{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wno-orphans #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Semigroup.Singletons.Internal
-- Copyright   :  (C) 2018 Ryan Scott
-- License     :  BSD-style (see LICENSE)
-- Maintainer  :  Ryan Scott
-- Stability   :  experimental
-- Portability :  non-portable
--
-- Defines the promoted version of 'Semigroup', 'PSemigroup'; the
-- singleton version, 'SSemigroup'; and some @newtype@ wrappers, all
-- of which are reexported from the "Data.Semigroup" module or
-- imported directly by some other modules.
--
-- This module exists to avoid import cycles with
-- "Data.Monoid.Singletons".
--
----------------------------------------------------------------------------

module Data.Semigroup.Singletons.Internal where

import Control.Monad.Singletons.Internal
import Data.Bool.Singletons
import Data.Eq.Singletons
import Data.List.NonEmpty (NonEmpty(..))
import Data.Ord (Down(..))
import Data.Ord.Singletons hiding (MinSym0, MinSym1, MaxSym0, MaxSym1)
import Data.Proxy
import Data.Semigroup (Dual(..), All(..), Any(..), Sum(..), Product(..))
import Data.Singletons
import Data.Singletons.Base.Enum
import Data.Singletons.Base.Instances
import Data.Singletons.Base.Util
import Data.Singletons.TH
import qualified Data.Text as T
import GHC.Base.Singletons
import GHC.Num.Singletons
import GHC.TypeLits (AppendSymbol, SomeSymbol(..), someSymbolVal)
import GHC.TypeLits.Singletons.Internal
import Unsafe.Coerce

$(singletonsOnly [d|
  -- -| The class of semigroups (types with an associative binary operation).
  --
  -- Instances should satisfy the associativity law:
  --
  --  * @x '<>' (y '<>' z) = (x '<>' y) '<>' z@
  class Semigroup a where
        -- -| An associative operation.
        (<>) :: a -> a -> a
        infixr 6 <>

        -- -| Reduce a non-empty list with @\<\>@
        --
        -- The default definition should be sufficient, but this can be
        -- overridden for efficiency.
        --
        sconcat :: NonEmpty a -> a
        sconcat (a :| as) = go a as where
          go :: a -> [a] -> a
          go b (c:cs) = b <> go c cs
          go b []     = b

        {-
        Can't single 'stimes', since there's no singled 'Integral' class.

        -- -| Repeat a value @n@ times.
        --
        -- Given that this works on a 'Semigroup' it is allowed to fail if
        -- you request 0 or fewer repetitions, and the default definition
        -- will do so.
        --
        -- By making this a member of the class, idempotent semigroups
        -- and monoids can upgrade this to execute in /O(1)/ by
        -- picking @stimes = 'stimesIdempotent'@ or @stimes =
        -- 'stimesIdempotentMonoid'@ respectively.
        stimes :: Integral b => b -> a -> a
        stimes = stimesDefault
        -}


  instance Semigroup [a] where
        (<>) = (++)

  instance Semigroup (NonEmpty a) where
        (a :| as) <> (b :| bs) = a :| (as ++ b : bs)

  instance Semigroup b => Semigroup (a -> b) where
        f <> g = \x -> f x <> g x

  instance Semigroup () where
        _ <> _      = ()
        sconcat _   = ()

  instance (Semigroup a, Semigroup b) => Semigroup (a, b) where
        (a,b) <> (a',b') = (a<>a',b<>b')

  instance (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) where
        (a,b,c) <> (a',b',c') = (a<>a',b<>b',c<>c')

  instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d)
         => Semigroup (a, b, c, d) where
        (a,b,c,d) <> (a',b',c',d') = (a<>a',b<>b',c<>c',d<>d')

  instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e)
         => Semigroup (a, b, c, d, e) where
        (a,b,c,d,e) <> (a',b',c',d',e') = (a<>a',b<>b',c<>c',d<>d',e<>e')

  instance Semigroup Ordering where
    LT <> _ = LT
    EQ <> y = y
    GT <> _ = GT

  instance Semigroup a => Semigroup (Maybe a) where
    Nothing <> b       = b
    a       <> Nothing = a
    Just a  <> Just b  = Just (a <> b)

  instance Semigroup (Either a b) where
    Left _    <> b = b
    -- a      <> _ = a
    a@Right{} <> _ = a

  instance Semigroup Void where
    a <> _ = a

  -- deriving newtype instance Semigroup a => Semigroup (Down a)
  instance Semigroup a => Semigroup (Down a) where
    Down a <> Down b = Down (a <> b)
  |])

$(genSingletons        semigroupBasicTypes)
$(singBoundedInstances semigroupBasicTypes)
$(singEqInstances      semigroupBasicTypes)
$(singDecideInstances  semigroupBasicTypes)
$(singOrdInstances     semigroupBasicTypes)

$(singletonsOnly [d|
  instance Applicative Dual where
    pure = Dual
    Dual f <*> Dual x = Dual (f x)

  deriving instance Functor Dual

  instance Monad Dual where
    Dual a >>= k = k a

  instance Semigroup a => Semigroup (Dual a) where
          Dual a <> Dual b = Dual (b <> a)

  instance Semigroup All where
          All a <> All b = All (a && b)

  instance Semigroup Any where
          Any a <> Any b = Any (a || b)

  instance Applicative Sum where
    pure = Sum
    Sum f <*> Sum x = Sum (f x)

  deriving instance Functor Sum

  instance Monad Sum where
    Sum a >>= k = k a

  instance Num a => Semigroup (Sum a) where
          Sum a <> Sum b = Sum (a + b)

  -- deriving newtype instance Num a => Num (Sum a)
  instance Num a => Num (Sum a) where
      Sum a + Sum b = Sum (a + b)
      Sum a - Sum b = Sum (a - b)
      Sum a * Sum b = Sum (a * b)
      negate (Sum a) = Sum (negate a)
      abs    (Sum a) = Sum (abs a)
      signum (Sum a) = Sum (signum a)
      fromInteger n  = Sum (fromInteger n)

  instance Applicative Product where
    pure = Product
    Product f <*> Product x = Product (f x)

  deriving instance Functor Product

  instance Monad Product where
    Product a >>= k = k a

  instance Num a => Semigroup (Product a) where
          Product a <> Product b = Product (a * b)

  -- deriving newtype instance Num a => Num (Product a)
  instance Num a => Num (Product a) where
      Product a + Product b = Product (a + b)
      Product a - Product b = Product (a - b)
      Product a * Product b = Product (a * b)
      negate (Product a) = Product (negate a)
      abs    (Product a) = Product (abs a)
      signum (Product a) = Product (signum a)
      fromInteger n      = Product (fromInteger n)
  |])

instance PSemigroup Symbol where
  type a <> b = AppendSymbol a b

instance SSemigroup Symbol where
  Sing t
sa %<> :: forall (t :: Symbol) (t :: Symbol).
Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t)
%<> Sing t
sb =
    let a :: Demote Symbol
a  = Sing t -> Demote Symbol
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing t
sa
        b :: Demote Symbol
b  = Sing t -> Demote Symbol
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing t
sb
        ex :: SomeSymbol
ex = String -> SomeSymbol
someSymbolVal (String -> SomeSymbol) -> String -> SomeSymbol
forall a b. (a -> b) -> a -> b
$ Text -> String
T.unpack (Text -> String) -> Text -> String
forall a b. (a -> b) -> a -> b
$ Text
Demote Symbol
a Text -> Text -> Text
forall a. Semigroup a => a -> a -> a
<> Text
Demote Symbol
b
    in case SomeSymbol
ex of
         SomeSymbol (Proxy n
_ :: Proxy ab) -> SSymbol n -> SSymbol (AppendSymbol t t)
forall a b. a -> b
unsafeCoerce (Sing n
forall (n :: Symbol). KnownSymbol n => SSymbol n
SSym :: Sing ab)