a) -> Type) (a6989586621680427016 :: t a) = Find a6989586621680427015 a6989586621680427016

type family FindSym2 (a6989586621680427015 :: (~>) a Bool) (a6989586621680427016 :: t a) :: Maybe a where ... Source #

Equations

FindSym2 a6989586621680427015 a6989586621680427016 = Find a6989586621680427015 a6989586621680427016 

data FilterSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing FilterSym0

SuppressUnusedWarnings (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679848419 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679848419 :: a ~> Bool) = FilterSym1 a6989586621679848419

data FilterSym1 (a6989586621679848419 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (FilterSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FilterSym1 d)

SuppressUnusedWarnings (FilterSym1 a6989586621679848419 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FilterSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FilterSym1 x)

type Apply (FilterSym1 a6989586621679848419 :: TyFun [a] [a] -> Type) (a6989586621679848420 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym1 a6989586621679848419 :: TyFun [a] [a] -> Type) (a6989586621679848420 :: [a]) = Filter a6989586621679848419 a6989586621679848420

type family FilterSym2 (a6989586621679848419 :: (~>) a Bool) (a6989586621679848420 :: [a]) :: [a] where ... Source #

Equations

FilterSym2 a6989586621679848419 a6989586621679848420 = Filter a6989586621679848419 a6989586621679848420 

data PartitionSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a])) Source #

Instances

Instances details
SingI (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679848103 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679848103 :: a ~> Bool) = PartitionSym1 a6989586621679848103

data PartitionSym1 (a6989586621679848103 :: (~>) a Bool) :: (~>) [a] ([a], [a]) Source #

Instances

Instances details
SingI d => SingI (PartitionSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (PartitionSym1 d)

SuppressUnusedWarnings (PartitionSym1 a6989586621679848103 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (PartitionSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (PartitionSym1 x)

type Apply (PartitionSym1 a6989586621679848103 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679848104 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym1 a6989586621679848103 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679848104 :: [a]) = Partition a6989586621679848103 a6989586621679848104

type family PartitionSym2 (a6989586621679848103 :: (~>) a Bool) (a6989586621679848104 :: [a]) :: ([a], [a]) where ... Source #

Equations

PartitionSym2 a6989586621679848103 a6989586621679848104 = Partition a6989586621679848103 a6989586621679848104 

data (!!@#@$) :: (~>) [a] ((~>) Natural a) infixl 9 Source #

Instances

Instances details
SingI ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (!!@#@$)

SuppressUnusedWarnings ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) (a6989586621679848027 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) (a6989586621679848027 :: [a]) = (!!@#@$$) a6989586621679848027

data (!!@#@$$) (a6989586621679848027 :: [a]) :: (~>) Natural a infixl 9 Source #

Instances

Instances details
SingI1 ((!!@#@$$) :: [a] -> TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((!!@#@$$) x)

SingI d => SingI ((!!@#@$$) d :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((!!@#@$$) d)

SuppressUnusedWarnings ((!!@#@$$) a6989586621679848027 :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$$) a6989586621679848027 :: TyFun Natural a -> Type) (a6989586621679848028 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$$) a6989586621679848027 :: TyFun Natural a -> Type) (a6989586621679848028 :: Natural) = a6989586621679848027 !! a6989586621679848028

type family (a6989586621679848027 :: [a]) !!@#@$$$ (a6989586621679848028 :: Natural) :: a where ... infixl 9 Source #

Equations

a6989586621679848027 !!@#@$$$ a6989586621679848028 = (!!) a6989586621679848027 a6989586621679848028 

data ElemIndexSym0 :: (~>) a ((~>) [a] (Maybe Natural)) Source #

Instances

Instances details
SEq a => SingI (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) (a6989586621679848403 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) (a6989586621679848403 :: a) = ElemIndexSym1 a6989586621679848403

data ElemIndexSym1 (a6989586621679848403 :: a) :: (~>) [a] (Maybe Natural) Source #

Instances

Instances details
SEq a => SingI1 (ElemIndexSym1 :: a -> TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ElemIndexSym1 x)

(SEq a, SingI d) => SingI (ElemIndexSym1 d :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndexSym1 d)

SuppressUnusedWarnings (ElemIndexSym1 a6989586621679848403 :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym1 a6989586621679848403 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679848404 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym1 a6989586621679848403 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679848404 :: [a]) = ElemIndex a6989586621679848403 a6989586621679848404

type family ElemIndexSym2 (a6989586621679848403 :: a) (a6989586621679848404 :: [a]) :: Maybe Natural where ... Source #

Equations

ElemIndexSym2 a6989586621679848403 a6989586621679848404 = ElemIndex a6989586621679848403 a6989586621679848404 

data ElemIndicesSym0 :: (~>) a ((~>) [a] [Natural]) Source #

Instances

Instances details
SEq a => SingI (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) (a6989586621679848394 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) (a6989586621679848394 :: a) = ElemIndicesSym1 a6989586621679848394

data ElemIndicesSym1 (a6989586621679848394 :: a) :: (~>) [a] [Natural] Source #

Instances

Instances details
SEq a => SingI1 (ElemIndicesSym1 :: a -> TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ElemIndicesSym1 x)

(SEq a, SingI d) => SingI (ElemIndicesSym1 d :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndicesSym1 d)

SuppressUnusedWarnings (ElemIndicesSym1 a6989586621679848394 :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym1 a6989586621679848394 :: TyFun [a] [Natural] -> Type) (a6989586621679848395 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym1 a6989586621679848394 :: TyFun [a] [Natural] -> Type) (a6989586621679848395 :: [a]) = ElemIndices a6989586621679848394 a6989586621679848395

type family ElemIndicesSym2 (a6989586621679848394 :: a) (a6989586621679848395 :: [a]) :: [Natural] where ... Source #

Equations

ElemIndicesSym2 a6989586621679848394 a6989586621679848395 = ElemIndices a6989586621679848394 a6989586621679848395 

data FindIndexSym0 :: (~>) ((~>) a Bool) ((~>) [a] (Maybe Natural)) Source #

Instances

Instances details
SingI (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) (a6989586621679848385 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) (a6989586621679848385 :: a ~> Bool) = FindIndexSym1 a6989586621679848385

data FindIndexSym1 (a6989586621679848385 :: (~>) a Bool) :: (~>) [a] (Maybe Natural) Source #

Instances

Instances details
SingI d => SingI (FindIndexSym1 d :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndexSym1 d)

SuppressUnusedWarnings (FindIndexSym1 a6989586621679848385 :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FindIndexSym1 :: (a ~> Bool) -> TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FindIndexSym1 x)

type Apply (FindIndexSym1 a6989586621679848385 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679848386 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym1 a6989586621679848385 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679848386 :: [a]) = FindIndex a6989586621679848385 a6989586621679848386

type family FindIndexSym2 (a6989586621679848385 :: (~>) a Bool) (a6989586621679848386 :: [a]) :: Maybe Natural where ... Source #

Equations

FindIndexSym2 a6989586621679848385 a6989586621679848386 = FindIndex a6989586621679848385 a6989586621679848386 

data FindIndicesSym0 :: (~>) ((~>) a Bool) ((~>) [a] [Natural]) Source #

Instances

Instances details
SingI (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) (a6989586621679848362 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) (a6989586621679848362 :: a ~> Bool) = FindIndicesSym1 a6989586621679848362

data FindIndicesSym1 (a6989586621679848362 :: (~>) a Bool) :: (~>) [a] [Natural] Source #

Instances

Instances details
SingI d => SingI (FindIndicesSym1 d :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndicesSym1 d)

SuppressUnusedWarnings (FindIndicesSym1 a6989586621679848362 :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FindIndicesSym1 :: (a ~> Bool) -> TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FindIndicesSym1 x)

type Apply (FindIndicesSym1 a6989586621679848362 :: TyFun [a] [Natural] -> Type) (a6989586621679848363 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym1 a6989586621679848362 :: TyFun [a] [Natural] -> Type) (a6989586621679848363 :: [a]) = FindIndices a6989586621679848362 a6989586621679848363

type family FindIndicesSym2 (a6989586621679848362 :: (~>) a Bool) (a6989586621679848363 :: [a]) :: [Natural] where ... Source #

Equations

FindIndicesSym2 a6989586621679848362 a6989586621679848363 = FindIndices a6989586621679848362 a6989586621679848363 

data ZipSym0 :: (~>) [a] ((~>) [b] [(a, b)]) Source #

Instances

Instances details
SingI (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ZipSym0

SuppressUnusedWarnings (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) (a6989586621679848737 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) (a6989586621679848737 :: [a]) = ZipSym1 a6989586621679848737 :: TyFun [b] [(a, b)] -> Type

data ZipSym1 (a6989586621679848737 :: [a]) :: (~>) [b] [(a, b)] Source #

Instances

Instances details
SingI1 (ZipSym1 :: [a] -> TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipSym1 x)

SingI d => SingI (ZipSym1 d :: TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipSym1 d)

SuppressUnusedWarnings (ZipSym1 a6989586621679848737 :: TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym1 a6989586621679848737 :: TyFun [b] [(a, b)] -> Type) (a6989586621679848738 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym1 a6989586621679848737 :: TyFun [b] [(a, b)] -> Type) (a6989586621679848738 :: [b]) = Zip a6989586621679848737 a6989586621679848738

type family ZipSym2 (a6989586621679848737 :: [a]) (a6989586621679848738 :: [b]) :: [(a, b)] where ... Source #

Equations

ZipSym2 a6989586621679848737 a6989586621679848738 = Zip a6989586621679848737 a6989586621679848738 

data Zip3Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] [(a, b, c)])) Source #

Instances

Instances details
SingI (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Zip3Sym0

SuppressUnusedWarnings (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) (a6989586621679848725 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) (a6989586621679848725 :: [a]) = Zip3Sym1 a6989586621679848725 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type

data Zip3Sym1 (a6989586621679848725 :: [a]) :: (~>) [b] ((~>) [c] [(a, b, c)]) Source #

Instances

Instances details
SingI1 (Zip3Sym1 :: [a] -> TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Zip3Sym1 x)

SingI d => SingI (Zip3Sym1 d :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym1 d)

SuppressUnusedWarnings (Zip3Sym1 a6989586621679848725 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym1 a6989586621679848725 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) (a6989586621679848726 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym1 a6989586621679848725 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) (a6989586621679848726 :: [b]) = Zip3Sym2 a6989586621679848725 a6989586621679848726 :: TyFun [c] [(a, b, c)] -> Type

data Zip3Sym2 (a6989586621679848725 :: [a]) (a6989586621679848726 :: [b]) :: (~>) [c] [(a, b, c)] Source #

Instances

Instances details
SingI2 (Zip3Sym2 :: [a] -> [b] -> TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Zip3Sym2 x y)

SingI d => SingI1 (Zip3Sym2 d :: [b] -> TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Zip3Sym2 d x)

(SingI d1, SingI d2) => SingI (Zip3Sym2 d1 d2 :: TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym2 d1 d2)

SuppressUnusedWarnings (Zip3Sym2 a6989586621679848725 a6989586621679848726 :: TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym2 a6989586621679848725 a6989586621679848726 :: TyFun [c] [(a, b, c)] -> Type) (a6989586621679848727 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym2 a6989586621679848725 a6989586621679848726 :: TyFun [c] [(a, b, c)] -> Type) (a6989586621679848727 :: [c]) = Zip3 a6989586621679848725 a6989586621679848726 a6989586621679848727

type family Zip3Sym3 (a6989586621679848725 :: [a]) (a6989586621679848726 :: [b]) (a6989586621679848727 :: [c]) :: [(a, b, c)] where ... Source #

Equations

Zip3Sym3 a6989586621679848725 a6989586621679848726 a6989586621679848727 = Zip3 a6989586621679848725 a6989586621679848726 a6989586621679848727 

data Zip4Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [(a, b, c, d)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) (a6989586621679997479 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) (a6989586621679997479 :: [a]) = Zip4Sym1 a6989586621679997479 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type

data Zip4Sym1 (a6989586621679997479 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] [(a, b, c, d)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym1 a6989586621679997479 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym1 a6989586621679997479 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) (a6989586621679997480 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym1 a6989586621679997479 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) (a6989586621679997480 :: [b]) = Zip4Sym2 a6989586621679997479 a6989586621679997480 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type

data Zip4Sym2 (a6989586621679997479 :: [a]) (a6989586621679997480 :: [b]) :: (~>) [c] ((~>) [d] [(a, b, c, d)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym2 a6989586621679997479 a6989586621679997480 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym2 a6989586621679997479 a6989586621679997480 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) (a6989586621679997481 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym2 a6989586621679997479 a6989586621679997480 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) (a6989586621679997481 :: [c]) = Zip4Sym3 a6989586621679997479 a6989586621679997480 a6989586621679997481 :: TyFun [d] [(a, b, c, d)] -> Type

data Zip4Sym3 (a6989586621679997479 :: [a]) (a6989586621679997480 :: [b]) (a6989586621679997481 :: [c]) :: (~>) [d] [(a, b, c, d)] Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym3 a6989586621679997479 a6989586621679997480 a6989586621679997481 :: TyFun [d] [(a, b, c, d)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym3 a6989586621679997479 a6989586621679997480 a6989586621679997481 :: TyFun [d] [(a, b, c, d)] -> Type) (a6989586621679997482 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym3 a6989586621679997479 a6989586621679997480 a6989586621679997481 :: TyFun [d] [(a, b, c, d)] -> Type) (a6989586621679997482 :: [d]) = Zip4 a6989586621679997479 a6989586621679997480 a6989586621679997481 a6989586621679997482

type family Zip4Sym4 (a6989586621679997479 :: [a]) (a6989586621679997480 :: [b]) (a6989586621679997481 :: [c]) (a6989586621679997482 :: [d]) :: [(a, b, c, d)] where ... Source #

Equations

Zip4Sym4 a6989586621679997479 a6989586621679997480 a6989586621679997481 a6989586621679997482 = Zip4 a6989586621679997479 a6989586621679997480 a6989586621679997481 a6989586621679997482 

data Zip5Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) (a6989586621679997456 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) (a6989586621679997456 :: [a]) = Zip5Sym1 a6989586621679997456 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type

data Zip5Sym1 (a6989586621679997456 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym1 a6989586621679997456 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym1 a6989586621679997456 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) (a6989586621679997457 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym1 a6989586621679997456 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) (a6989586621679997457 :: [b]) = Zip5Sym2 a6989586621679997456 a6989586621679997457 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type

data Zip5Sym2 (a6989586621679997456 :: [a]) (a6989586621679997457 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym2 a6989586621679997456 a6989586621679997457 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym2 a6989586621679997456 a6989586621679997457 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) (a6989586621679997458 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym2 a6989586621679997456 a6989586621679997457 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) (a6989586621679997458 :: [c]) = Zip5Sym3 a6989586621679997456 a6989586621679997457 a6989586621679997458 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type

data Zip5Sym3 (a6989586621679997456 :: [a]) (a6989586621679997457 :: [b]) (a6989586621679997458 :: [c]) :: (~>) [d] ((~>) [e] [(a, b, c, d, e)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym3 a6989586621679997456 a6989586621679997457 a6989586621679997458 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym3 a6989586621679997456 a6989586621679997457 a6989586621679997458 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) (a6989586621679997459 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym3 a6989586621679997456 a6989586621679997457 a6989586621679997458 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) (a6989586621679997459 :: [d]) = Zip5Sym4 a6989586621679997456 a6989586621679997457 a6989586621679997458 a6989586621679997459 :: TyFun [e] [(a, b, c, d, e)] -> Type

data Zip5Sym4 (a6989586621679997456 :: [a]) (a6989586621679997457 :: [b]) (a6989586621679997458 :: [c]) (a6989586621679997459 :: [d]) :: (~>) [e] [(a, b, c, d, e)] Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym4 a6989586621679997456 a6989586621679997457 a6989586621679997458 a6989586621679997459 :: TyFun [e] [(a, b, c, d, e)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym4 a6989586621679997456 a6989586621679997457 a6989586621679997458 a6989586621679997459 :: TyFun [e] [(a, b, c, d, e)] -> Type) (a6989586621679997460 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym4 a6989586621679997456 a6989586621679997457 a6989586621679997458 a6989586621679997459 :: TyFun [e] [(a, b, c, d, e)] -> Type) (a6989586621679997460 :: [e]) = Zip5 a6989586621679997456 a6989586621679997457 a6989586621679997458 a6989586621679997459 a6989586621679997460

type family Zip5Sym5 (a6989586621679997456 :: [a]) (a6989586621679997457 :: [b]) (a6989586621679997458 :: [c]) (a6989586621679997459 :: [d]) (a6989586621679997460 :: [e]) :: [(a, b, c, d, e)] where ... Source #

Equations

Zip5Sym5 a6989586621679997456 a6989586621679997457 a6989586621679997458 a6989586621679997459 a6989586621679997460 = Zip5 a6989586621679997456 a6989586621679997457 a6989586621679997458 a6989586621679997459 a6989586621679997460 

data Zip6Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) (a6989586621679997428 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) (a6989586621679997428 :: [a]) = Zip6Sym1 a6989586621679997428 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type

data Zip6Sym1 (a6989586621679997428 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym1 a6989586621679997428 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym1 a6989586621679997428 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) (a6989586621679997429 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym1 a6989586621679997428 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) (a6989586621679997429 :: [b]) = Zip6Sym2 a6989586621679997428 a6989586621679997429 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type

data Zip6Sym2 (a6989586621679997428 :: [a]) (a6989586621679997429 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym2 a6989586621679997428 a6989586621679997429 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym2 a6989586621679997428 a6989586621679997429 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) (a6989586621679997430 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym2 a6989586621679997428 a6989586621679997429 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) (a6989586621679997430 :: [c]) = Zip6Sym3 a6989586621679997428 a6989586621679997429 a6989586621679997430 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type

data Zip6Sym3 (a6989586621679997428 :: [a]) (a6989586621679997429 :: [b]) (a6989586621679997430 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym3 a6989586621679997428 a6989586621679997429 a6989586621679997430 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym3 a6989586621679997428 a6989586621679997429 a6989586621679997430 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) (a6989586621679997431 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym3 a6989586621679997428 a6989586621679997429 a6989586621679997430 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) (a6989586621679997431 :: [d]) = Zip6Sym4 a6989586621679997428 a6989586621679997429 a6989586621679997430 a6989586621679997431 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type

data Zip6Sym4 (a6989586621679997428 :: [a]) (a6989586621679997429 :: [b]) (a6989586621679997430 :: [c]) (a6989586621679997431 :: [d]) :: (~>) [e] ((~>) [f] [(a, b, c, d, e, f)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym4 a6989586621679997428 a6989586621679997429 a6989586621679997430 a6989586621679997431 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym4 a6989586621679997428 a6989586621679997429 a6989586621679997430 a6989586621679997431 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) (a6989586621679997432 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym4 a6989586621679997428 a6989586621679997429 a6989586621679997430 a6989586621679997431 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) (a6989586621679997432 :: [e]) = Zip6Sym5 a6989586621679997428 a6989586621679997429 a6989586621679997430 a6989586621679997431 a6989586621679997432 :: TyFun [f] [(a, b, c, d, e, f)] -> Type

data Zip6Sym5 (a6989586621679997428 :: [a]) (a6989586621679997429 :: [b]) (a6989586621679997430 :: [c]) (a6989586621679997431 :: [d]) (a6989586621679997432 :: [e]) :: (~>) [f] [(a, b, c, d, e, f)] Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym5 a6989586621679997428 a6989586621679997429 a6989586621679997430 a6989586621679997431 a6989586621679997432 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym5 a6989586621679997428 a6989586621679997429 a6989586621679997430 a6989586621679997431 a6989586621679997432 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) (a6989586621679997433 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym5 a6989586621679997428 a6989586621679997429 a6989586621679997430 a6989586621679997431 a6989586621679997432 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) (a6989586621679997433 :: [f]) = Zip6 a6989586621679997428 a6989586621679997429 a6989586621679997430 a6989586621679997431 a6989586621679997432 a6989586621679997433

type family Zip6Sym6 (a6989586621679997428 :: [a]) (a6989586621679997429 :: [b]) (a6989586621679997430 :: [c]) (a6989586621679997431 :: [d]) (a6989586621679997432 :: [e]) (a6989586621679997433 :: [f]) :: [(a, b, c, d, e, f)] where ... Source #

Equations

Zip6Sym6 a6989586621679997428 a6989586621679997429 a6989586621679997430 a6989586621679997431 a6989586621679997432 a6989586621679997433 = Zip6 a6989586621679997428 a6989586621679997429 a6989586621679997430 a6989586621679997431 a6989586621679997432 a6989586621679997433 

data Zip7Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) (a6989586621679997395 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) (a6989586621679997395 :: [a]) = Zip7Sym1 a6989586621679997395 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type

data Zip7Sym1 (a6989586621679997395 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym1 a6989586621679997395 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym1 a6989586621679997395 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) (a6989586621679997396 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym1 a6989586621679997395 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) (a6989586621679997396 :: [b]) = Zip7Sym2 a6989586621679997395 a6989586621679997396 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type

data Zip7Sym2 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym2 a6989586621679997395 a6989586621679997396 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym2 a6989586621679997395 a6989586621679997396 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) (a6989586621679997397 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym2 a6989586621679997395 a6989586621679997396 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) (a6989586621679997397 :: [c]) = Zip7Sym3 a6989586621679997395 a6989586621679997396 a6989586621679997397 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type

data Zip7Sym3 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) (a6989586621679997397 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym3 a6989586621679997395 a6989586621679997396 a6989586621679997397 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym3 a6989586621679997395 a6989586621679997396 a6989586621679997397 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) (a6989586621679997398 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym3 a6989586621679997395 a6989586621679997396 a6989586621679997397 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) (a6989586621679997398 :: [d]) = Zip7Sym4 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type

data Zip7Sym4 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) (a6989586621679997397 :: [c]) (a6989586621679997398 :: [d]) :: (~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym4 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym4 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) (a6989586621679997399 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym4 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) (a6989586621679997399 :: [e]) = Zip7Sym5 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 a6989586621679997399 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type

data Zip7Sym5 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) (a6989586621679997397 :: [c]) (a6989586621679997398 :: [d]) (a6989586621679997399 :: [e]) :: (~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym5 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 a6989586621679997399 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym5 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 a6989586621679997399 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) (a6989586621679997400 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym5 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 a6989586621679997399 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) (a6989586621679997400 :: [f]) = Zip7Sym6 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 a6989586621679997399 a6989586621679997400 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type

data Zip7Sym6 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) (a6989586621679997397 :: [c]) (a6989586621679997398 :: [d]) (a6989586621679997399 :: [e]) (a6989586621679997400 :: [f]) :: (~>) [g] [(a, b, c, d, e, f, g)] Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym6 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 a6989586621679997399 a6989586621679997400 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym6 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 a6989586621679997399 a6989586621679997400 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) (a6989586621679997401 :: [g]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym6 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 a6989586621679997399 a6989586621679997400 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) (a6989586621679997401 :: [g]) = Zip7 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 a6989586621679997399 a6989586621679997400 a6989586621679997401

type family Zip7Sym7 (a6989586621679997395 :: [a]) (a6989586621679997396 :: [b]) (a6989586621679997397 :: [c]) (a6989586621679997398 :: [d]) (a6989586621679997399 :: [e]) (a6989586621679997400 :: [f]) (a6989586621679997401 :: [g]) :: [(a, b, c, d, e, f, g)] where ... Source #

Equations

Zip7Sym7 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 a6989586621679997399 a6989586621679997400 a6989586621679997401 = Zip7 a6989586621679997395 a6989586621679997396 a6989586621679997397 a6989586621679997398 a6989586621679997399 a6989586621679997400 a6989586621679997401 

data ZipWithSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) [a] ((~>) [b] [c])) Source #

Instances

Instances details
SingI (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679848713 :: a ~> (b ~> c)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679848713 :: a ~> (b ~> c)) = ZipWithSym1 a6989586621679848713

data ZipWithSym1 (a6989586621679848713 :: (~>) a ((~>) b c)) :: (~>) [a] ((~>) [b] [c]) Source #

Instances

Instances details
SingI1 (ZipWithSym1 :: (a ~> (b ~> c)) -> TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithSym1 x)

SingI d => SingI (ZipWithSym1 d :: TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym1 d)

SuppressUnusedWarnings (ZipWithSym1 a6989586621679848713 :: TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym1 a6989586621679848713 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679848714 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym1 a6989586621679848713 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679848714 :: [a]) = ZipWithSym2 a6989586621679848713 a6989586621679848714

data ZipWithSym2 (a6989586621679848713 :: (~>) a ((~>) b c)) (a6989586621679848714 :: [a]) :: (~>) [b] [c] Source #

Instances

Instances details
SingI d => SingI1 (ZipWithSym2 d :: [a] -> TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithSym2 d x)

SingI2 (ZipWithSym2 :: (a ~> (b ~> c)) -> [a] -> TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWithSym2 x y)

(SingI d1, SingI d2) => SingI (ZipWithSym2 d1 d2 :: TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym2 d1 d2)

SuppressUnusedWarnings (ZipWithSym2 a6989586621679848713 a6989586621679848714 :: TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym2 a6989586621679848713 a6989586621679848714 :: TyFun [b] [c] -> Type) (a6989586621679848715 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym2 a6989586621679848713 a6989586621679848714 :: TyFun [b] [c] -> Type) (a6989586621679848715 :: [b]) = ZipWith a6989586621679848713 a6989586621679848714 a6989586621679848715

type family ZipWithSym3 (a6989586621679848713 :: (~>) a ((~>) b c)) (a6989586621679848714 :: [a]) (a6989586621679848715 :: [b]) :: [c] where ... Source #

Equations

ZipWithSym3 a6989586621679848713 a6989586621679848714 a6989586621679848715 = ZipWith a6989586621679848713 a6989586621679848714 a6989586621679848715 

data ZipWith3Sym0 :: (~>) ((~>) a ((~>) b ((~>) c d))) ((~>) [a] ((~>) [b] ((~>) [c] [d]))) Source #

Instances

Instances details
SingI (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679848698 :: a ~> (b ~> (c ~> d))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679848698 :: a ~> (b ~> (c ~> d))) = ZipWith3Sym1 a6989586621679848698

data ZipWith3Sym1 (a6989586621679848698 :: (~>) a ((~>) b ((~>) c d))) :: (~>) [a] ((~>) [b] ((~>) [c] [d])) Source #

Instances

Instances details
SingI1 (ZipWith3Sym1 :: (a ~> (b ~> (c ~> d))) -> TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym1 x)

SingI d2 => SingI (ZipWith3Sym1 d2 :: TyFun [a] ([b] ~> ([c] ~> [d1])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym1 d2)

SuppressUnusedWarnings (ZipWith3Sym1 a6989586621679848698 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym1 a6989586621679848698 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679848699 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym1 a6989586621679848698 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679848699 :: [a]) = ZipWith3Sym2 a6989586621679848698 a6989586621679848699

data ZipWith3Sym2 (a6989586621679848698 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679848699 :: [a]) :: (~>) [b] ((~>) [c] [d]) Source #

Instances

Instances details
SingI d2 => SingI1 (ZipWith3Sym2 d2 :: [a] -> TyFun [b] ([c] ~> [d1]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym2 d2 x)

SingI2 (ZipWith3Sym2 :: (a ~> (b ~> (c ~> d))) -> [a] -> TyFun [b] ([c] ~> [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWith3Sym2 x y)

(SingI d2, SingI d3) => SingI (ZipWith3Sym2 d2 d3 :: TyFun [b] ([c] ~> [d1]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym2 d2 d3)

SuppressUnusedWarnings (ZipWith3Sym2 a6989586621679848698 a6989586621679848699 :: TyFun [b] ([c] ~> [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym2 a6989586621679848698 a6989586621679848699 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679848700 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym2 a6989586621679848698 a6989586621679848699 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679848700 :: [b]) = ZipWith3Sym3 a6989586621679848698 a6989586621679848699 a6989586621679848700

data ZipWith3Sym3 (a6989586621679848698 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679848699 :: [a]) (a6989586621679848700 :: [b]) :: (~>) [c] [d] Source #

Instances

Instances details
SingI d2 => SingI2 (ZipWith3Sym3 d2 :: [a] -> [b] -> TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWith3Sym3 d2 x y)

(SingI d2, SingI d3) => SingI1 (ZipWith3Sym3 d2 d3 :: [b] -> TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym3 d2 d3 x)

(SingI d2, SingI d3, SingI d4) => SingI (ZipWith3Sym3 d2 d3 d4 :: TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym3 d2 d3 d4)

SuppressUnusedWarnings (ZipWith3Sym3 a6989586621679848698 a6989586621679848699 a6989586621679848700 :: TyFun [c] [d] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym3 a6989586621679848698 a6989586621679848699 a6989586621679848700 :: TyFun [c] [d] -> Type) (a6989586621679848701 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym3 a6989586621679848698 a6989586621679848699 a6989586621679848700 :: TyFun [c] [d] -> Type) (a6989586621679848701 :: [c]) = ZipWith3 a6989586621679848698 a6989586621679848699 a6989586621679848700 a6989586621679848701

type family ZipWith3Sym4 (a6989586621679848698 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679848699 :: [a]) (a6989586621679848700 :: [b]) (a6989586621679848701 :: [c]) :: [d] where ... Source #

Equations

ZipWith3Sym4 a6989586621679848698 a6989586621679848699 a6989586621679848700 a6989586621679848701 = ZipWith3 a6989586621679848698 a6989586621679848699 a6989586621679848700 a6989586621679848701 

data ZipWith4Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d e)))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [e])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) (a6989586621679997359 :: a ~> (b ~> (c ~> (d ~> e)))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) (a6989586621679997359 :: a ~> (b ~> (c ~> (d ~> e)))) = ZipWith4Sym1 a6989586621679997359

data ZipWith4Sym1 (a6989586621679997359 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [e]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym1 a6989586621679997359 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym1 a6989586621679997359 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) (a6989586621679997360 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym1 a6989586621679997359 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) (a6989586621679997360 :: [a]) = ZipWith4Sym2 a6989586621679997359 a6989586621679997360

data ZipWith4Sym2 (a6989586621679997359 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621679997360 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] [e])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym2 a6989586621679997359 a6989586621679997360 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym2 a6989586621679997359 a6989586621679997360 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) (a6989586621679997361 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym2 a6989586621679997359 a6989586621679997360 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) (a6989586621679997361 :: [b]) = ZipWith4Sym3 a6989586621679997359 a6989586621679997360 a6989586621679997361

data ZipWith4Sym3 (a6989586621679997359 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621679997360 :: [a]) (a6989586621679997361 :: [b]) :: (~>) [c] ((~>) [d] [e]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym3 a6989586621679997359 a6989586621679997360 a6989586621679997361 :: TyFun [c] ([d] ~> [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym3 a6989586621679997359 a6989586621679997360 a6989586621679997361 :: TyFun [c] ([d] ~> [e]) -> Type) (a6989586621679997362 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym3 a6989586621679997359 a6989586621679997360 a6989586621679997361 :: TyFun [c] ([d] ~> [e]) -> Type) (a6989586621679997362 :: [c]) = ZipWith4Sym4 a6989586621679997359 a6989586621679997360 a6989586621679997361 a6989586621679997362

data ZipWith4Sym4 (a6989586621679997359 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621679997360 :: [a]) (a6989586621679997361 :: [b]) (a6989586621679997362 :: [c]) :: (~>) [d] [e] Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym4 a6989586621679997359 a6989586621679997360 a6989586621679997361 a6989586621679997362 :: TyFun [d] [e] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym4 a6989586621679997359 a6989586621679997360 a6989586621679997361 a6989586621679997362 :: TyFun [d] [e] -> Type) (a6989586621679997363 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym4 a6989586621679997359 a6989586621679997360 a6989586621679997361 a6989586621679997362 :: TyFun [d] [e] -> Type) (a6989586621679997363 :: [d]) = ZipWith4 a6989586621679997359 a6989586621679997360 a6989586621679997361 a6989586621679997362 a6989586621679997363

type family ZipWith4Sym5 (a6989586621679997359 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621679997360 :: [a]) (a6989586621679997361 :: [b]) (a6989586621679997362 :: [c]) (a6989586621679997363 :: [d]) :: [e] where ... Source #

Equations

ZipWith4Sym5 a6989586621679997359 a6989586621679997360 a6989586621679997361 a6989586621679997362 a6989586621679997363 = ZipWith4 a6989586621679997359 a6989586621679997360 a6989586621679997361 a6989586621679997362 a6989586621679997363 

data ZipWith5Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) (a6989586621679997336 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) (a6989586621679997336 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) = ZipWith5Sym1 a6989586621679997336

data ZipWith5Sym1 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym1 a6989586621679997336 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym1 a6989586621679997336 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) (a6989586621679997337 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym1 a6989586621679997336 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) (a6989586621679997337 :: [a]) = ZipWith5Sym2 a6989586621679997336 a6989586621679997337

data ZipWith5Sym2 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621679997337 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym2 a6989586621679997336 a6989586621679997337 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym2 a6989586621679997336 a6989586621679997337 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) (a6989586621679997338 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym2 a6989586621679997336 a6989586621679997337 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) (a6989586621679997338 :: [b]) = ZipWith5Sym3 a6989586621679997336 a6989586621679997337 a6989586621679997338

data ZipWith5Sym3 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621679997337 :: [a]) (a6989586621679997338 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] [f])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym3 a6989586621679997336 a6989586621679997337 a6989586621679997338 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym3 a6989586621679997336 a6989586621679997337 a6989586621679997338 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) (a6989586621679997339 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym3 a6989586621679997336 a6989586621679997337 a6989586621679997338 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) (a6989586621679997339 :: [c]) = ZipWith5Sym4 a6989586621679997336 a6989586621679997337 a6989586621679997338 a6989586621679997339

data ZipWith5Sym4 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621679997337 :: [a]) (a6989586621679997338 :: [b]) (a6989586621679997339 :: [c]) :: (~>) [d] ((~>) [e] [f]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym4 a6989586621679997336 a6989586621679997337 a6989586621679997338 a6989586621679997339 :: TyFun [d] ([e] ~> [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym4 a6989586621679997336 a6989586621679997337 a6989586621679997338 a6989586621679997339 :: TyFun [d] ([e] ~> [f]) -> Type) (a6989586621679997340 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym4 a6989586621679997336 a6989586621679997337 a6989586621679997338 a6989586621679997339 :: TyFun [d] ([e] ~> [f]) -> Type) (a6989586621679997340 :: [d]) = ZipWith5Sym5 a6989586621679997336 a6989586621679997337 a6989586621679997338 a6989586621679997339 a6989586621679997340

data ZipWith5Sym5 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621679997337 :: [a]) (a6989586621679997338 :: [b]) (a6989586621679997339 :: [c]) (a6989586621679997340 :: [d]) :: (~>) [e] [f] Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym5 a6989586621679997336 a6989586621679997337 a6989586621679997338 a6989586621679997339 a6989586621679997340 :: TyFun [e] [f] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym5 a6989586621679997336 a6989586621679997337 a6989586621679997338 a6989586621679997339 a6989586621679997340 :: TyFun [e] [f] -> Type) (a6989586621679997341 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym5 a6989586621679997336 a6989586621679997337 a6989586621679997338 a6989586621679997339 a6989586621679997340 :: TyFun [e] [f] -> Type) (a6989586621679997341 :: [e]) = ZipWith5 a6989586621679997336 a6989586621679997337 a6989586621679997338 a6989586621679997339 a6989586621679997340 a6989586621679997341

type family ZipWith5Sym6 (a6989586621679997336 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621679997337 :: [a]) (a6989586621679997338 :: [b]) (a6989586621679997339 :: [c]) (a6989586621679997340 :: [d]) (a6989586621679997341 :: [e]) :: [f] where ... Source #

Equations

ZipWith5Sym6 a6989586621679997336 a6989586621679997337 a6989586621679997338 a6989586621679997339 a6989586621679997340 a6989586621679997341 = ZipWith5 a6989586621679997336 a6989586621679997337 a6989586621679997338 a6989586621679997339 a6989586621679997340 a6989586621679997341 

data ZipWith6Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) (a6989586621679997309 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) (a6989586621679997309 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) = ZipWith6Sym1 a6989586621679997309

data ZipWith6Sym1 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym1 a6989586621679997309 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym1 a6989586621679997309 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) (a6989586621679997310 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym1 a6989586621679997309 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) (a6989586621679997310 :: [a]) = ZipWith6Sym2 a6989586621679997309 a6989586621679997310

data ZipWith6Sym2 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym2 a6989586621679997309 a6989586621679997310 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym2 a6989586621679997309 a6989586621679997310 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) (a6989586621679997311 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym2 a6989586621679997309 a6989586621679997310 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) (a6989586621679997311 :: [b]) = ZipWith6Sym3 a6989586621679997309 a6989586621679997310 a6989586621679997311

data ZipWith6Sym3 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) (a6989586621679997311 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym3 a6989586621679997309 a6989586621679997310 a6989586621679997311 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym3 a6989586621679997309 a6989586621679997310 a6989586621679997311 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) (a6989586621679997312 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym3 a6989586621679997309 a6989586621679997310 a6989586621679997311 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) (a6989586621679997312 :: [c]) = ZipWith6Sym4 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312

data ZipWith6Sym4 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) (a6989586621679997311 :: [b]) (a6989586621679997312 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] [g])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym4 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym4 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) (a6989586621679997313 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym4 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) (a6989586621679997313 :: [d]) = ZipWith6Sym5 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 a6989586621679997313

data ZipWith6Sym5 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) (a6989586621679997311 :: [b]) (a6989586621679997312 :: [c]) (a6989586621679997313 :: [d]) :: (~>) [e] ((~>) [f] [g]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym5 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 a6989586621679997313 :: TyFun [e] ([f] ~> [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym5 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 a6989586621679997313 :: TyFun [e] ([f] ~> [g]) -> Type) (a6989586621679997314 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym5 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 a6989586621679997313 :: TyFun [e] ([f] ~> [g]) -> Type) (a6989586621679997314 :: [e]) = ZipWith6Sym6 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 a6989586621679997313 a6989586621679997314

data ZipWith6Sym6 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) (a6989586621679997311 :: [b]) (a6989586621679997312 :: [c]) (a6989586621679997313 :: [d]) (a6989586621679997314 :: [e]) :: (~>) [f] [g] Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym6 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 a6989586621679997313 a6989586621679997314 :: TyFun [f] [g] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym6 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 a6989586621679997313 a6989586621679997314 :: TyFun [f] [g] -> Type) (a6989586621679997315 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym6 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 a6989586621679997313 a6989586621679997314 :: TyFun [f] [g] -> Type) (a6989586621679997315 :: [f]) = ZipWith6 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 a6989586621679997313 a6989586621679997314 a6989586621679997315

type family ZipWith6Sym7 (a6989586621679997309 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621679997310 :: [a]) (a6989586621679997311 :: [b]) (a6989586621679997312 :: [c]) (a6989586621679997313 :: [d]) (a6989586621679997314 :: [e]) (a6989586621679997315 :: [f]) :: [g] where ... Source #

Equations

ZipWith6Sym7 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 a6989586621679997313 a6989586621679997314 a6989586621679997315 = ZipWith6 a6989586621679997309 a6989586621679997310 a6989586621679997311 a6989586621679997312 a6989586621679997313 a6989586621679997314 a6989586621679997315 

data ZipWith7Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h]))))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) (a6989586621679997278 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) (a6989586621679997278 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) = ZipWith7Sym1 a6989586621679997278

data ZipWith7Sym1 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym1 a6989586621679997278 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym1 a6989586621679997278 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) (a6989586621679997279 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym1 a6989586621679997278 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) (a6989586621679997279 :: [a]) = ZipWith7Sym2 a6989586621679997278 a6989586621679997279

data ZipWith7Sym2 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym2 a6989586621679997278 a6989586621679997279 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym2 a6989586621679997278 a6989586621679997279 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) (a6989586621679997280 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym2 a6989586621679997278 a6989586621679997279 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) (a6989586621679997280 :: [b]) = ZipWith7Sym3 a6989586621679997278 a6989586621679997279 a6989586621679997280

data ZipWith7Sym3 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym3 a6989586621679997278 a6989586621679997279 a6989586621679997280 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym3 a6989586621679997278 a6989586621679997279 a6989586621679997280 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) (a6989586621679997281 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym3 a6989586621679997278 a6989586621679997279 a6989586621679997280 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) (a6989586621679997281 :: [c]) = ZipWith7Sym4 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281

data ZipWith7Sym4 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) (a6989586621679997281 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym4 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym4 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) (a6989586621679997282 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym4 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) (a6989586621679997282 :: [d]) = ZipWith7Sym5 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282

data ZipWith7Sym5 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) (a6989586621679997281 :: [c]) (a6989586621679997282 :: [d]) :: (~>) [e] ((~>) [f] ((~>) [g] [h])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym5 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym5 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) (a6989586621679997283 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym5 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) (a6989586621679997283 :: [e]) = ZipWith7Sym6 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 a6989586621679997283

data ZipWith7Sym6 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) (a6989586621679997281 :: [c]) (a6989586621679997282 :: [d]) (a6989586621679997283 :: [e]) :: (~>) [f] ((~>) [g] [h]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym6 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 a6989586621679997283 :: TyFun [f] ([g] ~> [h]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym6 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 a6989586621679997283 :: TyFun [f] ([g] ~> [h]) -> Type) (a6989586621679997284 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym6 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 a6989586621679997283 :: TyFun [f] ([g] ~> [h]) -> Type) (a6989586621679997284 :: [f]) = ZipWith7Sym7 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 a6989586621679997283 a6989586621679997284

data ZipWith7Sym7 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) (a6989586621679997281 :: [c]) (a6989586621679997282 :: [d]) (a6989586621679997283 :: [e]) (a6989586621679997284 :: [f]) :: (~>) [g] [h] Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym7 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 a6989586621679997283 a6989586621679997284 :: TyFun [g] [h] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym7 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 a6989586621679997283 a6989586621679997284 :: TyFun [g] [h] -> Type) (a6989586621679997285 :: [g]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym7 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 a6989586621679997283 a6989586621679997284 :: TyFun [g] [h] -> Type) (a6989586621679997285 :: [g]) = ZipWith7 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 a6989586621679997283 a6989586621679997284 a6989586621679997285

type family ZipWith7Sym8 (a6989586621679997278 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621679997279 :: [a]) (a6989586621679997280 :: [b]) (a6989586621679997281 :: [c]) (a6989586621679997282 :: [d]) (a6989586621679997283 :: [e]) (a6989586621679997284 :: [f]) (a6989586621679997285 :: [g]) :: [h] where ... Source #

Equations

ZipWith7Sym8 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 a6989586621679997283 a6989586621679997284 a6989586621679997285 = ZipWith7 a6989586621679997278 a6989586621679997279 a6989586621679997280 a6989586621679997281 a6989586621679997282 a6989586621679997283 a6989586621679997284 a6989586621679997285 

data UnzipSym0 :: (~>) [(a, b)] ([a], [b]) Source #

Instances

Instances details
SingI (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing UnzipSym0

SuppressUnusedWarnings (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) (a6989586621679848679 :: [(a, b)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) (a6989586621679848679 :: [(a, b)]) = Unzip a6989586621679848679

type family UnzipSym1 (a6989586621679848679 :: [(a, b)]) :: ([a], [b]) where ... Source #

Equations

UnzipSym1 a6989586621679848679 = Unzip a6989586621679848679 

data Unzip3Sym0 :: (~>) [(a, b, c)] ([a], [b], [c]) Source #

Instances

Instances details
SingI (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Unzip3Sym0

SuppressUnusedWarnings (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679848661 :: [(a, b, c)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679848661 :: [(a, b, c)]) = Unzip3 a6989586621679848661

type family Unzip3Sym1 (a6989586621679848661 :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #

Equations

Unzip3Sym1 a6989586621679848661 = Unzip3 a6989586621679848661 

data Unzip4Sym0 :: (~>) [(a, b, c, d)] ([a], [b], [c], [d]) Source #

Instances

Instances details
SingI (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Unzip4Sym0

SuppressUnusedWarnings (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) (a6989586621679848641 :: [(a, b, c, d)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) (a6989586621679848641 :: [(a, b, c, d)]) = Unzip4 a6989586621679848641

type family Unzip4Sym1 (a6989586621679848641 :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ... Source #

Equations

Unzip4Sym1 a6989586621679848641 = Unzip4 a6989586621679848641 

data Unzip5Sym0 :: (~>) [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) Source #

Instances

Instances details
SingI (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Unzip5Sym0

SuppressUnusedWarnings (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) (a6989586621679848619 :: [(a, b, c, d, e)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) (a6989586621679848619 :: [(a, b, c, d, e)]) = Unzip5 a6989586621679848619

type family Unzip5Sym1 (a6989586621679848619 :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ... Source #

Equations

Unzip5Sym1 a6989586621679848619 = Unzip5 a6989586621679848619 

data Unzip6Sym0 :: (~>) [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) Source #

Instances

Instances details
SingI (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Unzip6Sym0

SuppressUnusedWarnings (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) (a6989586621679848595 :: [(a, b, c, d, e, f)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) (a6989586621679848595 :: [(a, b, c, d, e, f)]) = Unzip6 a6989586621679848595

type family Unzip6Sym1 (a6989586621679848595 :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ... Source #

Equations

Unzip6Sym1 a6989586621679848595 = Unzip6 a6989586621679848595 

data Unzip7Sym0 :: (~>) [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) Source #

Instances

Instances details
SingI (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Unzip7Sym0

SuppressUnusedWarnings (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) (a6989586621679848569 :: [(a, b, c, d, e, f, g)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) (a6989586621679848569 :: [(a, b, c, d, e, f, g)]) = Unzip7 a6989586621679848569

type family Unzip7Sym1 (a6989586621679848569 :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ... Source #

Equations

Unzip7Sym1 a6989586621679848569 = Unzip7 a6989586621679848569 

data UnlinesSym0 :: (~>) [Symbol] Symbol Source #

Instances

Instances details
SingI UnlinesSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings UnlinesSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnlinesSym0 (a6989586621679848564 :: [Symbol]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnlinesSym0 (a6989586621679848564 :: [Symbol]) = Unlines a6989586621679848564

type family UnlinesSym1 (a6989586621679848564 :: [Symbol]) :: Symbol where ... Source #

Equations

UnlinesSym1 a6989586621679848564 = Unlines a6989586621679848564 

data UnwordsSym0 :: (~>) [Symbol] Symbol Source #

Instances

Instances details
SingI UnwordsSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings UnwordsSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnwordsSym0 (a6989586621679848554 :: [Symbol]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnwordsSym0 (a6989586621679848554 :: [Symbol]) = Unwords a6989586621679848554

type family UnwordsSym1 (a6989586621679848554 :: [Symbol]) :: Symbol where ... Source #

Equations

UnwordsSym1 a6989586621679848554 = Unwords a6989586621679848554 

data NubSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SEq a => SingI (NubSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing NubSym0

SuppressUnusedWarnings (NubSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubSym0 :: TyFun [a] [a] -> Type) (a6989586621679848010 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubSym0 :: TyFun [a] [a] -> Type) (a6989586621679848010 :: [a]) = Nub a6989586621679848010

type family NubSym1 (a6989586621679848010 :: [a]) :: [a] where ... Source #

Equations

NubSym1 a6989586621679848010 = Nub a6989586621679848010 

data DeleteSym0 :: (~>) a ((~>) [a] [a]) Source #

Instances

Instances details
SEq a => SingI (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing DeleteSym0

SuppressUnusedWarnings (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679848548 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679848548 :: a) = DeleteSym1 a6989586621679848548

data DeleteSym1 (a6989586621679848548 :: a) :: (~>) [a] [a] Source #

Instances

Instances details
SEq a => SingI1 (DeleteSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DeleteSym1 x)

(SEq a, SingI d) => SingI (DeleteSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteSym1 d)

SuppressUnusedWarnings (DeleteSym1 a6989586621679848548 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym1 a6989586621679848548 :: TyFun [a] [a] -> Type) (a6989586621679848549 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym1 a6989586621679848548 :: TyFun [a] [a] -> Type) (a6989586621679848549 :: [a]) = Delete a6989586621679848548 a6989586621679848549

type family DeleteSym2 (a6989586621679848548 :: a) (a6989586621679848549 :: [a]) :: [a] where ... Source #

Equations

DeleteSym2 a6989586621679848548 a6989586621679848549 = Delete a6989586621679848548 a6989586621679848549 

data (\\@#@$) :: (~>) [a] ((~>) [a] [a]) infix 5 Source #

Instances

Instances details
SEq a => SingI ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (\\@#@$)

SuppressUnusedWarnings ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679848537 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679848537 :: [a]) = (\\@#@$$) a6989586621679848537

data (\\@#@$$) (a6989586621679848537 :: [a]) :: (~>) [a] [a] infix 5 Source #

Instances

Instances details
SEq a => SingI1 ((\\@#@$$) :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((\\@#@$$) x)

(SEq a, SingI d) => SingI ((\\@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((\\@#@$$) d)

SuppressUnusedWarnings ((\\@#@$$) a6989586621679848537 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$$) a6989586621679848537 :: TyFun [a] [a] -> Type) (a6989586621679848538 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$$) a6989586621679848537 :: TyFun [a] [a] -> Type) (a6989586621679848538 :: [a]) = a6989586621679848537 \\ a6989586621679848538

type family (a6989586621679848537 :: [a]) \\@#@$$$ (a6989586621679848538 :: [a]) :: [a] where ... infix 5 Source #

Equations

a6989586621679848537 \\@#@$$$ a6989586621679848538 = (\\) a6989586621679848537 a6989586621679848538 

data UnionSym0 :: (~>) [a] ((~>) [a] [a]) Source #

Instances

Instances details
SEq a => SingI (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing UnionSym0

SuppressUnusedWarnings (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679847964 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679847964 :: [a]) = UnionSym1 a6989586621679847964

data UnionSym1 (a6989586621679847964 :: [a]) :: (~>) [a] [a] Source #

Instances

Instances details
SEq a => SingI1 (UnionSym1 :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UnionSym1 x)

(SEq a, SingI d) => SingI (UnionSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionSym1 d)

SuppressUnusedWarnings (UnionSym1 a6989586621679847964 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym1 a6989586621679847964 :: TyFun [a] [a] -> Type) (a6989586621679847965 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym1 a6989586621679847964 :: TyFun [a] [a] -> Type) (a6989586621679847965 :: [a]) = Union a6989586621679847964 a6989586621679847965

type family UnionSym2 (a6989586621679847964 :: [a]) (a6989586621679847965 :: [a]) :: [a] where ... Source #

Equations

UnionSym2 a6989586621679847964 a6989586621679847965 = Union a6989586621679847964 a6989586621679847965 

data IntersectSym0 :: (~>) [a] ((~>) [a] [a]) Source #

Instances

Instances details
SEq a => SingI (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679848355 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679848355 :: [a]) = IntersectSym1 a6989586621679848355

data IntersectSym1 (a6989586621679848355 :: [a]) :: (~>) [a] [a] Source #

Instances

Instances details
SEq a => SingI1 (IntersectSym1 :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IntersectSym1 x)

(SEq a, SingI d) => SingI (IntersectSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectSym1 d)

SuppressUnusedWarnings (IntersectSym1 a6989586621679848355 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym1 a6989586621679848355 :: TyFun [a] [a] -> Type) (a6989586621679848356 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym1 a6989586621679848355 :: TyFun [a] [a] -> Type) (a6989586621679848356 :: [a]) = Intersect a6989586621679848355 a6989586621679848356

type family IntersectSym2 (a6989586621679848355 :: [a]) (a6989586621679848356 :: [a]) :: [a] where ... Source #

Equations

IntersectSym2 a6989586621679848355 a6989586621679848356 = Intersect a6989586621679848355 a6989586621679848356 

data InsertSym0 :: (~>) a ((~>) [a] [a]) Source #

Instances

Instances details
SOrd a => SingI (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing InsertSym0

SuppressUnusedWarnings (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679848157 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679848157 :: a) = InsertSym1 a6989586621679848157

data InsertSym1 (a6989586621679848157 :: a) :: (~>) [a] [a] Source #

Instances

Instances details
SOrd a => SingI1 (InsertSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (InsertSym1 x)

(SOrd a, SingI d) => SingI (InsertSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertSym1 d)

SuppressUnusedWarnings (InsertSym1 a6989586621679848157 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym1 a6989586621679848157 :: TyFun [a] [a] -> Type) (a6989586621679848158 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym1 a6989586621679848157 :: TyFun [a] [a] -> Type) (a6989586621679848158 :: [a]) = Insert a6989586621679848157 a6989586621679848158

type family InsertSym2 (a6989586621679848157 :: a) (a6989586621679848158 :: [a]) :: [a] where ... Source #

Equations

InsertSym2 a6989586621679848157 a6989586621679848158 = Insert a6989586621679848157 a6989586621679848158 

data SortSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SOrd a => SingI (SortSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing SortSym0

SuppressUnusedWarnings (SortSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortSym0 :: TyFun [a] [a] -> Type) (a6989586621679848152 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortSym0 :: TyFun [a] [a] -> Type) (a6989586621679848152 :: [a]) = Sort a6989586621679848152

type family SortSym1 (a6989586621679848152 :: [a]) :: [a] where ... Source #

Equations

SortSym1 a6989586621679848152 = Sort a6989586621679848152 

data NubBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing NubBySym0

SuppressUnusedWarnings (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) (a6989586621679847992 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) (a6989586621679847992 :: a ~> (a ~> Bool)) = NubBySym1 a6989586621679847992

data NubBySym1 (a6989586621679847992 :: (~>) a ((~>) a Bool)) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (NubBySym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (NubBySym1 d)

SuppressUnusedWarnings (NubBySym1 a6989586621679847992 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (NubBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (NubBySym1 x)

type Apply (NubBySym1 a6989586621679847992 :: TyFun [a] [a] -> Type) (a6989586621679847993 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym1 a6989586621679847992 :: TyFun [a] [a] -> Type) (a6989586621679847993 :: [a]) = NubBy a6989586621679847992 a6989586621679847993

type family NubBySym2 (a6989586621679847992 :: (~>) a ((~>) a Bool)) (a6989586621679847993 :: [a]) :: [a] where ... Source #

Equations

NubBySym2 a6989586621679847992 a6989586621679847993 = NubBy a6989586621679847992 a6989586621679847993 

data DeleteBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) a ((~>) [a] [a])) Source #

Instances

Instances details
SingI (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679848518 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679848518 :: a ~> (a ~> Bool)) = DeleteBySym1 a6989586621679848518

data DeleteBySym1 (a6989586621679848518 :: (~>) a ((~>) a Bool)) :: (~>) a ((~>) [a] [a]) Source #

Instances

Instances details
SingI d => SingI (DeleteBySym1 d :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteBySym1 d)

SuppressUnusedWarnings (DeleteBySym1 a6989586621679848518 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DeleteBySym1 :: (a ~> (a ~> Bool)) -> TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DeleteBySym1 x)

type Apply (DeleteBySym1 a6989586621679848518 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679848519 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym1 a6989586621679848518 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679848519 :: a) = DeleteBySym2 a6989586621679848518 a6989586621679848519

data DeleteBySym2 (a6989586621679848518 :: (~>) a ((~>) a Bool)) (a6989586621679848519 :: a) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI1 (DeleteBySym2 d :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DeleteBySym2 d x)

SingI2 (DeleteBySym2 :: (a ~> (a ~> Bool)) -> a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (DeleteBySym2 x y)

(SingI d1, SingI d2) => SingI (DeleteBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteBySym2 d1 d2)

SuppressUnusedWarnings (DeleteBySym2 a6989586621679848518 a6989586621679848519 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym2 a6989586621679848518 a6989586621679848519 :: TyFun [a] [a] -> Type) (a6989586621679848520 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym2 a6989586621679848518 a6989586621679848519 :: TyFun [a] [a] -> Type) (a6989586621679848520 :: [a]) = DeleteBy a6989586621679848518 a6989586621679848519 a6989586621679848520

type family DeleteBySym3 (a6989586621679848518 :: (~>) a ((~>) a Bool)) (a6989586621679848519 :: a) (a6989586621679848520 :: [a]) :: [a] where ... Source #

Equations

DeleteBySym3 a6989586621679848518 a6989586621679848519 a6989586621679848520 = DeleteBy a6989586621679848518 a6989586621679848519 a6989586621679848520 

data DeleteFirstsBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a])) Source #

Instances

Instances details
SingI (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679848508 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679848508 :: a ~> (a ~> Bool)) = DeleteFirstsBySym1 a6989586621679848508

data DeleteFirstsBySym1 (a6989586621679848508 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a]) Source #

Instances

Instances details
SingI d => SingI (DeleteFirstsBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DeleteFirstsBySym1 a6989586621679848508 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DeleteFirstsBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DeleteFirstsBySym1 x)

type Apply (DeleteFirstsBySym1 a6989586621679848508 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679848509 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym1 a6989586621679848508 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679848509 :: [a]) = DeleteFirstsBySym2 a6989586621679848508 a6989586621679848509

data DeleteFirstsBySym2 (a6989586621679848508 :: (~>) a ((~>) a Bool)) (a6989586621679848509 :: [a]) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI1 (DeleteFirstsBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DeleteFirstsBySym2 d x)

SingI2 (DeleteFirstsBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (DeleteFirstsBySym2 x y)

(SingI d1, SingI d2) => SingI (DeleteFirstsBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteFirstsBySym2 d1 d2)

SuppressUnusedWarnings (DeleteFirstsBySym2 a6989586621679848508 a6989586621679848509 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym2 a6989586621679848508 a6989586621679848509 :: TyFun [a] [a] -> Type) (a6989586621679848510 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym2 a6989586621679848508 a6989586621679848509 :: TyFun [a] [a] -> Type) (a6989586621679848510 :: [a]) = DeleteFirstsBy a6989586621679848508 a6989586621679848509 a6989586621679848510

type family DeleteFirstsBySym3 (a6989586621679848508 :: (~>) a ((~>) a Bool)) (a6989586621679848509 :: [a]) (a6989586621679848510 :: [a]) :: [a] where ... Source #

Equations

DeleteFirstsBySym3 a6989586621679848508 a6989586621679848509 a6989586621679848510 = DeleteFirstsBy a6989586621679848508 a6989586621679848509 a6989586621679848510 

data UnionBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a])) Source #

Instances

Instances details
SingI (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679847972 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679847972 :: a ~> (a ~> Bool)) = UnionBySym1 a6989586621679847972

data UnionBySym1 (a6989586621679847972 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a]) Source #

Instances

Instances details
SingI d => SingI (UnionBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionBySym1 d)

SuppressUnusedWarnings (UnionBySym1 a6989586621679847972 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (UnionBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UnionBySym1 x)

type Apply (UnionBySym1 a6989586621679847972 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679847973 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym1 a6989586621679847972 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679847973 :: [a]) = UnionBySym2 a6989586621679847972 a6989586621679847973

data UnionBySym2 (a6989586621679847972 :: (~>) a ((~>) a Bool)) (a6989586621679847973 :: [a]) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI1 (UnionBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UnionBySym2 d x)

SingI2 (UnionBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (UnionBySym2 x y)

(SingI d1, SingI d2) => SingI (UnionBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionBySym2 d1 d2)

SuppressUnusedWarnings (UnionBySym2 a6989586621679847972 a6989586621679847973 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym2 a6989586621679847972 a6989586621679847973 :: TyFun [a] [a] -> Type) (a6989586621679847974 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym2 a6989586621679847972 a6989586621679847973 :: TyFun [a] [a] -> Type) (a6989586621679847974 :: [a]) = UnionBy a6989586621679847972 a6989586621679847973 a6989586621679847974

type family UnionBySym3 (a6989586621679847972 :: (~>) a ((~>) a Bool)) (a6989586621679847973 :: [a]) (a6989586621679847974 :: [a]) :: [a] where ... Source #

Equations

UnionBySym3 a6989586621679847972 a6989586621679847973 a6989586621679847974 = UnionBy a6989586621679847972 a6989586621679847973 a6989586621679847974 

data IntersectBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a])) Source #

Instances

Instances details
SingI (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679848333 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679848333 :: a ~> (a ~> Bool)) = IntersectBySym1 a6989586621679848333

data IntersectBySym1 (a6989586621679848333 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a]) Source #

Instances

Instances details
SingI d => SingI (IntersectBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectBySym1 d)

SuppressUnusedWarnings (IntersectBySym1 a6989586621679848333 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (IntersectBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IntersectBySym1 x)

type Apply (IntersectBySym1 a6989586621679848333 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679848334 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym1 a6989586621679848333 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679848334 :: [a]) = IntersectBySym2 a6989586621679848333 a6989586621679848334

data IntersectBySym2 (a6989586621679848333 :: (~>) a ((~>) a Bool)) (a6989586621679848334 :: [a]) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI1 (IntersectBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IntersectBySym2 d x)

SingI2 (IntersectBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (IntersectBySym2 x y)

(SingI d1, SingI d2) => SingI (IntersectBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectBySym2 d1 d2)

SuppressUnusedWarnings (IntersectBySym2 a6989586621679848333 a6989586621679848334 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym2 a6989586621679848333 a6989586621679848334 :: TyFun [a] [a] -> Type) (a6989586621679848335 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym2 a6989586621679848333 a6989586621679848334 :: TyFun [a] [a] -> Type) (a6989586621679848335 :: [a]) = IntersectBy a6989586621679848333 a6989586621679848334 a6989586621679848335

type family IntersectBySym3 (a6989586621679848333 :: (~>) a ((~>) a Bool)) (a6989586621679848334 :: [a]) (a6989586621679848335 :: [a]) :: [a] where ... Source #

Equations

IntersectBySym3 a6989586621679848333 a6989586621679848334 a6989586621679848335 = IntersectBy a6989586621679848333 a6989586621679848334 a6989586621679848335 

data GroupBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] [[a]]) Source #

Instances

Instances details
SingI (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) (a6989586621679848125 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) (a6989586621679848125 :: a ~> (a ~> Bool)) = GroupBySym1 a6989586621679848125

data GroupBySym1 (a6989586621679848125 :: (~>) a ((~>) a Bool)) :: (~>) [a] [[a]] Source #

Instances

Instances details
SingI d => SingI (GroupBySym1 d :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (GroupBySym1 d)

SuppressUnusedWarnings (GroupBySym1 a6989586621679848125 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (GroupBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (GroupBySym1 x)

type Apply (GroupBySym1 a6989586621679848125 :: TyFun [a] [[a]] -> Type) (a6989586621679848126 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym1 a6989586621679848125 :: TyFun [a] [[a]] -> Type) (a6989586621679848126 :: [a]) = GroupBy a6989586621679848125 a6989586621679848126

type family GroupBySym2 (a6989586621679848125 :: (~>) a ((~>) a Bool)) (a6989586621679848126 :: [a]) :: [[a]] where ... Source #

Equations

GroupBySym2 a6989586621679848125 a6989586621679848126 = GroupBy a6989586621679848125 a6989586621679848126 

data SortBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing SortBySym0

SuppressUnusedWarnings (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) (a6989586621679848496 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) (a6989586621679848496 :: a ~> (a ~> Ordering)) = SortBySym1 a6989586621679848496

data SortBySym1 (a6989586621679848496 :: (~>) a ((~>) a Ordering)) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (SortBySym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SortBySym1 d)

SuppressUnusedWarnings (SortBySym1 a6989586621679848496 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (SortBySym1 :: (a ~> (a ~> Ordering)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (SortBySym1 x)

type Apply (SortBySym1 a6989586621679848496 :: TyFun [a] [a] -> Type) (a6989586621679848497 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym1 a6989586621679848496 :: TyFun [a] [a] -> Type) (a6989586621679848497 :: [a]) = SortBy a6989586621679848496 a6989586621679848497

type family SortBySym2 (a6989586621679848496 :: (~>) a ((~>) a Ordering)) (a6989586621679848497 :: [a]) :: [a] where ... Source #

Equations

SortBySym2 a6989586621679848496 a6989586621679848497 = SortBy a6989586621679848496 a6989586621679848497 

data InsertBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) a ((~>) [a] [a])) Source #

Instances

Instances details
SingI (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679848476 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679848476 :: a ~> (a ~> Ordering)) = InsertBySym1 a6989586621679848476

data InsertBySym1 (a6989586621679848476 :: (~>) a ((~>) a Ordering)) :: (~>) a ((~>) [a] [a]) Source #

Instances

Instances details
SingI d => SingI (InsertBySym1 d :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertBySym1 d)

SuppressUnusedWarnings (InsertBySym1 a6989586621679848476 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (InsertBySym1 :: (a ~> (a ~> Ordering)) -> TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (InsertBySym1 x)

type Apply (InsertBySym1 a6989586621679848476 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679848477 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym1 a6989586621679848476 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679848477 :: a) = InsertBySym2 a6989586621679848476 a6989586621679848477

data InsertBySym2 (a6989586621679848476 :: (~>) a ((~>) a Ordering)) (a6989586621679848477 :: a) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI1 (InsertBySym2 d :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (InsertBySym2 d x)

SingI2 (InsertBySym2 :: (a ~> (a ~> Ordering)) -> a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (InsertBySym2 x y)

(SingI d1, SingI d2) => SingI (InsertBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertBySym2 d1 d2)

SuppressUnusedWarnings (InsertBySym2 a6989586621679848476 a6989586621679848477 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym2 a6989586621679848476 a6989586621679848477 :: TyFun [a] [a] -> Type) (a6989586621679848478 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym2 a6989586621679848476 a6989586621679848477 :: TyFun [a] [a] -> Type) (a6989586621679848478 :: [a]) = InsertBy a6989586621679848476 a6989586621679848477 a6989586621679848478

type family InsertBySym3 (a6989586621679848476 :: (~>) a ((~>) a Ordering)) (a6989586621679848477 :: a) (a6989586621679848478 :: [a]) :: [a] where ... Source #

Equations

InsertBySym3 a6989586621679848476 a6989586621679848477 a6989586621679848478 = InsertBy a6989586621679848476 a6989586621679848477 a6989586621679848478 

data MaximumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a) Source #

Instances

Instances details
SFoldable t => SingI (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680427062 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680427062 :: a ~> (a ~> Ordering)) = MaximumBySym1 a6989586621680427062 :: TyFun (t a) a -> Type

data MaximumBySym1 (a6989586621680427062 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a Source #

Instances

Instances details
SFoldable t => SingI1 (MaximumBySym1 :: (a ~> (a ~> Ordering)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MaximumBySym1 x)

(SFoldable t, SingI d) => SingI (MaximumBySym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MaximumBySym1 d)

SuppressUnusedWarnings (MaximumBySym1 a6989586621680427062 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym1 a6989586621680427062 :: TyFun (t a) a -> Type) (a6989586621680427063 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym1 a6989586621680427062 :: TyFun (t a) a -> Type) (a6989586621680427063 :: t a) = MaximumBy a6989586621680427062 a6989586621680427063

type family MaximumBySym2 (a6989586621680427062 :: (~>) a ((~>) a Ordering)) (a6989586621680427063 :: t a) :: a where ... Source #

Equations

MaximumBySym2 a6989586621680427062 a6989586621680427063 = MaximumBy a6989586621680427062 a6989586621680427063 

data MinimumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a) Source #

Instances

Instances details
SFoldable t => SingI (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680427042 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680427042 :: a ~> (a ~> Ordering)) = MinimumBySym1 a6989586621680427042 :: TyFun (t a) a -> Type

data MinimumBySym1 (a6989586621680427042 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a Source #

Instances

Instances details
SFoldable t => SingI1 (MinimumBySym1 :: (a ~> (a ~> Ordering)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MinimumBySym1 x)

(SFoldable t, SingI d) => SingI (MinimumBySym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MinimumBySym1 d)

SuppressUnusedWarnings (MinimumBySym1 a6989586621680427042 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym1 a6989586621680427042 :: TyFun (t a) a -> Type) (a6989586621680427043 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym1 a6989586621680427042 :: TyFun (t a) a -> Type) (a6989586621680427043 :: t a) = MinimumBy a6989586621680427042 a6989586621680427043

type family MinimumBySym2 (a6989586621680427042 :: (~>) a ((~>) a Ordering)) (a6989586621680427043 :: t a) :: a where ... Source #

Equations

MinimumBySym2 a6989586621680427042 a6989586621680427043 = MinimumBy a6989586621680427042 a6989586621680427043 

data GenericLengthSym0 :: (~>) [a] i Source #

Instances

Instances details
SNum i => SingI (GenericLengthSym0 :: TyFun [a] i -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (GenericLengthSym0 :: TyFun [a] i -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GenericLengthSym0 :: TyFun [a] k2 -> Type) (a6989586621679847955 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GenericLengthSym0 :: TyFun [a] k2 -> Type) (a6989586621679847955 :: [a]) = GenericLength a6989586621679847955 :: k2

type family GenericLengthSym1 (a6989586621679847955 :: [a]) :: i where ... Source #

Equations

GenericLengthSym1 a6989586621679847955 = GenericLength a6989586621679847955