singletons-2.6: A framework for generating singleton types
Copyright(C) 2013 Richard Eisenberg
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude

Description

Mimics the Haskell Prelude, but with singleton types. Includes the basic singleton definitions. Note: This is currently very incomplete!

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis
  • module Data.Singletons
  • data SBool :: Bool -> Type where
  • data SList :: forall a. [a] -> Type where
  • data SMaybe :: forall a. Maybe a -> Type where
  • data SEither :: forall a b. Either a b -> Type where
  • data SOrdering :: Ordering -> Type where
  • data STuple0 :: () -> Type where
  • data STuple2 :: forall a b. (a, b) -> Type where
  • data STuple3 :: forall a b c. (a, b, c) -> Type where
  • data STuple4 :: forall a b c d. (a, b, c, d) -> Type where
    • STuple4 :: forall a b c d (n :: a) (n :: b) (n :: c) (n :: d). (Sing (n :: a)) -> (Sing (n :: b)) -> (Sing (n :: c)) -> (Sing (n :: d)) -> STuple4 '(n, n, n, n)
  • data STuple5 :: forall a b c d e. (a, b, c, d, e) -> Type where
    • STuple5 :: forall a b c d e (n :: a) (n :: b) (n :: c) (n :: d) (n :: e). (Sing (n :: a)) -> (Sing (n :: b)) -> (Sing (n :: c)) -> (Sing (n :: d)) -> (Sing (n :: e)) -> STuple5 '(n, n, n, n, n)
  • data STuple6 :: forall a b c d e f. (a, b, c, d, e, f) -> Type where
    • STuple6 :: forall a b c d e f (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f). (Sing (n :: a)) -> (Sing (n :: b)) -> (Sing (n :: c)) -> (Sing (n :: d)) -> (Sing (n :: e)) -> (Sing (n :: f)) -> STuple6 '(n, n, n, n, n, n)
  • data STuple7 :: forall a b c d e f g. (a, b, c, d, e, f, g) -> Type where
    • STuple7 :: forall a b c d e f g (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f) (n :: g). (Sing (n :: a)) -> (Sing (n :: b)) -> (Sing (n :: c)) -> (Sing (n :: d)) -> (Sing (n :: e)) -> (Sing (n :: f)) -> (Sing (n :: g)) -> STuple7 '(n, n, n, n, n, n, n)
  • type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ...
  • sIf :: Sing a -> Sing b -> Sing c -> Sing (If a b c)
  • type family Not (a :: Bool) = (res :: Bool) | res -> a where ...
  • sNot :: Sing a -> Sing (Not a)
  • type family (a :: Bool) && (b :: Bool) :: Bool where ...
  • type family (a :: Bool) || (b :: Bool) :: Bool where ...
  • (%&&) :: Sing a -> Sing b -> Sing (a && b)
  • (%||) :: Sing a -> Sing b -> Sing (a || b)
  • type family Otherwise :: Bool where ...
  • sOtherwise :: Sing (OtherwiseSym0 :: Bool)
  • type family Error (str :: k0) :: k where ...
  • sError :: HasCallStack => Sing (str :: Symbol) -> a
  • type family ErrorWithoutStackTrace (str :: k0) :: k where ...
  • sErrorWithoutStackTrace :: Sing (str :: Symbol) -> a
  • type family Undefined :: k where ...
  • sUndefined :: HasCallStack => a
  • module Data.Singletons.Prelude.Eq
  • class POrd (a :: Type) where
    • type Compare (arg :: a) (arg :: a) :: Ordering
    • type (arg :: a) < (arg :: a) :: Bool
    • type (arg :: a) <= (arg :: a) :: Bool
    • type (arg :: a) > (arg :: a) :: Bool
    • type (arg :: a) >= (arg :: a) :: Bool
    • type Max (arg :: a) (arg :: a) :: a
    • type Min (arg :: a) (arg :: a) :: a
  • class SEq a => SOrd a where
  • class SBounded a where
  • class PBounded (a :: Type) where
  • type MaxBoundSym0 = MaxBound
  • type MinBoundSym0 = MinBound
  • class SEnum a where
  • class PEnum (a :: Type) where
  • data EnumFromThenToSym0 :: forall a6989586621679767035. (~>) a6989586621679767035 ((~>) a6989586621679767035 ((~>) a6989586621679767035 [a6989586621679767035]))
  • data EnumFromThenToSym1 (arg6989586621679767331 :: a6989586621679767035) :: (~>) a6989586621679767035 ((~>) a6989586621679767035 [a6989586621679767035])
  • data EnumFromThenToSym2 (arg6989586621679767331 :: a6989586621679767035) (arg6989586621679767332 :: a6989586621679767035) :: (~>) a6989586621679767035 [a6989586621679767035]
  • type EnumFromThenToSym3 (arg6989586621679767331 :: a6989586621679767035) (arg6989586621679767332 :: a6989586621679767035) (arg6989586621679767333 :: a6989586621679767035) = EnumFromThenTo arg6989586621679767331 arg6989586621679767332 arg6989586621679767333
  • data EnumFromToSym0 :: forall a6989586621679767035. (~>) a6989586621679767035 ((~>) a6989586621679767035 [a6989586621679767035])
  • data EnumFromToSym1 (arg6989586621679767327 :: a6989586621679767035) :: (~>) a6989586621679767035 [a6989586621679767035]
  • type EnumFromToSym2 (arg6989586621679767327 :: a6989586621679767035) (arg6989586621679767328 :: a6989586621679767035) = EnumFromTo arg6989586621679767327 arg6989586621679767328
  • data FromEnumSym0 :: forall a6989586621679767035. (~>) a6989586621679767035 Nat
  • type FromEnumSym1 (arg6989586621679767325 :: a6989586621679767035) = FromEnum arg6989586621679767325
  • data ToEnumSym0 :: forall a6989586621679767035. (~>) Nat a6989586621679767035
  • type ToEnumSym1 (arg6989586621679767323 :: Nat) = ToEnum arg6989586621679767323
  • module Data.Singletons.Prelude.Num
  • type family (a :: Nat) ^ (b :: Nat) :: Nat where ...
  • (%^) :: Sing a -> Sing b -> Sing (a ^ b)
  • class PShow (a :: Type) where
  • class SShow a where
  • type ShowS = String -> String
  • type SChar = Symbol
  • type family Shows (a :: a) (a :: Symbol) :: Symbol where ...
  • sShows :: forall a (t :: a) (t :: Symbol). SShow a => Sing t -> Sing t -> Sing (Apply (Apply ShowsSym0 t) t :: Symbol)
  • type family ShowChar (a :: Symbol) (a :: Symbol) :: Symbol where ...
  • sShowChar :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowCharSym0 t) t :: Symbol)
  • type family ShowString (a :: Symbol) (a :: Symbol) :: Symbol where ...
  • sShowString :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowStringSym0 t) t :: Symbol)
  • type family ShowParen (a :: Bool) (a :: (~>) Symbol Symbol) (a :: Symbol) :: Symbol where ...
  • sShowParen :: forall (t :: Bool) (t :: (~>) Symbol Symbol) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowParenSym0 t) t) t :: Symbol)
  • class PSemigroup (a :: Type) where
    • type (arg :: a) <> (arg :: a) :: a
  • class SSemigroup a where
  • class PMonoid (a :: Type) where
  • class SSemigroup a => SMonoid a where
  • class PFunctor (f :: Type -> Type) where
    • type Fmap (arg :: (~>) a b) (arg :: f a) :: f b
    • type (arg :: a) <$ (arg :: f b) :: f a
  • class SFunctor (f :: Type -> Type) where
  • type family (a :: (~>) a b) <$> (a :: f a) :: f b where ...
  • (%<$>) :: forall a b f (t :: (~>) a b) (t :: f a). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$>@#@$) t) t :: f b)
  • class PApplicative (f :: Type -> Type) where
    • type Pure (arg :: a) :: f a
    • type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b
    • type (arg :: f a) *> (arg :: f b) :: f b
    • type (arg :: f a) <* (arg :: f b) :: f a
  • class SFunctor f => SApplicative (f :: Type -> Type) where
  • class PMonad (m :: Type -> Type) where
    • type (arg :: m a) >>= (arg :: (~>) a (m b)) :: m b
    • type (arg :: m a) >> (arg :: m b) :: m b
    • type Return (arg :: a) :: m a
  • class SApplicative m => SMonad (m :: Type -> Type) where
  • class PMonadFail (m :: Type -> Type) where
  • class SMonad m => SMonadFail (m :: Type -> Type) where
  • type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ...
  • sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ())
  • type family Sequence_ (a :: t (m a)) :: m () where ...
  • sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ())
  • type family (a :: (~>) a (m b)) =<< (a :: m a) :: m b where ...
  • (%=<<) :: forall a m b (t :: (~>) a (m b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (=<<@#@$) t) t :: m b)
  • class PFoldable (t :: Type -> Type) where
  • class SFoldable (t :: Type -> Type) where
  • class PTraversable (t :: Type -> Type) where
    • type Traverse (arg :: (~>) a (f b)) (arg :: t a) :: f (t b)
    • type SequenceA (arg :: t (f a)) :: f (t a)
    • type MapM (arg :: (~>) a (m b)) (arg :: t a) :: m (t b)
    • type Sequence (arg :: t (m a)) :: m (t a)
  • class (SFunctor t, SFoldable t) => STraversable (t :: Type -> Type) where
  • type family Id (a :: a) :: a where ...
  • sId :: forall a (t :: a). Sing t -> Sing (Apply IdSym0 t :: a)
  • type family Const (a :: a) (a :: b) :: a where ...
  • sConst :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply ConstSym0 t) t :: a)
  • type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ...
  • (%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c)
  • type family (a :: (~>) a b) $ (a :: a) :: b where ...
  • (%$) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($@#@$) t) t :: b)
  • type family (a :: (~>) a b) $! (a :: a) :: b where ...
  • (%$!) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($!@#@$) t) t :: b)
  • type family Flip (a :: (~>) a ((~>) b c)) (a :: b) (a :: a) :: c where ...
  • sFlip :: forall a b c (t :: (~>) a ((~>) b c)) (t :: b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FlipSym0 t) t) t :: c)
  • type family AsTypeOf (a :: a) (a :: a) :: a where ...
  • sAsTypeOf :: forall a (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply AsTypeOfSym0 t) t :: a)
  • type family Seq (a :: a) (a :: b) :: b where ...
  • sSeq :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply SeqSym0 t) t :: b)
  • type family Map (a :: (~>) a b) (a :: [a]) :: [b] where ...
  • sMap :: forall a b (t :: (~>) a b) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MapSym0 t) t :: [b])
  • type family (a :: [a]) ++ (a :: [a]) :: [a] where ...
  • (%++) :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (++@#@$) t) t :: [a])
  • type family Filter (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
  • sFilter :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FilterSym0 t) t :: [a])
  • type family Head (a :: [a]) :: a where ...
  • sHead :: forall a (t :: [a]). Sing t -> Sing (Apply HeadSym0 t :: a)
  • type family Last (a :: [a]) :: a where ...
  • sLast :: forall a (t :: [a]). Sing t -> Sing (Apply LastSym0 t :: a)
  • type family Tail (a :: [a]) :: [a] where ...
  • sTail :: forall a (t :: [a]). Sing t -> Sing (Apply TailSym0 t :: [a])
  • type family Init (a :: [a]) :: [a] where ...
  • sInit :: forall a (t :: [a]). Sing t -> Sing (Apply InitSym0 t :: [a])
  • type family Null (arg :: t a) :: Bool
  • sNull :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply NullSym0 t :: Bool)
  • type family Reverse (a :: [a]) :: [a] where ...
  • sReverse :: forall a (t :: [a]). Sing t -> Sing (Apply ReverseSym0 t :: [a])
  • type family And (a :: t Bool) :: Bool where ...
  • sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool)
  • type family Or (a :: t Bool) :: Bool where ...
  • sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool)
  • type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool)
  • type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool)
  • type family Concat (a :: t [a]) :: [a] where ...
  • sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a])
  • type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ...
  • sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b])
  • type family Scanl (a :: (~>) b ((~>) a b)) (a :: b) (a :: [a]) :: [b] where ...
  • sScanl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t :: [b])
  • type family Scanl1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ...
  • sScanl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanl1Sym0 t) t :: [a])
  • type family Scanr (a :: (~>) a ((~>) b b)) (a :: b) (a :: [a]) :: [b] where ...
  • sScanr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t :: [b])
  • type family Scanr1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ...
  • sScanr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanr1Sym0 t) t :: [a])
  • type family Replicate (a :: Nat) (a :: a) :: [a] where ...
  • sReplicate :: forall a (t :: Nat) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ReplicateSym0 t) t :: [a])
  • type family Take (a :: Nat) (a :: [a]) :: [a] where ...
  • sTake :: forall a (t :: Nat) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeSym0 t) t :: [a])
  • type family Drop (a :: Nat) (a :: [a]) :: [a] where ...
  • sDrop :: forall a (t :: Nat) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropSym0 t) t :: [a])
  • type family SplitAt (a :: Nat) (a :: [a]) :: ([a], [a]) where ...
  • sSplitAt :: forall a (t :: Nat) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SplitAtSym0 t) t :: ([a], [a]))
  • type family TakeWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
  • sTakeWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeWhileSym0 t) t :: [a])
  • type family Span (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ...
  • sSpan :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SpanSym0 t) t :: ([a], [a]))
  • type family Break (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ...
  • sBreak :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply BreakSym0 t) t :: ([a], [a]))
  • type family NotElem (a :: a) (a :: t a) :: Bool where ...
  • sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool)
  • type family Lookup (a :: a) (a :: [(a, b)]) :: Maybe b where ...
  • sLookup :: forall a b (t :: a) (t :: [(a, b)]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply LookupSym0 t) t :: Maybe b)
  • type family Zip (a :: [a]) (a :: [b]) :: [(a, b)] where ...
  • sZip :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply ZipSym0 t) t :: [(a, b)])
  • type family Zip3 (a :: [a]) (a :: [b]) (a :: [c]) :: [(a, b, c)] where ...
  • sZip3 :: forall a b c (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t :: [(a, b, c)])
  • type family ZipWith (a :: (~>) a ((~>) b c)) (a :: [a]) (a :: [b]) :: [c] where ...
  • sZipWith :: forall a b c (t :: (~>) a ((~>) b c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t :: [c])
  • type family ZipWith3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: [a]) (a :: [b]) (a :: [c]) :: [d] where ...
  • sZipWith3 :: forall a b c d (t :: (~>) a ((~>) b ((~>) c d))) (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t :: [d])
  • type family Unzip (a :: [(a, b)]) :: ([a], [b]) where ...
  • sUnzip :: forall a b (t :: [(a, b)]). Sing t -> Sing (Apply UnzipSym0 t :: ([a], [b]))
  • type family Unzip3 (a :: [(a, b, c)]) :: ([a], [b], [c]) where ...
  • sUnzip3 :: forall a b c (t :: [(a, b, c)]). Sing t -> Sing (Apply Unzip3Sym0 t :: ([a], [b], [c]))
  • type family Unlines (a :: [Symbol]) :: Symbol where ...
  • sUnlines :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnlinesSym0 t :: Symbol)
  • type family Unwords (a :: [Symbol]) :: Symbol where ...
  • sUnwords :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnwordsSym0 t :: Symbol)
  • type family Maybe_ (a :: b) (a :: (~>) a b) (a :: Maybe a) :: b where ...
  • sMaybe_ :: forall b a (t :: b) (t :: (~>) a b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Maybe_Sym0 t) t) t :: b)
  • type family Either_ (a :: (~>) a c) (a :: (~>) b c) (a :: Either a b) :: c where ...
  • sEither_ :: forall a c b (t :: (~>) a c) (t :: (~>) b c) (t :: Either a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c)
  • type family Fst (a :: (a, b)) :: a where ...
  • sFst :: forall a b (t :: (a, b)). Sing t -> Sing (Apply FstSym0 t :: a)
  • type family Snd (a :: (a, b)) :: b where ...
  • sSnd :: forall a b (t :: (a, b)). Sing t -> Sing (Apply SndSym0 t :: b)
  • type family Curry (a :: (~>) (a, b) c) (a :: a) (a :: b) :: c where ...
  • sCurry :: forall a b c (t :: (~>) (a, b) c) (t :: a) (t :: b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply CurrySym0 t) t) t :: c)
  • type family Uncurry (a :: (~>) a ((~>) b c)) (a :: (a, b)) :: c where ...
  • sUncurry :: forall a b c (t :: (~>) a ((~>) b c)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply UncurrySym0 t) t :: c)
  • data Symbol
  • either_ :: (a -> c) -> (b -> c) -> Either a b -> c
  • maybe_ :: b -> (a -> b) -> Maybe a -> b
  • bool_ :: a -> a -> Bool -> a
  • show_ :: Show a => a -> String
  • type FalseSym0 = 'False
  • type TrueSym0 = 'True
  • data NotSym0 :: (~>) Bool Bool
  • type NotSym1 (a6989586621679377177 :: Bool) = Not a6989586621679377177
  • data (&&@#@$) :: (~>) Bool ((~>) Bool Bool)
  • data (&&@#@$$) (a6989586621679376645 :: Bool) :: (~>) Bool Bool
  • type (&&@#@$$$) (a6989586621679376645 :: Bool) (b6989586621679376646 :: Bool) = (&&) a6989586621679376645 b6989586621679376646
  • data (||@#@$) :: (~>) Bool ((~>) Bool Bool)
  • data (||@#@$$) (a6989586621679376883 :: Bool) :: (~>) Bool Bool
  • type (||@#@$$$) (a6989586621679376883 :: Bool) (b6989586621679376884 :: Bool) = (||) a6989586621679376883 b6989586621679376884
  • type OtherwiseSym0 = Otherwise
  • type NothingSym0 = 'Nothing
  • data JustSym0 :: forall (a3530822107858468865 :: Type). (~>) a3530822107858468865 (Maybe (a3530822107858468865 :: Type))
  • type JustSym1 (t6989586621679315133 :: a3530822107858468865) = 'Just t6989586621679315133
  • data Maybe_Sym0 :: forall b6989586621679514865 a6989586621679514866. (~>) b6989586621679514865 ((~>) ((~>) a6989586621679514866 b6989586621679514865) ((~>) (Maybe a6989586621679514866) b6989586621679514865))
  • data Maybe_Sym1 (a6989586621679514883 :: b6989586621679514865) :: forall a6989586621679514866. (~>) ((~>) a6989586621679514866 b6989586621679514865) ((~>) (Maybe a6989586621679514866) b6989586621679514865)
  • data Maybe_Sym2 (a6989586621679514883 :: b6989586621679514865) (a6989586621679514884 :: (~>) a6989586621679514866 b6989586621679514865) :: (~>) (Maybe a6989586621679514866) b6989586621679514865
  • type Maybe_Sym3 (a6989586621679514883 :: b6989586621679514865) (a6989586621679514884 :: (~>) a6989586621679514866 b6989586621679514865) (a6989586621679514885 :: Maybe a6989586621679514866) = Maybe_ a6989586621679514883 a6989586621679514884 a6989586621679514885
  • data LeftSym0 :: forall (a6989586621679093843 :: Type) (b6989586621679093844 :: Type). (~>) a6989586621679093843 (Either (a6989586621679093843 :: Type) (b6989586621679093844 :: Type))
  • type LeftSym1 (t6989586621679315200 :: a6989586621679093843) = 'Left t6989586621679315200
  • data RightSym0 :: forall (b6989586621679093844 :: Type) (a6989586621679093843 :: Type). (~>) b6989586621679093844 (Either (a6989586621679093843 :: Type) (b6989586621679093844 :: Type))
  • type RightSym1 (t6989586621679315202 :: b6989586621679093844) = 'Right t6989586621679315202
  • data Either_Sym0 :: forall a6989586621680470035 c6989586621680470036 b6989586621680470037. (~>) ((~>) a6989586621680470035 c6989586621680470036) ((~>) ((~>) b6989586621680470037 c6989586621680470036) ((~>) (Either a6989586621680470035 b6989586621680470037) c6989586621680470036))
  • data Either_Sym1 (a6989586621680470071 :: (~>) a6989586621680470035 c6989586621680470036) :: forall b6989586621680470037. (~>) ((~>) b6989586621680470037 c6989586621680470036) ((~>) (Either a6989586621680470035 b6989586621680470037) c6989586621680470036)
  • data Either_Sym2 (a6989586621680470071 :: (~>) a6989586621680470035 c6989586621680470036) (a6989586621680470072 :: (~>) b6989586621680470037 c6989586621680470036) :: (~>) (Either a6989586621680470035 b6989586621680470037) c6989586621680470036
  • type Either_Sym3 (a6989586621680470071 :: (~>) a6989586621680470035 c6989586621680470036) (a6989586621680470072 :: (~>) b6989586621680470037 c6989586621680470036) (a6989586621680470073 :: Either a6989586621680470035 b6989586621680470037) = Either_ a6989586621680470071 a6989586621680470072 a6989586621680470073
  • type Tuple0Sym0 = '()
  • data Tuple2Sym0 :: forall (a3530822107858468865 :: Type) (b3530822107858468866 :: Type). (~>) a3530822107858468865 ((~>) b3530822107858468866 (a3530822107858468865 :: Type, b3530822107858468866 :: Type))
  • data Tuple2Sym1 (t6989586621679315250 :: a3530822107858468865 :: Type) :: forall (b3530822107858468866 :: Type). (~>) b3530822107858468866 (a3530822107858468865 :: Type, b3530822107858468866 :: Type)
  • type Tuple2Sym2 (t6989586621679315250 :: a3530822107858468865) (t6989586621679315251 :: b3530822107858468866) = '(t6989586621679315250, t6989586621679315251)
  • data Tuple3Sym0 :: forall (a3530822107858468865 :: Type) (b3530822107858468866 :: Type) (c3530822107858468867 :: Type). (~>) a3530822107858468865 ((~>) b3530822107858468866 ((~>) c3530822107858468867 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type)))
  • data Tuple3Sym1 (t6989586621679315281 :: a3530822107858468865 :: Type) :: forall (b3530822107858468866 :: Type) (c3530822107858468867 :: Type). (~>) b3530822107858468866 ((~>) c3530822107858468867 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type))
  • data Tuple3Sym2 (t6989586621679315281 :: a3530822107858468865 :: Type) (t6989586621679315282 :: b3530822107858468866 :: Type) :: forall (c3530822107858468867 :: Type). (~>) c3530822107858468867 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type)
  • type Tuple3Sym3 (t6989586621679315281 :: a3530822107858468865) (t6989586621679315282 :: b3530822107858468866) (t6989586621679315283 :: c3530822107858468867) = '(t6989586621679315281, t6989586621679315282, t6989586621679315283)
  • data Tuple4Sym0 :: forall (a3530822107858468865 :: Type) (b3530822107858468866 :: Type) (c3530822107858468867 :: Type) (d3530822107858468868 :: Type). (~>) a3530822107858468865 ((~>) b3530822107858468866 ((~>) c3530822107858468867 ((~>) d3530822107858468868 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type))))
  • data Tuple4Sym1 (t6989586621679315328 :: a3530822107858468865 :: Type) :: forall (b3530822107858468866 :: Type) (c3530822107858468867 :: Type) (d3530822107858468868 :: Type). (~>) b3530822107858468866 ((~>) c3530822107858468867 ((~>) d3530822107858468868 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type)))
  • data Tuple4Sym2 (t6989586621679315328 :: a3530822107858468865 :: Type) (t6989586621679315329 :: b3530822107858468866 :: Type) :: forall (c3530822107858468867 :: Type) (d3530822107858468868 :: Type). (~>) c3530822107858468867 ((~>) d3530822107858468868 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type))
  • data Tuple4Sym3 (t6989586621679315328 :: a3530822107858468865 :: Type) (t6989586621679315329 :: b3530822107858468866 :: Type) (t6989586621679315330 :: c3530822107858468867 :: Type) :: forall (d3530822107858468868 :: Type). (~>) d3530822107858468868 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type)
  • type Tuple4Sym4 (t6989586621679315328 :: a3530822107858468865) (t6989586621679315329 :: b3530822107858468866) (t6989586621679315330 :: c3530822107858468867) (t6989586621679315331 :: d3530822107858468868) = '(t6989586621679315328, t6989586621679315329, t6989586621679315330, t6989586621679315331)
  • data Tuple5Sym0 :: forall (a3530822107858468865 :: Type) (b3530822107858468866 :: Type) (c3530822107858468867 :: Type) (d3530822107858468868 :: Type) (e3530822107858468869 :: Type). (~>) a3530822107858468865 ((~>) b3530822107858468866 ((~>) c3530822107858468867 ((~>) d3530822107858468868 ((~>) e3530822107858468869 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type)))))
  • data Tuple5Sym1 (t6989586621679315393 :: a3530822107858468865 :: Type) :: forall (b3530822107858468866 :: Type) (c3530822107858468867 :: Type) (d3530822107858468868 :: Type) (e3530822107858468869 :: Type). (~>) b3530822107858468866 ((~>) c3530822107858468867 ((~>) d3530822107858468868 ((~>) e3530822107858468869 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type))))
  • data Tuple5Sym2 (t6989586621679315393 :: a3530822107858468865 :: Type) (t6989586621679315394 :: b3530822107858468866 :: Type) :: forall (c3530822107858468867 :: Type) (d3530822107858468868 :: Type) (e3530822107858468869 :: Type). (~>) c3530822107858468867 ((~>) d3530822107858468868 ((~>) e3530822107858468869 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type)))
  • data Tuple5Sym3 (t6989586621679315393 :: a3530822107858468865 :: Type) (t6989586621679315394 :: b3530822107858468866 :: Type) (t6989586621679315395 :: c3530822107858468867 :: Type) :: forall (d3530822107858468868 :: Type) (e3530822107858468869 :: Type). (~>) d3530822107858468868 ((~>) e3530822107858468869 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type))
  • data Tuple5Sym4 (t6989586621679315393 :: a3530822107858468865 :: Type) (t6989586621679315394 :: b3530822107858468866 :: Type) (t6989586621679315395 :: c3530822107858468867 :: Type) (t6989586621679315396 :: d3530822107858468868 :: Type) :: forall (e3530822107858468869 :: Type). (~>) e3530822107858468869 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type)
  • type Tuple5Sym5 (t6989586621679315393 :: a3530822107858468865) (t6989586621679315394 :: b3530822107858468866) (t6989586621679315395 :: c3530822107858468867) (t6989586621679315396 :: d3530822107858468868) (t6989586621679315397 :: e3530822107858468869) = '(t6989586621679315393, t6989586621679315394, t6989586621679315395, t6989586621679315396, t6989586621679315397)
  • data Tuple6Sym0 :: forall (a3530822107858468865 :: Type) (b3530822107858468866 :: Type) (c3530822107858468867 :: Type) (d3530822107858468868 :: Type) (e3530822107858468869 :: Type) (f3530822107858468870 :: Type). (~>) a3530822107858468865 ((~>) b3530822107858468866 ((~>) c3530822107858468867 ((~>) d3530822107858468868 ((~>) e3530822107858468869 ((~>) f3530822107858468870 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type))))))
  • data Tuple6Sym1 (t6989586621679315478 :: a3530822107858468865 :: Type) :: forall (b3530822107858468866 :: Type) (c3530822107858468867 :: Type) (d3530822107858468868 :: Type) (e3530822107858468869 :: Type) (f3530822107858468870 :: Type). (~>) b3530822107858468866 ((~>) c3530822107858468867 ((~>) d3530822107858468868 ((~>) e3530822107858468869 ((~>) f3530822107858468870 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type)))))
  • data Tuple6Sym2 (t6989586621679315478 :: a3530822107858468865 :: Type) (t6989586621679315479 :: b3530822107858468866 :: Type) :: forall (c3530822107858468867 :: Type) (d3530822107858468868 :: Type) (e3530822107858468869 :: Type) (f3530822107858468870 :: Type). (~>) c3530822107858468867 ((~>) d3530822107858468868 ((~>) e3530822107858468869 ((~>) f3530822107858468870 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type))))
  • data Tuple6Sym3 (t6989586621679315478 :: a3530822107858468865 :: Type) (t6989586621679315479 :: b3530822107858468866 :: Type) (t6989586621679315480 :: c3530822107858468867 :: Type) :: forall (d3530822107858468868 :: Type) (e3530822107858468869 :: Type) (f3530822107858468870 :: Type). (~>) d3530822107858468868 ((~>) e3530822107858468869 ((~>) f3530822107858468870 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type)))
  • data Tuple6Sym4 (t6989586621679315478 :: a3530822107858468865 :: Type) (t6989586621679315479 :: b3530822107858468866 :: Type) (t6989586621679315480 :: c3530822107858468867 :: Type) (t6989586621679315481 :: d3530822107858468868 :: Type) :: forall (e3530822107858468869 :: Type) (f3530822107858468870 :: Type). (~>) e3530822107858468869 ((~>) f3530822107858468870 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type))
  • data Tuple6Sym5 (t6989586621679315478 :: a3530822107858468865 :: Type) (t6989586621679315479 :: b3530822107858468866 :: Type) (t6989586621679315480 :: c3530822107858468867 :: Type) (t6989586621679315481 :: d3530822107858468868 :: Type) (t6989586621679315482 :: e3530822107858468869 :: Type) :: forall (f3530822107858468870 :: Type). (~>) f3530822107858468870 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type)
  • type Tuple6Sym6 (t6989586621679315478 :: a3530822107858468865) (t6989586621679315479 :: b3530822107858468866) (t6989586621679315480 :: c3530822107858468867) (t6989586621679315481 :: d3530822107858468868) (t6989586621679315482 :: e3530822107858468869) (t6989586621679315483 :: f3530822107858468870) = '(t6989586621679315478, t6989586621679315479, t6989586621679315480, t6989586621679315481, t6989586621679315482, t6989586621679315483)
  • data Tuple7Sym0 :: forall (a3530822107858468865 :: Type) (b3530822107858468866 :: Type) (c3530822107858468867 :: Type) (d3530822107858468868 :: Type) (e3530822107858468869 :: Type) (f3530822107858468870 :: Type) (g3530822107858468871 :: Type). (~>) a3530822107858468865 ((~>) b3530822107858468866 ((~>) c3530822107858468867 ((~>) d3530822107858468868 ((~>) e3530822107858468869 ((~>) f3530822107858468870 ((~>) g3530822107858468871 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type, g3530822107858468871 :: Type)))))))
  • data Tuple7Sym1 (t6989586621679315585 :: a3530822107858468865 :: Type) :: forall (b3530822107858468866 :: Type) (c3530822107858468867 :: Type) (d3530822107858468868 :: Type) (e3530822107858468869 :: Type) (f3530822107858468870 :: Type) (g3530822107858468871 :: Type). (~>) b3530822107858468866 ((~>) c3530822107858468867 ((~>) d3530822107858468868 ((~>) e3530822107858468869 ((~>) f3530822107858468870 ((~>) g3530822107858468871 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type, g3530822107858468871 :: Type))))))
  • data Tuple7Sym2 (t6989586621679315585 :: a3530822107858468865 :: Type) (t6989586621679315586 :: b3530822107858468866 :: Type) :: forall (c3530822107858468867 :: Type) (d3530822107858468868 :: Type) (e3530822107858468869 :: Type) (f3530822107858468870 :: Type) (g3530822107858468871 :: Type). (~>) c3530822107858468867 ((~>) d3530822107858468868 ((~>) e3530822107858468869 ((~>) f3530822107858468870 ((~>) g3530822107858468871 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type, g3530822107858468871 :: Type)))))
  • data Tuple7Sym3 (t6989586621679315585 :: a3530822107858468865 :: Type) (t6989586621679315586 :: b3530822107858468866 :: Type) (t6989586621679315587 :: c3530822107858468867 :: Type) :: forall (d3530822107858468868 :: Type) (e3530822107858468869 :: Type) (f3530822107858468870 :: Type) (g3530822107858468871 :: Type). (~>) d3530822107858468868 ((~>) e3530822107858468869 ((~>) f3530822107858468870 ((~>) g3530822107858468871 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type, g3530822107858468871 :: Type))))
  • data Tuple7Sym4 (t6989586621679315585 :: a3530822107858468865 :: Type) (t6989586621679315586 :: b3530822107858468866 :: Type) (t6989586621679315587 :: c3530822107858468867 :: Type) (t6989586621679315588 :: d3530822107858468868 :: Type) :: forall (e3530822107858468869 :: Type) (f3530822107858468870 :: Type) (g3530822107858468871 :: Type). (~>) e3530822107858468869 ((~>) f3530822107858468870 ((~>) g3530822107858468871 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type, g3530822107858468871 :: Type)))
  • data Tuple7Sym5 (t6989586621679315585 :: a3530822107858468865 :: Type) (t6989586621679315586 :: b3530822107858468866 :: Type) (t6989586621679315587 :: c3530822107858468867 :: Type) (t6989586621679315588 :: d3530822107858468868 :: Type) (t6989586621679315589 :: e3530822107858468869 :: Type) :: forall (f3530822107858468870 :: Type) (g3530822107858468871 :: Type). (~>) f3530822107858468870 ((~>) g3530822107858468871 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type, g3530822107858468871 :: Type))
  • data Tuple7Sym6 (t6989586621679315585 :: a3530822107858468865 :: Type) (t6989586621679315586 :: b3530822107858468866 :: Type) (t6989586621679315587 :: c3530822107858468867 :: Type) (t6989586621679315588 :: d3530822107858468868 :: Type) (t6989586621679315589 :: e3530822107858468869 :: Type) (t6989586621679315590 :: f3530822107858468870 :: Type) :: forall (g3530822107858468871 :: Type). (~>) g3530822107858468871 (a3530822107858468865 :: Type, b3530822107858468866 :: Type, c3530822107858468867 :: Type, d3530822107858468868 :: Type, e3530822107858468869 :: Type, f3530822107858468870 :: Type, g3530822107858468871 :: Type)
  • type Tuple7Sym7 (t6989586621679315585 :: a3530822107858468865) (t6989586621679315586 :: b3530822107858468866) (t6989586621679315587 :: c3530822107858468867) (t6989586621679315588 :: d3530822107858468868) (t6989586621679315589 :: e3530822107858468869) (t6989586621679315590 :: f3530822107858468870) (t6989586621679315591 :: g3530822107858468871) = '(t6989586621679315585, t6989586621679315586, t6989586621679315587, t6989586621679315588, t6989586621679315589, t6989586621679315590, t6989586621679315591)
  • data FstSym0 :: forall a6989586621679370315 b6989586621679370316. (~>) (a6989586621679370315, b6989586621679370316) a6989586621679370315
  • type FstSym1 (a6989586621679370417 :: (a6989586621679370315, b6989586621679370316)) = Fst a6989586621679370417
  • data SndSym0 :: forall a6989586621679370313 b6989586621679370314. (~>) (a6989586621679370313, b6989586621679370314) b6989586621679370314
  • type SndSym1 (a6989586621679370414 :: (a6989586621679370313, b6989586621679370314)) = Snd a6989586621679370414
  • data CurrySym0 :: forall a6989586621679370310 b6989586621679370311 c6989586621679370312. (~>) ((~>) (a6989586621679370310, b6989586621679370311) c6989586621679370312) ((~>) a6989586621679370310 ((~>) b6989586621679370311 c6989586621679370312))
  • data CurrySym1 (a6989586621679370405 :: (~>) (a6989586621679370310, b6989586621679370311) c6989586621679370312) :: (~>) a6989586621679370310 ((~>) b6989586621679370311 c6989586621679370312)
  • data CurrySym2 (a6989586621679370405 :: (~>) (a6989586621679370310, b6989586621679370311) c6989586621679370312) (a6989586621679370406 :: a6989586621679370310) :: (~>) b6989586621679370311 c6989586621679370312
  • type CurrySym3 (a6989586621679370405 :: (~>) (a6989586621679370310, b6989586621679370311) c6989586621679370312) (a6989586621679370406 :: a6989586621679370310) (a6989586621679370407 :: b6989586621679370311) = Curry a6989586621679370405 a6989586621679370406 a6989586621679370407
  • data UncurrySym0 :: forall a6989586621679370307 b6989586621679370308 c6989586621679370309. (~>) ((~>) a6989586621679370307 ((~>) b6989586621679370308 c6989586621679370309)) ((~>) (a6989586621679370307, b6989586621679370308) c6989586621679370309)
  • data UncurrySym1 (a6989586621679370399 :: (~>) a6989586621679370307 ((~>) b6989586621679370308 c6989586621679370309)) :: (~>) (a6989586621679370307, b6989586621679370308) c6989586621679370309
  • type UncurrySym2 (a6989586621679370399 :: (~>) a6989586621679370307 ((~>) b6989586621679370308 c6989586621679370309)) (a6989586621679370400 :: (a6989586621679370307, b6989586621679370308)) = Uncurry a6989586621679370399 a6989586621679370400
  • data ErrorSym0 :: forall k06989586621679485796 k6989586621679485797. (~>) k06989586621679485796 k6989586621679485797
  • type ErrorSym1 (str6989586621679485798 :: k06989586621679485796) = Error str6989586621679485798
  • data ErrorWithoutStackTraceSym0 :: forall k06989586621679486886 k6989586621679486887. (~>) k06989586621679486886 k6989586621679486887
  • type ErrorWithoutStackTraceSym1 (str6989586621679486888 :: k06989586621679486886) = ErrorWithoutStackTrace str6989586621679486888
  • type UndefinedSym0 = Undefined
  • type LTSym0 = 'LT
  • type EQSym0 = 'EQ
  • type GTSym0 = 'GT
  • data CompareSym0 :: forall a6989586621679393938. (~>) a6989586621679393938 ((~>) a6989586621679393938 Ordering)
  • data CompareSym1 (arg6989586621679394027 :: a6989586621679393938) :: (~>) a6989586621679393938 Ordering
  • type CompareSym2 (arg6989586621679394027 :: a6989586621679393938) (arg6989586621679394028 :: a6989586621679393938) = Compare arg6989586621679394027 arg6989586621679394028
  • data (<@#@$) :: forall a6989586621679393938. (~>) a6989586621679393938 ((~>) a6989586621679393938 Bool)
  • data (<@#@$$) (arg6989586621679394031 :: a6989586621679393938) :: (~>) a6989586621679393938 Bool
  • type (<@#@$$$) (arg6989586621679394031 :: a6989586621679393938) (arg6989586621679394032 :: a6989586621679393938) = (<) arg6989586621679394031 arg6989586621679394032
  • data (<=@#@$) :: forall a6989586621679393938. (~>) a6989586621679393938 ((~>) a6989586621679393938 Bool)
  • data (<=@#@$$) (arg6989586621679394035 :: a6989586621679393938) :: (~>) a6989586621679393938 Bool
  • type (<=@#@$$$) (arg6989586621679394035 :: a6989586621679393938) (arg6989586621679394036 :: a6989586621679393938) = (<=) arg6989586621679394035 arg6989586621679394036
  • data (>@#@$) :: forall a6989586621679393938. (~>) a6989586621679393938 ((~>) a6989586621679393938 Bool)
  • data (>@#@$$) (arg6989586621679394039 :: a6989586621679393938) :: (~>) a6989586621679393938 Bool
  • type (>@#@$$$) (arg6989586621679394039 :: a6989586621679393938) (arg6989586621679394040 :: a6989586621679393938) = (>) arg6989586621679394039 arg6989586621679394040
  • data (>=@#@$) :: forall a6989586621679393938. (~>) a6989586621679393938 ((~>) a6989586621679393938 Bool)
  • data (>=@#@$$) (arg6989586621679394043 :: a6989586621679393938) :: (~>) a6989586621679393938 Bool
  • type (>=@#@$$$) (arg6989586621679394043 :: a6989586621679393938) (arg6989586621679394044 :: a6989586621679393938) = (>=) arg6989586621679394043 arg6989586621679394044
  • data MaxSym0 :: forall a6989586621679393938. (~>) a6989586621679393938 ((~>) a6989586621679393938 a6989586621679393938)
  • data MaxSym1 (arg6989586621679394047 :: a6989586621679393938) :: (~>) a6989586621679393938 a6989586621679393938
  • type MaxSym2 (arg6989586621679394047 :: a6989586621679393938) (arg6989586621679394048 :: a6989586621679393938) = Max arg6989586621679394047 arg6989586621679394048
  • data MinSym0 :: forall a6989586621679393938. (~>) a6989586621679393938 ((~>) a6989586621679393938 a6989586621679393938)
  • data MinSym1 (arg6989586621679394051 :: a6989586621679393938) :: (~>) a6989586621679393938 a6989586621679393938
  • type MinSym2 (arg6989586621679394051 :: a6989586621679393938) (arg6989586621679394052 :: a6989586621679393938) = Min arg6989586621679394051 arg6989586621679394052
  • data (^@#@$) :: (~>) Nat ((~>) Nat Nat)
  • data (^@#@$$) (a3530822107858468865 :: Nat) :: (~>) Nat Nat
  • type (^@#@$$$) (a3530822107858468865 :: Nat) (b3530822107858468866 :: Nat) = (^) a3530822107858468865 b3530822107858468866
  • data ShowsPrecSym0 :: forall a6989586621680294621. (~>) Nat ((~>) a6989586621680294621 ((~>) Symbol Symbol))
  • data ShowsPrecSym1 (arg6989586621680295059 :: Nat) :: forall a6989586621680294621. (~>) a6989586621680294621 ((~>) Symbol Symbol)
  • data ShowsPrecSym2 (arg6989586621680295059 :: Nat) (arg6989586621680295060 :: a6989586621680294621) :: (~>) Symbol Symbol
  • type ShowsPrecSym3 (arg6989586621680295059 :: Nat) (arg6989586621680295060 :: a6989586621680294621) (arg6989586621680295061 :: Symbol) = ShowsPrec arg6989586621680295059 arg6989586621680295060 arg6989586621680295061
  • data Show_Sym0 :: forall a6989586621680294621. (~>) a6989586621680294621 Symbol
  • type Show_Sym1 (arg6989586621680295065 :: a6989586621680294621) = Show_ arg6989586621680295065
  • data ShowListSym0 :: forall a6989586621680294621. (~>) [a6989586621680294621] ((~>) Symbol Symbol)
  • data ShowListSym1 (arg6989586621680295067 :: [a6989586621680294621]) :: (~>) Symbol Symbol
  • type ShowListSym2 (arg6989586621680295067 :: [a6989586621680294621]) (arg6989586621680295068 :: Symbol) = ShowList arg6989586621680295067 arg6989586621680295068
  • data ShowsSym0 :: forall a6989586621680294606. (~>) a6989586621680294606 ((~>) Symbol Symbol)
  • data ShowsSym1 (a6989586621680295051 :: a6989586621680294606) :: (~>) Symbol Symbol
  • type ShowsSym2 (a6989586621680295051 :: a6989586621680294606) (a6989586621680295052 :: Symbol) = Shows a6989586621680295051 a6989586621680295052
  • data ShowCharSym0 :: (~>) Symbol ((~>) Symbol Symbol)
  • data ShowCharSym1 (a6989586621680295025 :: Symbol) :: (~>) Symbol Symbol
  • type ShowCharSym2 (a6989586621680295025 :: Symbol) (a6989586621680295026 :: Symbol) = ShowChar a6989586621680295025 a6989586621680295026
  • data ShowStringSym0 :: (~>) Symbol ((~>) Symbol Symbol)
  • data ShowStringSym1 (a6989586621680295015 :: Symbol) :: (~>) Symbol Symbol
  • type ShowStringSym2 (a6989586621680295015 :: Symbol) (a6989586621680295016 :: Symbol) = ShowString a6989586621680295015 a6989586621680295016
  • data ShowParenSym0 :: (~>) Bool ((~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol))
  • data ShowParenSym1 (a6989586621680294997 :: Bool) :: (~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol)
  • data ShowParenSym2 (a6989586621680294997 :: Bool) (a6989586621680294998 :: (~>) Symbol Symbol) :: (~>) Symbol Symbol
  • data (<>@#@$) :: forall a6989586621679840612. (~>) a6989586621679840612 ((~>) a6989586621679840612 a6989586621679840612)
  • data (<>@#@$$) (arg6989586621679840847 :: a6989586621679840612) :: (~>) a6989586621679840612 a6989586621679840612
  • type (<>@#@$$$) (arg6989586621679840847 :: a6989586621679840612) (arg6989586621679840848 :: a6989586621679840612) = (<>) arg6989586621679840847 arg6989586621679840848
  • type MemptySym0 = Mempty
  • data MappendSym0 :: forall a6989586621680364721. (~>) a6989586621680364721 ((~>) a6989586621680364721 a6989586621680364721)
  • data MappendSym1 (arg6989586621680364860 :: a6989586621680364721) :: (~>) a6989586621680364721 a6989586621680364721
  • type MappendSym2 (arg6989586621680364860 :: a6989586621680364721) (arg6989586621680364861 :: a6989586621680364721) = Mappend arg6989586621680364860 arg6989586621680364861
  • data MconcatSym0 :: forall a6989586621680364721. (~>) [a6989586621680364721] a6989586621680364721
  • type MconcatSym1 (arg6989586621680364864 :: [a6989586621680364721]) = Mconcat arg6989586621680364864
  • data FmapSym0 :: forall a6989586621679570820 b6989586621679570821 f6989586621679570819. (~>) ((~>) a6989586621679570820 b6989586621679570821) ((~>) (f6989586621679570819 a6989586621679570820) (f6989586621679570819 b6989586621679570821))
  • data FmapSym1 (arg6989586621679571211 :: (~>) a6989586621679570820 b6989586621679570821) :: forall f6989586621679570819. (~>) (f6989586621679570819 a6989586621679570820) (f6989586621679570819 b6989586621679570821)
  • type FmapSym2 (arg6989586621679571211 :: (~>) a6989586621679570820 b6989586621679570821) (arg6989586621679571212 :: f6989586621679570819 a6989586621679570820) = Fmap arg6989586621679571211 arg6989586621679571212
  • data (<$@#@$) :: forall a6989586621679570822 f6989586621679570819 b6989586621679570823. (~>) a6989586621679570822 ((~>) (f6989586621679570819 b6989586621679570823) (f6989586621679570819 a6989586621679570822))
  • data (<$@#@$$) (arg6989586621679571215 :: a6989586621679570822) :: forall f6989586621679570819 b6989586621679570823. (~>) (f6989586621679570819 b6989586621679570823) (f6989586621679570819 a6989586621679570822)
  • type (<$@#@$$$) (arg6989586621679571215 :: a6989586621679570822) (arg6989586621679571216 :: f6989586621679570819 b6989586621679570823) = (<$) arg6989586621679571215 arg6989586621679571216
  • data (<$>@#@$) :: forall a6989586621679740996 b6989586621679740997 f6989586621679740995. (~>) ((~>) a6989586621679740996 b6989586621679740997) ((~>) (f6989586621679740995 a6989586621679740996) (f6989586621679740995 b6989586621679740997))
  • data (<$>@#@$$) (a6989586621679741077 :: (~>) a6989586621679740996 b6989586621679740997) :: forall f6989586621679740995. (~>) (f6989586621679740995 a6989586621679740996) (f6989586621679740995 b6989586621679740997)
  • type (<$>@#@$$$) (a6989586621679741077 :: (~>) a6989586621679740996 b6989586621679740997) (a6989586621679741078 :: f6989586621679740995 a6989586621679740996) = (<$>) a6989586621679741077 a6989586621679741078
  • data PureSym0 :: forall a6989586621679570825 f6989586621679570824. (~>) a6989586621679570825 (f6989586621679570824 a6989586621679570825)
  • type PureSym1 (arg6989586621679571235 :: a6989586621679570825) = Pure arg6989586621679571235
  • data (<*>@#@$) :: forall f6989586621679570824 a6989586621679570826 b6989586621679570827. (~>) (f6989586621679570824 ((~>) a6989586621679570826 b6989586621679570827)) ((~>) (f6989586621679570824 a6989586621679570826) (f6989586621679570824 b6989586621679570827))
  • data (<*>@#@$$) (arg6989586621679571237 :: f6989586621679570824 ((~>) a6989586621679570826 b6989586621679570827)) :: (~>) (f6989586621679570824 a6989586621679570826) (f6989586621679570824 b6989586621679570827)
  • type (<*>@#@$$$) (arg6989586621679571237 :: f6989586621679570824 ((~>) a6989586621679570826 b6989586621679570827)) (arg6989586621679571238 :: f6989586621679570824 a6989586621679570826) = (<*>) arg6989586621679571237 arg6989586621679571238
  • data (*>@#@$) :: forall f6989586621679570824 a6989586621679570831 b6989586621679570832. (~>) (f6989586621679570824 a6989586621679570831) ((~>) (f6989586621679570824 b6989586621679570832) (f6989586621679570824 b6989586621679570832))
  • data (*>@#@$$) (arg6989586621679571247 :: f6989586621679570824 a6989586621679570831) :: forall b6989586621679570832. (~>) (f6989586621679570824 b6989586621679570832) (f6989586621679570824 b6989586621679570832)
  • type (*>@#@$$$) (arg6989586621679571247 :: f6989586621679570824 a6989586621679570831) (arg6989586621679571248 :: f6989586621679570824 b6989586621679570832) = (*>) arg6989586621679571247 arg6989586621679571248
  • data (<*@#@$) :: forall f6989586621679570824 a6989586621679570833 b6989586621679570834. (~>) (f6989586621679570824 a6989586621679570833) ((~>) (f6989586621679570824 b6989586621679570834) (f6989586621679570824 a6989586621679570833))
  • data (<*@#@$$) (arg6989586621679571251 :: f6989586621679570824 a6989586621679570833) :: forall b6989586621679570834. (~>) (f6989586621679570824 b6989586621679570834) (f6989586621679570824 a6989586621679570833)
  • type (<*@#@$$$) (arg6989586621679571251 :: f6989586621679570824 a6989586621679570833) (arg6989586621679571252 :: f6989586621679570824 b6989586621679570834) = (<*) arg6989586621679571251 arg6989586621679571252
  • data (>>=@#@$) :: forall m6989586621679570848 a6989586621679570849 b6989586621679570850. (~>) (m6989586621679570848 a6989586621679570849) ((~>) ((~>) a6989586621679570849 (m6989586621679570848 b6989586621679570850)) (m6989586621679570848 b6989586621679570850))
  • data (>>=@#@$$) (arg6989586621679571318 :: m6989586621679570848 a6989586621679570849) :: forall b6989586621679570850. (~>) ((~>) a6989586621679570849 (m6989586621679570848 b6989586621679570850)) (m6989586621679570848 b6989586621679570850)
  • type (>>=@#@$$$) (arg6989586621679571318 :: m6989586621679570848 a6989586621679570849) (arg6989586621679571319 :: (~>) a6989586621679570849 (m6989586621679570848 b6989586621679570850)) = (>>=) arg6989586621679571318 arg6989586621679571319
  • data (>>@#@$) :: forall m6989586621679570848 a6989586621679570851 b6989586621679570852. (~>) (m6989586621679570848 a6989586621679570851) ((~>) (m6989586621679570848 b6989586621679570852) (m6989586621679570848 b6989586621679570852))
  • data (>>@#@$$) (arg6989586621679571322 :: m6989586621679570848 a6989586621679570851) :: forall b6989586621679570852. (~>) (m6989586621679570848 b6989586621679570852) (m6989586621679570848 b6989586621679570852)
  • type (>>@#@$$$) (arg6989586621679571322 :: m6989586621679570848 a6989586621679570851) (arg6989586621679571323 :: m6989586621679570848 b6989586621679570852) = (>>) arg6989586621679571322 arg6989586621679571323
  • data ReturnSym0 :: forall a6989586621679570853 m6989586621679570848. (~>) a6989586621679570853 (m6989586621679570848 a6989586621679570853)
  • type ReturnSym1 (arg6989586621679571326 :: a6989586621679570853) = Return arg6989586621679571326
  • data FailSym0 :: forall m6989586621679738911 a6989586621679738912. (~>) [Char] (m6989586621679738911 a6989586621679738912)
  • type FailSym1 (arg6989586621679738931 :: [Char]) = Fail arg6989586621679738931
  • data MapM_Sym0 :: forall a6989586621680490447 m6989586621680490446 b6989586621680490448 t6989586621680490445. (~>) ((~>) a6989586621680490447 (m6989586621680490446 b6989586621680490448)) ((~>) (t6989586621680490445 a6989586621680490447) (m6989586621680490446 ()))
  • data MapM_Sym1 (a6989586621680491051 :: (~>) a6989586621680490447 (m6989586621680490446 b6989586621680490448)) :: forall t6989586621680490445. (~>) (t6989586621680490445 a6989586621680490447) (m6989586621680490446 ())
  • type MapM_Sym2 (a6989586621680491051 :: (~>) a6989586621680490447 (m6989586621680490446 b6989586621680490448)) (a6989586621680491052 :: t6989586621680490445 a6989586621680490447) = MapM_ a6989586621680491051 a6989586621680491052
  • data Sequence_Sym0 :: forall t6989586621680490435 m6989586621680490436 a6989586621680490437. (~>) (t6989586621680490435 (m6989586621680490436 a6989586621680490437)) (m6989586621680490436 ())
  • type Sequence_Sym1 (a6989586621680491033 :: t6989586621680490435 (m6989586621680490436 a6989586621680490437)) = Sequence_ a6989586621680491033
  • data (=<<@#@$) :: forall a6989586621679570772 m6989586621679570771 b6989586621679570773. (~>) ((~>) a6989586621679570772 (m6989586621679570771 b6989586621679570773)) ((~>) (m6989586621679570771 a6989586621679570772) (m6989586621679570771 b6989586621679570773))
  • data (=<<@#@$$) (a6989586621679571164 :: (~>) a6989586621679570772 (m6989586621679570771 b6989586621679570773)) :: (~>) (m6989586621679570771 a6989586621679570772) (m6989586621679570771 b6989586621679570773)
  • type (=<<@#@$$$) (a6989586621679571164 :: (~>) a6989586621679570772 (m6989586621679570771 b6989586621679570773)) (a6989586621679571165 :: m6989586621679570771 a6989586621679570772) = (=<<) a6989586621679571164 a6989586621679571165
  • data ElemSym0 :: forall a6989586621680490519 t6989586621680490502. (~>) a6989586621680490519 ((~>) (t6989586621680490502 a6989586621680490519) Bool)
  • data ElemSym1 (arg6989586621680491165 :: a6989586621680490519) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490519) Bool
  • type ElemSym2 (arg6989586621680491165 :: a6989586621680490519) (arg6989586621680491166 :: t6989586621680490502 a6989586621680490519) = Elem arg6989586621680491165 arg6989586621680491166
  • data FoldMapSym0 :: forall a6989586621680490505 m6989586621680490504 t6989586621680490502. (~>) ((~>) a6989586621680490505 m6989586621680490504) ((~>) (t6989586621680490502 a6989586621680490505) m6989586621680490504)
  • data FoldMapSym1 (arg6989586621680491123 :: (~>) a6989586621680490505 m6989586621680490504) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490505) m6989586621680490504
  • type FoldMapSym2 (arg6989586621680491123 :: (~>) a6989586621680490505 m6989586621680490504) (arg6989586621680491124 :: t6989586621680490502 a6989586621680490505) = FoldMap arg6989586621680491123 arg6989586621680491124
  • data FoldrSym0 :: forall a6989586621680490506 b6989586621680490507 t6989586621680490502. (~>) ((~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) ((~>) b6989586621680490507 ((~>) (t6989586621680490502 a6989586621680490506) b6989586621680490507))
  • data FoldrSym1 (arg6989586621680491127 :: (~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) :: forall t6989586621680490502. (~>) b6989586621680490507 ((~>) (t6989586621680490502 a6989586621680490506) b6989586621680490507)
  • data FoldrSym2 (arg6989586621680491127 :: (~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) (arg6989586621680491128 :: b6989586621680490507) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490506) b6989586621680490507
  • type FoldrSym3 (arg6989586621680491127 :: (~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) (arg6989586621680491128 :: b6989586621680490507) (arg6989586621680491129 :: t6989586621680490502 a6989586621680490506) = Foldr arg6989586621680491127 arg6989586621680491128 arg6989586621680491129
  • data FoldlSym0 :: forall b6989586621680490510 a6989586621680490511 t6989586621680490502. (~>) ((~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) ((~>) b6989586621680490510 ((~>) (t6989586621680490502 a6989586621680490511) b6989586621680490510))
  • data FoldlSym1 (arg6989586621680491139 :: (~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) :: forall t6989586621680490502. (~>) b6989586621680490510 ((~>) (t6989586621680490502 a6989586621680490511) b6989586621680490510)
  • data FoldlSym2 (arg6989586621680491139 :: (~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) (arg6989586621680491140 :: b6989586621680490510) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490511) b6989586621680490510
  • type FoldlSym3 (arg6989586621680491139 :: (~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) (arg6989586621680491140 :: b6989586621680490510) (arg6989586621680491141 :: t6989586621680490502 a6989586621680490511) = Foldl arg6989586621680491139 arg6989586621680491140 arg6989586621680491141
  • data Foldr1Sym0 :: forall a6989586621680490514 t6989586621680490502. (~>) ((~>) a6989586621680490514 ((~>) a6989586621680490514 a6989586621680490514)) ((~>) (t6989586621680490502 a6989586621680490514) a6989586621680490514)
  • data Foldr1Sym1 (arg6989586621680491151 :: (~>) a6989586621680490514 ((~>) a6989586621680490514 a6989586621680490514)) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490514) a6989586621680490514
  • type Foldr1Sym2 (arg6989586621680491151 :: (~>) a6989586621680490514 ((~>) a6989586621680490514 a6989586621680490514)) (arg6989586621680491152 :: t6989586621680490502 a6989586621680490514) = Foldr1 arg6989586621680491151 arg6989586621680491152
  • data Foldl1Sym0 :: forall a6989586621680490515 t6989586621680490502. (~>) ((~>) a6989586621680490515 ((~>) a6989586621680490515 a6989586621680490515)) ((~>) (t6989586621680490502 a6989586621680490515) a6989586621680490515)
  • data Foldl1Sym1 (arg6989586621680491155 :: (~>) a6989586621680490515 ((~>) a6989586621680490515 a6989586621680490515)) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490515) a6989586621680490515
  • type Foldl1Sym2 (arg6989586621680491155 :: (~>) a6989586621680490515 ((~>) a6989586621680490515 a6989586621680490515)) (arg6989586621680491156 :: t6989586621680490502 a6989586621680490515) = Foldl1 arg6989586621680491155 arg6989586621680491156
  • data MaximumSym0 :: forall t6989586621680490502 a6989586621680490520. (~>) (t6989586621680490502 a6989586621680490520) a6989586621680490520
  • type MaximumSym1 (arg6989586621680491169 :: t6989586621680490502 a6989586621680490520) = Maximum arg6989586621680491169
  • data MinimumSym0 :: forall t6989586621680490502 a6989586621680490521. (~>) (t6989586621680490502 a6989586621680490521) a6989586621680490521
  • type MinimumSym1 (arg6989586621680491171 :: t6989586621680490502 a6989586621680490521) = Minimum arg6989586621680491171
  • data SumSym0 :: forall t6989586621680490502 a6989586621680490522. (~>) (t6989586621680490502 a6989586621680490522) a6989586621680490522
  • type SumSym1 (arg6989586621680491173 :: t6989586621680490502 a6989586621680490522) = Sum arg6989586621680491173
  • data ProductSym0 :: forall t6989586621680490502 a6989586621680490523. (~>) (t6989586621680490502 a6989586621680490523) a6989586621680490523
  • type ProductSym1 (arg6989586621680491175 :: t6989586621680490502 a6989586621680490523) = Product arg6989586621680491175
  • data TraverseSym0 :: forall a6989586621680798695 f6989586621680798694 b6989586621680798696 t6989586621680798693. (~>) ((~>) a6989586621680798695 (f6989586621680798694 b6989586621680798696)) ((~>) (t6989586621680798693 a6989586621680798695) (f6989586621680798694 (t6989586621680798693 b6989586621680798696)))
  • data TraverseSym1 (arg6989586621680798705 :: (~>) a6989586621680798695 (f6989586621680798694 b6989586621680798696)) :: forall t6989586621680798693. (~>) (t6989586621680798693 a6989586621680798695) (f6989586621680798694 (t6989586621680798693 b6989586621680798696))
  • type TraverseSym2 (arg6989586621680798705 :: (~>) a6989586621680798695 (f6989586621680798694 b6989586621680798696)) (arg6989586621680798706 :: t6989586621680798693 a6989586621680798695) = Traverse arg6989586621680798705 arg6989586621680798706
  • data SequenceASym0 :: forall t6989586621680798693 f6989586621680798697 a6989586621680798698. (~>) (t6989586621680798693 (f6989586621680798697 a6989586621680798698)) (f6989586621680798697 (t6989586621680798693 a6989586621680798698))
  • type SequenceASym1 (arg6989586621680798709 :: t6989586621680798693 (f6989586621680798697 a6989586621680798698)) = SequenceA arg6989586621680798709
  • data MapMSym0 :: forall a6989586621680798700 m6989586621680798699 b6989586621680798701 t6989586621680798693. (~>) ((~>) a6989586621680798700 (m6989586621680798699 b6989586621680798701)) ((~>) (t6989586621680798693 a6989586621680798700) (m6989586621680798699 (t6989586621680798693 b6989586621680798701)))
  • data MapMSym1 (arg6989586621680798711 :: (~>) a6989586621680798700 (m6989586621680798699 b6989586621680798701)) :: forall t6989586621680798693. (~>) (t6989586621680798693 a6989586621680798700) (m6989586621680798699 (t6989586621680798693 b6989586621680798701))
  • type MapMSym2 (arg6989586621680798711 :: (~>) a6989586621680798700 (m6989586621680798699 b6989586621680798701)) (arg6989586621680798712 :: t6989586621680798693 a6989586621680798700) = MapM arg6989586621680798711 arg6989586621680798712
  • data SequenceSym0 :: forall t6989586621680798693 m6989586621680798702 a6989586621680798703. (~>) (t6989586621680798693 (m6989586621680798702 a6989586621680798703)) (m6989586621680798702 (t6989586621680798693 a6989586621680798703))
  • type SequenceSym1 (arg6989586621680798715 :: t6989586621680798693 (m6989586621680798702 a6989586621680798703)) = Sequence arg6989586621680798715
  • data IdSym0 :: forall a6989586621679545432. (~>) a6989586621679545432 a6989586621679545432
  • type IdSym1 (a6989586621679545627 :: a6989586621679545432) = Id a6989586621679545627
  • data ConstSym0 :: forall a6989586621679545430 b6989586621679545431. (~>) a6989586621679545430 ((~>) b6989586621679545431 a6989586621679545430)
  • data ConstSym1 (a6989586621679545622 :: a6989586621679545430) :: forall b6989586621679545431. (~>) b6989586621679545431 a6989586621679545430
  • type ConstSym2 (a6989586621679545622 :: a6989586621679545430) (a6989586621679545623 :: b6989586621679545431) = Const a6989586621679545622 a6989586621679545623
  • data (.@#@$) :: forall b6989586621679545427 c6989586621679545428 a6989586621679545429. (~>) ((~>) b6989586621679545427 c6989586621679545428) ((~>) ((~>) a6989586621679545429 b6989586621679545427) ((~>) a6989586621679545429 c6989586621679545428))
  • data (.@#@$$) (a6989586621679545603 :: (~>) b6989586621679545427 c6989586621679545428) :: forall a6989586621679545429. (~>) ((~>) a6989586621679545429 b6989586621679545427) ((~>) a6989586621679545429 c6989586621679545428)
  • data (a6989586621679545603 :: (~>) b6989586621679545427 c6989586621679545428) .@#@$$$ (a6989586621679545604 :: (~>) a6989586621679545429 b6989586621679545427) :: (~>) a6989586621679545429 c6989586621679545428
  • data ($@#@$) :: forall a6989586621679545421 b6989586621679545422. (~>) ((~>) a6989586621679545421 b6989586621679545422) ((~>) a6989586621679545421 b6989586621679545422)
  • data ($@#@$$) (a6989586621679545578 :: (~>) a6989586621679545421 b6989586621679545422) :: (~>) a6989586621679545421 b6989586621679545422
  • type ($@#@$$$) (a6989586621679545578 :: (~>) a6989586621679545421 b6989586621679545422) (a6989586621679545579 :: a6989586621679545421) = ($) a6989586621679545578 a6989586621679545579
  • data ($!@#@$) :: forall a6989586621679545419 b6989586621679545420. (~>) ((~>) a6989586621679545419 b6989586621679545420) ((~>) a6989586621679545419 b6989586621679545420)
  • data ($!@#@$$) (a6989586621679545569 :: (~>) a6989586621679545419 b6989586621679545420) :: (~>) a6989586621679545419 b6989586621679545420
  • type ($!@#@$$$) (a6989586621679545569 :: (~>) a6989586621679545419 b6989586621679545420) (a6989586621679545570 :: a6989586621679545419) = ($!) a6989586621679545569 a6989586621679545570
  • data FlipSym0 :: forall a6989586621679545424 b6989586621679545425 c6989586621679545426. (~>) ((~>) a6989586621679545424 ((~>) b6989586621679545425 c6989586621679545426)) ((~>) b6989586621679545425 ((~>) a6989586621679545424 c6989586621679545426))
  • data FlipSym1 (a6989586621679545594 :: (~>) a6989586621679545424 ((~>) b6989586621679545425 c6989586621679545426)) :: (~>) b6989586621679545425 ((~>) a6989586621679545424 c6989586621679545426)
  • data FlipSym2 (a6989586621679545594 :: (~>) a6989586621679545424 ((~>) b6989586621679545425 c6989586621679545426)) (a6989586621679545595 :: b6989586621679545425) :: (~>) a6989586621679545424 c6989586621679545426
  • data AsTypeOfSym0 :: forall a6989586621679545423. (~>) a6989586621679545423 ((~>) a6989586621679545423 a6989586621679545423)
  • data AsTypeOfSym1 (a6989586621679545588 :: a6989586621679545423) :: (~>) a6989586621679545423 a6989586621679545423
  • type AsTypeOfSym2 (a6989586621679545588 :: a6989586621679545423) (a6989586621679545589 :: a6989586621679545423) = AsTypeOf a6989586621679545588 a6989586621679545589
  • data SeqSym0 :: forall a6989586621679545416 b6989586621679545417. (~>) a6989586621679545416 ((~>) b6989586621679545417 b6989586621679545417)
  • data SeqSym1 (a6989586621679545538 :: a6989586621679545416) :: forall b6989586621679545417. (~>) b6989586621679545417 b6989586621679545417
  • type SeqSym2 (a6989586621679545538 :: a6989586621679545416) (a6989586621679545539 :: b6989586621679545417) = Seq a6989586621679545538 a6989586621679545539
  • data (:@#@$) :: forall (a3530822107858468865 :: Type). (~>) a3530822107858468865 ((~>) [a3530822107858468865] [a3530822107858468865 :: Type])
  • data (:@#@$$) (t6989586621679315156 :: a3530822107858468865 :: Type) :: (~>) [a3530822107858468865] [a3530822107858468865 :: Type]
  • type (:@#@$$$) (t6989586621679315156 :: a3530822107858468865) (t6989586621679315157 :: [a3530822107858468865]) = '(:) t6989586621679315156 t6989586621679315157
  • type NilSym0 = '[]
  • data MapSym0 :: forall a6989586621679545434 b6989586621679545435. (~>) ((~>) a6989586621679545434 b6989586621679545435) ((~>) [a6989586621679545434] [b6989586621679545435])
  • data MapSym1 (a6989586621679545638 :: (~>) a6989586621679545434 b6989586621679545435) :: (~>) [a6989586621679545434] [b6989586621679545435]
  • type MapSym2 (a6989586621679545638 :: (~>) a6989586621679545434 b6989586621679545435) (a6989586621679545639 :: [a6989586621679545434]) = Map a6989586621679545638 a6989586621679545639
  • data ReverseSym0 :: forall a6989586621679974178. (~>) [a6989586621679974178] [a6989586621679974178]
  • type ReverseSym1 (a6989586621679979493 :: [a6989586621679974178]) = Reverse a6989586621679979493
  • data (++@#@$$) (a6989586621679545630 :: [a6989586621679545433]) :: (~>) [a6989586621679545433] [a6989586621679545433]
  • data (++@#@$) :: forall a6989586621679545433. (~>) [a6989586621679545433] ((~>) [a6989586621679545433] [a6989586621679545433])
  • data FilterSym0 :: forall a6989586621679974093. (~>) ((~>) a6989586621679974093 Bool) ((~>) [a6989586621679974093] [a6989586621679974093])
  • data FilterSym1 (a6989586621679978648 :: (~>) a6989586621679974093 Bool) :: (~>) [a6989586621679974093] [a6989586621679974093]
  • type FilterSym2 (a6989586621679978648 :: (~>) a6989586621679974093 Bool) (a6989586621679978649 :: [a6989586621679974093]) = Filter a6989586621679978648 a6989586621679978649
  • data HeadSym0 :: forall a6989586621679974183. (~>) [a6989586621679974183] a6989586621679974183
  • type HeadSym1 (a6989586621679979530 :: [a6989586621679974183]) = Head a6989586621679979530
  • data LastSym0 :: forall a6989586621679974182. (~>) [a6989586621679974182] a6989586621679974182
  • type LastSym1 (a6989586621679979525 :: [a6989586621679974182]) = Last a6989586621679979525
  • data TailSym0 :: forall a6989586621679974181. (~>) [a6989586621679974181] [a6989586621679974181]
  • type TailSym1 (a6989586621679979522 :: [a6989586621679974181]) = Tail a6989586621679979522
  • data InitSym0 :: forall a6989586621679974180. (~>) [a6989586621679974180] [a6989586621679974180]
  • type InitSym1 (a6989586621679979508 :: [a6989586621679974180]) = Init a6989586621679979508
  • data NullSym0 :: forall t6989586621680490502 a6989586621680490517. (~>) (t6989586621680490502 a6989586621680490517) Bool
  • type NullSym1 (arg6989586621680491161 :: t6989586621680490502 a6989586621680490517) = Null arg6989586621680491161
  • data ConcatSym0 :: forall t6989586621680490427 a6989586621680490428. (~>) (t6989586621680490427 [a6989586621680490428]) [a6989586621680490428]
  • type ConcatSym1 (a6989586621680491009 :: t6989586621680490427 [a6989586621680490428]) = Concat a6989586621680491009
  • data ConcatMapSym0 :: forall a6989586621680490425 b6989586621680490426 t6989586621680490424. (~>) ((~>) a6989586621680490425 [b6989586621680490426]) ((~>) (t6989586621680490424 a6989586621680490425) [b6989586621680490426])
  • data ConcatMapSym1 (a6989586621680490993 :: (~>) a6989586621680490425 [b6989586621680490426]) :: forall t6989586621680490424. (~>) (t6989586621680490424 a6989586621680490425) [b6989586621680490426]
  • type ConcatMapSym2 (a6989586621680490993 :: (~>) a6989586621680490425 [b6989586621680490426]) (a6989586621680490994 :: t6989586621680490424 a6989586621680490425) = ConcatMap a6989586621680490993 a6989586621680490994
  • data AndSym0 :: forall t6989586621680490423. (~>) (t6989586621680490423 Bool) Bool
  • type AndSym1 (a6989586621680490984 :: t6989586621680490423 Bool) = And a6989586621680490984
  • data OrSym0 :: forall t6989586621680490422. (~>) (t6989586621680490422 Bool) Bool
  • type OrSym1 (a6989586621680490975 :: t6989586621680490422 Bool) = Or a6989586621680490975
  • data AnySym0 :: forall a6989586621680490421 t6989586621680490420. (~>) ((~>) a6989586621680490421 Bool) ((~>) (t6989586621680490420 a6989586621680490421) Bool)
  • data AnySym1 (a6989586621680490962 :: (~>) a6989586621680490421 Bool) :: forall t6989586621680490420. (~>) (t6989586621680490420 a6989586621680490421) Bool
  • type AnySym2 (a6989586621680490962 :: (~>) a6989586621680490421 Bool) (a6989586621680490963 :: t6989586621680490420 a6989586621680490421) = Any a6989586621680490962 a6989586621680490963
  • data AllSym0 :: forall a6989586621680490419 t6989586621680490418. (~>) ((~>) a6989586621680490419 Bool) ((~>) (t6989586621680490418 a6989586621680490419) Bool)
  • data AllSym1 (a6989586621680490949 :: (~>) a6989586621680490419 Bool) :: forall t6989586621680490418. (~>) (t6989586621680490418 a6989586621680490419) Bool
  • type AllSym2 (a6989586621680490949 :: (~>) a6989586621680490419 Bool) (a6989586621680490950 :: t6989586621680490418 a6989586621680490419) = All a6989586621680490949 a6989586621680490950
  • data ScanlSym0 :: forall b6989586621679974160 a6989586621679974161. (~>) ((~>) b6989586621679974160 ((~>) a6989586621679974161 b6989586621679974160)) ((~>) b6989586621679974160 ((~>) [a6989586621679974161] [b6989586621679974160]))
  • data ScanlSym1 (a6989586621679979254 :: (~>) b6989586621679974160 ((~>) a6989586621679974161 b6989586621679974160)) :: (~>) b6989586621679974160 ((~>) [a6989586621679974161] [b6989586621679974160])
  • data ScanlSym2 (a6989586621679979254 :: (~>) b6989586621679974160 ((~>) a6989586621679974161 b6989586621679974160)) (a6989586621679979255 :: b6989586621679974160) :: (~>) [a6989586621679974161] [b6989586621679974160]
  • type ScanlSym3 (a6989586621679979254 :: (~>) b6989586621679974160 ((~>) a6989586621679974161 b6989586621679974160)) (a6989586621679979255 :: b6989586621679974160) (a6989586621679979256 :: [a6989586621679974161]) = Scanl a6989586621679979254 a6989586621679979255 a6989586621679979256
  • data Scanl1Sym0 :: forall a6989586621679974159. (~>) ((~>) a6989586621679974159 ((~>) a6989586621679974159 a6989586621679974159)) ((~>) [a6989586621679974159] [a6989586621679974159])
  • data Scanl1Sym1 (a6989586621679979247 :: (~>) a6989586621679974159 ((~>) a6989586621679974159 a6989586621679974159)) :: (~>) [a6989586621679974159] [a6989586621679974159]
  • type Scanl1Sym2 (a6989586621679979247 :: (~>) a6989586621679974159 ((~>) a6989586621679974159 a6989586621679974159)) (a6989586621679979248 :: [a6989586621679974159]) = Scanl1 a6989586621679979247 a6989586621679979248
  • data ScanrSym0 :: forall a6989586621679974157 b6989586621679974158. (~>) ((~>) a6989586621679974157 ((~>) b6989586621679974158 b6989586621679974158)) ((~>) b6989586621679974158 ((~>) [a6989586621679974157] [b6989586621679974158]))
  • data ScanrSym1 (a6989586621679979226 :: (~>) a6989586621679974157 ((~>) b6989586621679974158 b6989586621679974158)) :: (~>) b6989586621679974158 ((~>) [a6989586621679974157] [b6989586621679974158])
  • data ScanrSym2 (a6989586621679979226 :: (~>) a6989586621679974157 ((~>) b6989586621679974158 b6989586621679974158)) (a6989586621679979227 :: b6989586621679974158) :: (~>) [a6989586621679974157] [b6989586621679974158]
  • type ScanrSym3 (a6989586621679979226 :: (~>) a6989586621679974157 ((~>) b6989586621679974158 b6989586621679974158)) (a6989586621679979227 :: b6989586621679974158) (a6989586621679979228 :: [a6989586621679974157]) = Scanr a6989586621679979226 a6989586621679979227 a6989586621679979228
  • data Scanr1Sym0 :: forall a6989586621679974156. (~>) ((~>) a6989586621679974156 ((~>) a6989586621679974156 a6989586621679974156)) ((~>) [a6989586621679974156] [a6989586621679974156])
  • data Scanr1Sym1 (a6989586621679979202 :: (~>) a6989586621679974156 ((~>) a6989586621679974156 a6989586621679974156)) :: (~>) [a6989586621679974156] [a6989586621679974156]
  • type Scanr1Sym2 (a6989586621679979202 :: (~>) a6989586621679974156 ((~>) a6989586621679974156 a6989586621679974156)) (a6989586621679979203 :: [a6989586621679974156]) = Scanr1 a6989586621679979202 a6989586621679979203
  • data ReplicateSym0 :: forall a6989586621679974064. (~>) Nat ((~>) a6989586621679974064 [a6989586621679974064])
  • data ReplicateSym1 (a6989586621679978229 :: Nat) :: forall a6989586621679974064. (~>) a6989586621679974064 [a6989586621679974064]
  • type ReplicateSym2 (a6989586621679978229 :: Nat) (a6989586621679978230 :: a6989586621679974064) = Replicate a6989586621679978229 a6989586621679978230
  • data TakeSym0 :: forall a6989586621679974080. (~>) Nat ((~>) [a6989586621679974080] [a6989586621679974080])
  • data TakeSym1 (a6989586621679978390 :: Nat) :: forall a6989586621679974080. (~>) [a6989586621679974080] [a6989586621679974080]
  • type TakeSym2 (a6989586621679978390 :: Nat) (a6989586621679978391 :: [a6989586621679974080]) = Take a6989586621679978390 a6989586621679978391
  • data DropSym0 :: forall a6989586621679974079. (~>) Nat ((~>) [a6989586621679974079] [a6989586621679974079])
  • data DropSym1 (a6989586621679978376 :: Nat) :: forall a6989586621679974079. (~>) [a6989586621679974079] [a6989586621679974079]
  • type DropSym2 (a6989586621679978376 :: Nat) (a6989586621679978377 :: [a6989586621679974079]) = Drop a6989586621679978376 a6989586621679978377
  • data SplitAtSym0 :: forall a6989586621679974078. (~>) Nat ((~>) [a6989586621679974078] ([a6989586621679974078], [a6989586621679974078]))
  • data SplitAtSym1 (a6989586621679978370 :: Nat) :: forall a6989586621679974078. (~>) [a6989586621679974078] ([a6989586621679974078], [a6989586621679974078])
  • type SplitAtSym2 (a6989586621679978370 :: Nat) (a6989586621679978371 :: [a6989586621679974078]) = SplitAt a6989586621679978370 a6989586621679978371
  • data TakeWhileSym0 :: forall a6989586621679974085. (~>) ((~>) a6989586621679974085 Bool) ((~>) [a6989586621679974085] [a6989586621679974085])
  • data TakeWhileSym1 (a6989586621679978534 :: (~>) a6989586621679974085 Bool) :: (~>) [a6989586621679974085] [a6989586621679974085]
  • type TakeWhileSym2 (a6989586621679978534 :: (~>) a6989586621679974085 Bool) (a6989586621679978535 :: [a6989586621679974085]) = TakeWhile a6989586621679978534 a6989586621679978535
  • data DropWhileSym0 :: forall a6989586621679974084. (~>) ((~>) a6989586621679974084 Bool) ((~>) [a6989586621679974084] [a6989586621679974084])
  • data DropWhileSym1 (a6989586621679978516 :: (~>) a6989586621679974084 Bool) :: (~>) [a6989586621679974084] [a6989586621679974084]
  • type DropWhileSym2 (a6989586621679978516 :: (~>) a6989586621679974084 Bool) (a6989586621679978517 :: [a6989586621679974084]) = DropWhile a6989586621679978516 a6989586621679978517
  • data DropWhileEndSym0 :: forall a6989586621679974083. (~>) ((~>) a6989586621679974083 Bool) ((~>) [a6989586621679974083] [a6989586621679974083])
  • data DropWhileEndSym1 (a6989586621679978490 :: (~>) a6989586621679974083 Bool) :: (~>) [a6989586621679974083] [a6989586621679974083]
  • type DropWhileEndSym2 (a6989586621679978490 :: (~>) a6989586621679974083 Bool) (a6989586621679978491 :: [a6989586621679974083]) = DropWhileEnd a6989586621679978490 a6989586621679978491
  • data SpanSym0 :: forall a6989586621679974082. (~>) ((~>) a6989586621679974082 Bool) ((~>) [a6989586621679974082] ([a6989586621679974082], [a6989586621679974082]))
  • data SpanSym1 (a6989586621679978447 :: (~>) a6989586621679974082 Bool) :: (~>) [a6989586621679974082] ([a6989586621679974082], [a6989586621679974082])
  • type SpanSym2 (a6989586621679978447 :: (~>) a6989586621679974082 Bool) (a6989586621679978448 :: [a6989586621679974082]) = Span a6989586621679978447 a6989586621679978448
  • data BreakSym0 :: forall a6989586621679974081. (~>) ((~>) a6989586621679974081 Bool) ((~>) [a6989586621679974081] ([a6989586621679974081], [a6989586621679974081]))
  • data BreakSym1 (a6989586621679978404 :: (~>) a6989586621679974081 Bool) :: (~>) [a6989586621679974081] ([a6989586621679974081], [a6989586621679974081])
  • type BreakSym2 (a6989586621679978404 :: (~>) a6989586621679974081 Bool) (a6989586621679978405 :: [a6989586621679974081]) = Break a6989586621679978404 a6989586621679978405
  • data NotElemSym0 :: forall a6989586621680490413 t6989586621680490412. (~>) a6989586621680490413 ((~>) (t6989586621680490412 a6989586621680490413) Bool)
  • data NotElemSym1 (a6989586621680490891 :: a6989586621680490413) :: forall t6989586621680490412. (~>) (t6989586621680490412 a6989586621680490413) Bool
  • type NotElemSym2 (a6989586621680490891 :: a6989586621680490413) (a6989586621680490892 :: t6989586621680490412 a6989586621680490413) = NotElem a6989586621680490891 a6989586621680490892
  • data ZipSym0 :: forall a6989586621679974139 b6989586621679974140. (~>) [a6989586621679974139] ((~>) [b6989586621679974140] [(a6989586621679974139, b6989586621679974140)])
  • data ZipSym1 (a6989586621679979003 :: [a6989586621679974139]) :: forall b6989586621679974140. (~>) [b6989586621679974140] [(a6989586621679974139, b6989586621679974140)]
  • type ZipSym2 (a6989586621679979003 :: [a6989586621679974139]) (a6989586621679979004 :: [b6989586621679974140]) = Zip a6989586621679979003 a6989586621679979004
  • data Zip3Sym0 :: forall a6989586621679974136 b6989586621679974137 c6989586621679974138. (~>) [a6989586621679974136] ((~>) [b6989586621679974137] ((~>) [c6989586621679974138] [(a6989586621679974136, b6989586621679974137, c6989586621679974138)]))
  • data Zip3Sym1 (a6989586621679978991 :: [a6989586621679974136]) :: forall b6989586621679974137 c6989586621679974138. (~>) [b6989586621679974137] ((~>) [c6989586621679974138] [(a6989586621679974136, b6989586621679974137, c6989586621679974138)])
  • data Zip3Sym2 (a6989586621679978991 :: [a6989586621679974136]) (a6989586621679978992 :: [b6989586621679974137]) :: forall c6989586621679974138. (~>) [c6989586621679974138] [(a6989586621679974136, b6989586621679974137, c6989586621679974138)]
  • type Zip3Sym3 (a6989586621679978991 :: [a6989586621679974136]) (a6989586621679978992 :: [b6989586621679974137]) (a6989586621679978993 :: [c6989586621679974138]) = Zip3 a6989586621679978991 a6989586621679978992 a6989586621679978993
  • data ZipWithSym0 :: forall a6989586621679974133 b6989586621679974134 c6989586621679974135. (~>) ((~>) a6989586621679974133 ((~>) b6989586621679974134 c6989586621679974135)) ((~>) [a6989586621679974133] ((~>) [b6989586621679974134] [c6989586621679974135]))
  • data ZipWithSym1 (a6989586621679978980 :: (~>) a6989586621679974133 ((~>) b6989586621679974134 c6989586621679974135)) :: (~>) [a6989586621679974133] ((~>) [b6989586621679974134] [c6989586621679974135])
  • data ZipWithSym2 (a6989586621679978980 :: (~>) a6989586621679974133 ((~>) b6989586621679974134 c6989586621679974135)) (a6989586621679978981 :: [a6989586621679974133]) :: (~>) [b6989586621679974134] [c6989586621679974135]
  • type ZipWithSym3 (a6989586621679978980 :: (~>) a6989586621679974133 ((~>) b6989586621679974134 c6989586621679974135)) (a6989586621679978981 :: [a6989586621679974133]) (a6989586621679978982 :: [b6989586621679974134]) = ZipWith a6989586621679978980 a6989586621679978981 a6989586621679978982
  • data ZipWith3Sym0 :: forall a6989586621679974129 b6989586621679974130 c6989586621679974131 d6989586621679974132. (~>) ((~>) a6989586621679974129 ((~>) b6989586621679974130 ((~>) c6989586621679974131 d6989586621679974132))) ((~>) [a6989586621679974129] ((~>) [b6989586621679974130] ((~>) [c6989586621679974131] [d6989586621679974132])))
  • data ZipWith3Sym1 (a6989586621679978965 :: (~>) a6989586621679974129 ((~>) b6989586621679974130 ((~>) c6989586621679974131 d6989586621679974132))) :: (~>) [a6989586621679974129] ((~>) [b6989586621679974130] ((~>) [c6989586621679974131] [d6989586621679974132]))
  • data ZipWith3Sym2 (a6989586621679978965 :: (~>) a6989586621679974129 ((~>) b6989586621679974130 ((~>) c6989586621679974131 d6989586621679974132))) (a6989586621679978966 :: [a6989586621679974129]) :: (~>) [b6989586621679974130] ((~>) [c6989586621679974131] [d6989586621679974132])
  • data ZipWith3Sym3 (a6989586621679978965 :: (~>) a6989586621679974129 ((~>) b6989586621679974130 ((~>) c6989586621679974131 d6989586621679974132))) (a6989586621679978966 :: [a6989586621679974129]) (a6989586621679978967 :: [b6989586621679974130]) :: (~>) [c6989586621679974131] [d6989586621679974132]
  • data UnzipSym0 :: forall a6989586621679974127 b6989586621679974128. (~>) [(a6989586621679974127, b6989586621679974128)] ([a6989586621679974127], [b6989586621679974128])
  • type UnzipSym1 (a6989586621679978946 :: [(a6989586621679974127, b6989586621679974128)]) = Unzip a6989586621679978946
  • data UnlinesSym0 :: (~>) [Symbol] Symbol
  • type UnlinesSym1 (a6989586621679978817 :: [Symbol]) = Unlines a6989586621679978817
  • data UnwordsSym0 :: (~>) [Symbol] Symbol
  • type UnwordsSym1 (a6989586621679978806 :: [Symbol]) = Unwords a6989586621679978806

Basic singleton definitions

Singleton types

data SBool :: Bool -> Type where Source #

Constructors

SFalse :: SBool 'False 
STrue :: SBool 'True 

Instances

Instances details
TestCoercion SBool Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a :: k) (b :: k). SBool a -> SBool b -> Maybe (Coercion a b) #

TestEquality SBool Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a :: k) (b :: k). SBool a -> SBool b -> Maybe (a :~: b) #

Show (SBool z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> SBool z -> ShowS #

show :: SBool z -> String #

showList :: [SBool z] -> ShowS #

data SList :: forall a. [a] -> Type where Source #

Constructors

SNil :: SList '[] 
SCons :: forall a (n :: a) (n :: [a]). (Sing (n :: a)) -> (Sing (n :: [a])) -> SList ('(:) n n) infixr 5 

Instances

Instances details
(SDecide a, SDecide [a]) => TestCoercion (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a0 :: k) (b :: k). SList a0 -> SList b -> Maybe (Coercion a0 b) #

(SDecide a, SDecide [a]) => TestEquality (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a0 :: k) (b :: k). SList a0 -> SList b -> Maybe (a0 :~: b) #

(ShowSing a, ShowSing [a]) => Show (SList z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> SList z -> ShowS #

show :: SList z -> String #

showList :: [SList z] -> ShowS #

data SMaybe :: forall a. Maybe a -> Type where Source #

Constructors

SNothing :: SMaybe 'Nothing 
SJust :: forall a (n :: a). (Sing (n :: a)) -> SMaybe ('Just n) 

Instances

Instances details
SDecide a => TestCoercion (SMaybe :: Maybe a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a0 :: k) (b :: k). SMaybe a0 -> SMaybe b -> Maybe (Coercion a0 b) #

SDecide a => TestEquality (SMaybe :: Maybe a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a0 :: k) (b :: k). SMaybe a0 -> SMaybe b -> Maybe (a0 :~: b) #

ShowSing a => Show (SMaybe z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> SMaybe z -> ShowS #

show :: SMaybe z -> String #

showList :: [SMaybe z] -> ShowS #

data SEither :: forall a b. Either a b -> Type where Source #

Constructors

SLeft :: forall a (n :: a). (Sing (n :: a)) -> SEither ('Left n) 
SRight :: forall b (n :: b). (Sing (n :: b)) -> SEither ('Right n) 

Instances

Instances details
(SDecide a, SDecide b) => TestCoercion (SEither :: Either a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). SEither a0 -> SEither b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b) => TestEquality (SEither :: Either a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). SEither a0 -> SEither b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b) => Show (SEither z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> SEither z -> ShowS #

show :: SEither z -> String #

showList :: [SEither z] -> ShowS #

data SOrdering :: Ordering -> Type where Source #

Constructors

SLT :: SOrdering 'LT 
SEQ :: SOrdering 'EQ 
SGT :: SOrdering 'GT 

Instances

Instances details
TestCoercion SOrdering Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a :: k) (b :: k). SOrdering a -> SOrdering b -> Maybe (Coercion a b) #

TestEquality SOrdering Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a :: k) (b :: k). SOrdering a -> SOrdering b -> Maybe (a :~: b) #

Show (SOrdering z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

data STuple0 :: () -> Type where Source #

Constructors

STuple0 :: STuple0 '() 

Instances

Instances details
TestCoercion STuple0 Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a :: k) (b :: k). STuple0 a -> STuple0 b -> Maybe (Coercion a b) #

TestEquality STuple0 Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a :: k) (b :: k). STuple0 a -> STuple0 b -> Maybe (a :~: b) #

Show (STuple0 z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> STuple0 z -> ShowS #

show :: STuple0 z -> String #

showList :: [STuple0 z] -> ShowS #

data STuple2 :: forall a b. (a, b) -> Type where Source #

Constructors

STuple2 :: forall a b (n :: a) (n :: b). (Sing (n :: a)) -> (Sing (n :: b)) -> STuple2 '(n, n) 

Instances

Instances details
(SDecide a, SDecide b) => TestCoercion (STuple2 :: (a, b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple2 a0 -> STuple2 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b) => TestEquality (STuple2 :: (a, b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple2 a0 -> STuple2 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b) => Show (STuple2 z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> STuple2 z -> ShowS #

show :: STuple2 z -> String #

showList :: [STuple2 z] -> ShowS #

data STuple3 :: forall a b c. (a, b, c) -> Type where Source #

Constructors

STuple3 :: forall a b c (n :: a) (n :: b) (n :: c). (Sing (n :: a)) -> (Sing (n :: b)) -> (Sing (n :: c)) -> STuple3 '(n, n, n) 

Instances

Instances details
(SDecide a, SDecide b, SDecide c) => TestCoercion (STuple3 :: (a, b, c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple3 a0 -> STuple3 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b, SDecide c) => TestEquality (STuple3 :: (a, b, c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple3 a0 -> STuple3 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b, ShowSing c) => Show (STuple3 z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> STuple3 z -> ShowS #

show :: STuple3 z -> String #

showList :: [STuple3 z] -> ShowS #

data STuple4 :: forall a b c d. (a, b, c, d) -> Type where Source #

Constructors

STuple4 :: forall a b c d (n :: a) (n :: b) (n :: c) (n :: d). (Sing (n :: a)) -> (Sing (n :: b)) -> (Sing (n :: c)) -> (Sing (n :: d)) -> STuple4 '(n, n, n, n) 

Instances

Instances details
(SDecide a, SDecide b, SDecide c, SDecide d) => TestCoercion (STuple4 :: (a, b, c, d) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple4 a0 -> STuple4 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b, SDecide c, SDecide d) => TestEquality (STuple4 :: (a, b, c, d) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple4 a0 -> STuple4 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d) => Show (STuple4 z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> STuple4 z -> ShowS #

show :: STuple4 z -> String #

showList :: [STuple4 z] -> ShowS #

data STuple5 :: forall a b c d e. (a, b, c, d, e) -> Type where Source #

Constructors

STuple5 :: forall a b c d e (n :: a) (n :: b) (n :: c) (n :: d) (n :: e). (Sing (n :: a)) -> (Sing (n :: b)) -> (Sing (n :: c)) -> (Sing (n :: d)) -> (Sing (n :: e)) -> STuple5 '(n, n, n, n, n) 

Instances

Instances details
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e) => TestCoercion (STuple5 :: (a, b, c, d, e) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple5 a0 -> STuple5 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e) => TestEquality (STuple5 :: (a, b, c, d, e) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple5 a0 -> STuple5 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e) => Show (STuple5 z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> STuple5 z -> ShowS #

show :: STuple5 z -> String #

showList :: [STuple5 z] -> ShowS #

data STuple6 :: forall a b c d e f. (a, b, c, d, e, f) -> Type where Source #

Constructors

STuple6 :: forall a b c d e f (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f). (Sing (n :: a)) -> (Sing (n :: b)) -> (Sing (n :: c)) -> (Sing (n :: d)) -> (Sing (n :: e)) -> (Sing (n :: f)) -> STuple6 '(n, n, n, n, n, n) 

Instances

Instances details
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f) => TestCoercion (STuple6 :: (a, b, c, d, e, f) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple6 a0 -> STuple6 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f) => TestEquality (STuple6 :: (a, b, c, d, e, f) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple6 a0 -> STuple6 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f) => Show (STuple6 z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> STuple6 z -> ShowS #

show :: STuple6 z -> String #

showList :: [STuple6 z] -> ShowS #

data STuple7 :: forall a b c d e f g. (a, b, c, d, e, f, g) -> Type where Source #

Constructors

STuple7 :: forall a b c d e f g (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f) (n :: g). (Sing (n :: a)) -> (Sing (n :: b)) -> (Sing (n :: c)) -> (Sing (n :: d)) -> (Sing (n :: e)) -> (Sing (n :: f)) -> (Sing (n :: g)) -> STuple7 '(n, n, n, n, n, n, n) 

Instances

Instances details
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f, SDecide g) => TestCoercion (STuple7 :: (a, b, c, d, e, f, g) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple7 a0 -> STuple7 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f, SDecide g) => TestEquality (STuple7 :: (a, b, c, d, e, f, g) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple7 a0 -> STuple7 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f, ShowSing g) => Show (STuple7 z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> STuple7 z -> ShowS #

show :: STuple7 z -> String #

showList :: [STuple7 z] -> ShowS #

Functions working with Bool

type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ... #

Type-level If. If True a b ==> a; If False a b ==> b

Equations

If 'True (tru :: k) (fls :: k) = tru 
If 'False (tru :: k) (fls :: k) = fls 

sIf :: Sing a -> Sing b -> Sing c -> Sing (If a b c) Source #

Conditional over singletons

type family Not (a :: Bool) = (res :: Bool) | res -> a where ... #

Type-level "not". An injective type family since 4.10.0.0.

Since: base-4.7.0.0

Equations

Not 'False = 'True 
Not 'True = 'False 

sNot :: Sing a -> Sing (Not a) Source #

Negation of a singleton

type family (a :: Bool) && (b :: Bool) :: Bool where ... infixr 3 #

Type-level "and"

Equations

'False && a = 'False 
'True && a = a 
a && 'False = 'False 
a && 'True = a 
a && a = a 

type family (a :: Bool) || (b :: Bool) :: Bool where ... infixr 2 #

Type-level "or"

Equations

'False || a = a 
'True || a = 'True 
a || 'False = a 
a || 'True = 'True 
a || a = a 

(%&&) :: Sing a -> Sing b -> Sing (a && b) infixr 3 Source #

Conjunction of singletons

(%||) :: Sing a -> Sing b -> Sing (a || b) infixr 2 Source #

Disjunction of singletons

type family Otherwise :: Bool where ... Source #

Equations

Otherwise = TrueSym0 

Error reporting

type family Error (str :: k0) :: k where ... Source #

The promotion of error. This version is more poly-kinded for easier use.

sError :: HasCallStack => Sing (str :: Symbol) -> a Source #

The singleton for error

type family ErrorWithoutStackTrace (str :: k0) :: k where ... Source #

The promotion of errorWithoutStackTrace. This version is more poly-kinded for easier use.

type family Undefined :: k where ... Source #

The promotion of undefined.

sUndefined :: HasCallStack => a Source #

The singleton for undefined.

Singleton equality

Singleton comparisons

class POrd (a :: Type) Source #

Associated Types

type Compare (arg :: a) (arg :: a) :: Ordering Source #

type Compare a a = Apply (Apply Compare_6989586621679394057Sym0 a) a Source #

type (arg :: a) < (arg :: a) :: Bool infix 4 Source #

type (<) a a = Apply (Apply TFHelper_6989586621679394081Sym0 a) a Source #

type (arg :: a) <= (arg :: a) :: Bool infix 4 Source #

type (<=) a a = Apply (Apply TFHelper_6989586621679394099Sym0 a) a Source #

type (arg :: a) > (arg :: a) :: Bool infix 4 Source #

type (>) a a = Apply (Apply TFHelper_6989586621679394117Sym0 a) a Source #

type (arg :: a) >= (arg :: a) :: Bool infix 4 Source #

type (>=) a a = Apply (Apply TFHelper_6989586621679394135Sym0 a) a Source #

type Max (arg :: a) (arg :: a) :: a Source #

type Max a a = Apply (Apply Max_6989586621679394153Sym0 a) a Source #

type Min (arg :: a) (arg :: a) :: a Source #

type Min a a = Apply (Apply Min_6989586621679394171Sym0 a) a Source #

Instances

Instances details
POrd Bool Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd Ordering Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd Nat Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd Symbol Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd () Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd Void Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd All Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd Any Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd [a] Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Maybe a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (WrappedMonoid m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Option a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Dual a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Sum a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Product a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Down a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (NonEmpty a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (a, b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Arg a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (a, b, c) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (a, b, c, d) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (a, b, c, d, e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

POrd (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

class SEq a => SOrd a where Source #

Minimal complete definition

Nothing

Methods

sCompare :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering) Source #

default sCompare :: forall (t :: a) (t :: a). (Apply (Apply CompareSym0 t) t :: Ordering) ~ Apply (Apply Compare_6989586621679394057Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering) Source #

(%<) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool) infix 4 Source #

default (%<) :: forall (t :: a) (t :: a). (Apply (Apply (<@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679394081Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool) Source #

(%<=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool) infix 4 Source #

default (%<=) :: forall (t :: a) (t :: a). (Apply (Apply (<=@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679394099Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool) Source #

(%>) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool) infix 4 Source #

default (%>) :: forall (t :: a) (t :: a). (Apply (Apply (>@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679394117Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool) Source #

(%>=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool) infix 4 Source #

default (%>=) :: forall (t :: a) (t :: a). (Apply (Apply (>=@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679394135Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool) Source #

sMax :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a) Source #

default sMax :: forall (t :: a) (t :: a). (Apply (Apply MaxSym0 t) t :: a) ~ Apply (Apply Max_6989586621679394153Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a) Source #

sMin :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t :: a) Source #

default sMin :: forall (t :: a) (t :: a). (Apply (Apply MinSym0 t) t :: a) ~ Apply (Apply Min_6989586621679394171Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t :: a) Source #

Instances

Instances details
SOrd Bool Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd Ordering Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd Nat Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Methods

sCompare :: forall (t :: Nat) (t :: Nat). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Nat) (t :: Nat). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Nat) (t :: Nat). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Nat) (t :: Nat). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Nat) (t :: Nat). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Nat) (t :: Nat). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Nat) (t :: Nat). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd Symbol Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Methods

sCompare :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd () Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd Void Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Void) (t :: Void). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd Bool => SOrd All Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sCompare :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: All) (t :: All). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd Bool => SOrd Any Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sCompare :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Any) (t :: Any). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

(SOrd a, SOrd [a]) => SOrd [a] Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (Maybe a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sCompare :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sCompare :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sCompare :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sCompare :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd m => SOrd (WrappedMonoid m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sCompare :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: WrappedMonoid m) (t :: WrappedMonoid m). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd (Maybe a) => SOrd (Option a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sCompare :: forall (t :: Option a) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Option a) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Option a) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Option a) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Option a) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Option a) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Option a) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd (Maybe a) => SOrd (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

sCompare :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd (Maybe a) => SOrd (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

sCompare :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (Dual a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sCompare :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Dual a) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (Sum a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sCompare :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Sum a) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (Product a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sCompare :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Product a) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (Down a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Down a) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

(SOrd a, SOrd [a]) => SOrd (NonEmpty a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: NonEmpty a) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

(SOrd a, SOrd b) => SOrd (Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Either a b) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

(SOrd a, SOrd b) => SOrd (a, b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: (a, b)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (Arg a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sCompare :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Arg a b) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

(SOrd a, SOrd b, SOrd c) => SOrd (a, b, c) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: (a, b, c)) (t :: (a, b, c)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

SOrd a => SOrd (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sCompare :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

(SOrd a, SOrd b, SOrd c, SOrd d) => SOrd (a, b, c, d) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: (a, b, c, d)) (t :: (a, b, c, d)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e) => SOrd (a, b, c, d, e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: (a, b, c, d, e)) (t :: (a, b, c, d, e)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f) => SOrd (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: (a, b, c, d, e, f)) (t :: (a, b, c, d, e, f)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f, SOrd g) => SOrd (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

sCompare :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: (a, b, c, d, e, f, g)) (t :: (a, b, c, d, e, f, g)). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

Singleton Enum and Bounded

As a matter of convenience, the singletons Prelude does not export promoted/singletonized succ and pred, due to likely conflicts with unary numbers. Please import Enum directly if you want these.

class SBounded a where Source #

Instances

Instances details
SBounded Bool Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

SBounded Ordering Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

SBounded () Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

SBounded Bool => SBounded All Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

SBounded Bool => SBounded Any Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

SBounded a => SBounded (Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

SBounded a => SBounded (Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

SBounded a => SBounded (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

SBounded a => SBounded (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

SBounded m => SBounded (WrappedMonoid m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

SBounded a => SBounded (Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

SBounded a => SBounded (Dual a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

SBounded a => SBounded (Sum a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

SBounded a => SBounded (Product a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

(SBounded a, SBounded b) => SBounded (a, b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

(SBounded a, SBounded b, SBounded c) => SBounded (a, b, c) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

SBounded a => SBounded (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

(SBounded a, SBounded b, SBounded c, SBounded d) => SBounded (a, b, c, d) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

(SBounded a, SBounded b, SBounded c, SBounded d, SBounded e) => SBounded (a, b, c, d, e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

(SBounded a, SBounded b, SBounded c, SBounded d, SBounded e, SBounded f) => SBounded (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

(SBounded a, SBounded b, SBounded c, SBounded d, SBounded e, SBounded f, SBounded g) => SBounded (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

class PBounded (a :: Type) Source #

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

Instances

Instances details
PBounded Bool Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded Ordering Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded () Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded All Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded Any Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (WrappedMonoid m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Dual a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Sum a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Product a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b, c) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b, c, d) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b, c, d, e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

class SEnum a where Source #

Minimal complete definition

sToEnum, sFromEnum

Methods

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t :: a) Source #

sFromEnum :: forall (t :: a). Sing t -> Sing (Apply FromEnumSym0 t :: Nat) Source #

sEnumFromTo :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t :: [a]) Source #

default sEnumFromTo :: forall (t :: a) (t :: a). (Apply (Apply EnumFromToSym0 t) t :: [a]) ~ Apply (Apply EnumFromTo_6989586621679767363Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t :: [a]) Source #

sEnumFromThenTo :: forall (t :: a) (t :: a) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t :: [a]) Source #

default sEnumFromThenTo :: forall (t :: a) (t :: a) (t :: a). (Apply (Apply (Apply EnumFromThenToSym0 t) t) t :: [a]) ~ Apply (Apply (Apply EnumFromThenTo_6989586621679767376Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t :: [a]) Source #

Instances

Instances details
SEnum Bool Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Methods

sSucc :: forall (t :: Bool). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Bool). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Bool). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Bool) (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum Ordering Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Methods

sSucc :: forall (t :: Ordering). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Ordering). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Ordering). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Ordering) (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum Nat Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Methods

sSucc :: forall (t :: Nat). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Nat). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Nat). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Nat) (t :: Nat). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Nat) (t :: Nat) (t :: Nat). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum () Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Methods

sSucc :: forall (t :: ()). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: ()). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: ()). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: ()) (t :: ()). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: ()) (t :: ()) (t :: ()). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum a => SEnum (Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sSucc :: forall (t :: Min a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Min a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Min a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Min a) (t :: Min a) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum a => SEnum (Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sSucc :: forall (t :: Max a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Max a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Max a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Max a) (t :: Max a) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum a => SEnum (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sSucc :: forall (t :: First a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: First a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: First a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: First a) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: First a) (t :: First a) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum a => SEnum (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sSucc :: forall (t :: Last a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Last a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Last a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Last a) (t :: Last a) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum a => SEnum (WrappedMonoid a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sSucc :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: WrappedMonoid a) (t :: WrappedMonoid a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: WrappedMonoid a) (t :: WrappedMonoid a) (t :: WrappedMonoid a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum a => SEnum (Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Methods

sSucc :: forall (t :: Identity a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Identity a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Identity a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Identity a) (t :: Identity a) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

SEnum a => SEnum (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sSucc :: forall (t :: Const a b). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Const a b). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Const a b). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Const a b) (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

class PEnum (a :: Type) Source #

Associated Types

type ToEnum (arg :: Nat) :: a Source #

type FromEnum (arg :: a) :: Nat Source #

type EnumFromTo (arg :: a) (arg :: a) :: [a] Source #

type EnumFromTo a a = Apply (Apply EnumFromTo_6989586621679767363Sym0 a) a Source #

type EnumFromThenTo (arg :: a) (arg :: a) (arg :: a) :: [a] Source #

type EnumFromThenTo a a a = Apply (Apply (Apply EnumFromThenTo_6989586621679767376Sym0 a) a) a Source #

Instances

Instances details
PEnum Bool Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum Ordering Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum Nat Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum () Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum (Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum (Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum (WrappedMonoid a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum (Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

PEnum (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

data EnumFromThenToSym0 :: forall a6989586621679767035. (~>) a6989586621679767035 ((~>) a6989586621679767035 ((~>) a6989586621679767035 [a6989586621679767035])) Source #

Instances

Instances details
SEnum a => SingI (EnumFromThenToSym0 :: TyFun a (a ~> (a ~> [a])) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

SuppressUnusedWarnings (EnumFromThenToSym0 :: TyFun a6989586621679767035 (a6989586621679767035 ~> (a6989586621679767035 ~> [a6989586621679767035])) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (EnumFromThenToSym0 :: TyFun a6989586621679767035 (a6989586621679767035 ~> (a6989586621679767035 ~> [a6989586621679767035])) -> Type) (arg6989586621679767331 :: a6989586621679767035) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (EnumFromThenToSym0 :: TyFun a6989586621679767035 (a6989586621679767035 ~> (a6989586621679767035 ~> [a6989586621679767035])) -> Type) (arg6989586621679767331 :: a6989586621679767035) = EnumFromThenToSym1 arg6989586621679767331

data EnumFromThenToSym1 (arg6989586621679767331 :: a6989586621679767035) :: (~>) a6989586621679767035 ((~>) a6989586621679767035 [a6989586621679767035]) Source #

Instances

Instances details
(SEnum a, SingI d) => SingI (EnumFromThenToSym1 d :: TyFun a (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

SuppressUnusedWarnings (EnumFromThenToSym1 arg6989586621679767331 :: TyFun a6989586621679767035 (a6989586621679767035 ~> [a6989586621679767035]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (EnumFromThenToSym1 arg6989586621679767331 :: TyFun a6989586621679767035 (a6989586621679767035 ~> [a6989586621679767035]) -> Type) (arg6989586621679767332 :: a6989586621679767035) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (EnumFromThenToSym1 arg6989586621679767331 :: TyFun a6989586621679767035 (a6989586621679767035 ~> [a6989586621679767035]) -> Type) (arg6989586621679767332 :: a6989586621679767035) = EnumFromThenToSym2 arg6989586621679767331 arg6989586621679767332

data EnumFromThenToSym2 (arg6989586621679767331 :: a6989586621679767035) (arg6989586621679767332 :: a6989586621679767035) :: (~>) a6989586621679767035 [a6989586621679767035] Source #

Instances

Instances details
(SEnum a, SingI d1, SingI d2) => SingI (EnumFromThenToSym2 d1 d2 :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

Methods

sing :: Sing (EnumFromThenToSym2 d1 d2) Source #

SuppressUnusedWarnings (EnumFromThenToSym2 arg6989586621679767332 arg6989586621679767331 :: TyFun a6989586621679767035 [a6989586621679767035] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (EnumFromThenToSym2 arg6989586621679767332 arg6989586621679767331 :: TyFun a [a] -> Type) (arg6989586621679767333 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (EnumFromThenToSym2 arg6989586621679767332 arg6989586621679767331 :: TyFun a [a] -> Type) (arg6989586621679767333 :: a) = EnumFromThenTo arg6989586621679767332 arg6989586621679767331 arg6989586621679767333

type EnumFromThenToSym3 (arg6989586621679767331 :: a6989586621679767035) (arg6989586621679767332 :: a6989586621679767035) (arg6989586621679767333 :: a6989586621679767035) = EnumFromThenTo arg6989586621679767331 arg6989586621679767332 arg6989586621679767333 Source #

data EnumFromToSym0 :: forall a6989586621679767035. (~>) a6989586621679767035 ((~>) a6989586621679767035 [a6989586621679767035]) Source #

Instances

Instances details
SEnum a => SingI (EnumFromToSym0 :: TyFun a (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

SuppressUnusedWarnings (EnumFromToSym0 :: TyFun a6989586621679767035 (a6989586621679767035 ~> [a6989586621679767035]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (EnumFromToSym0 :: TyFun a6989586621679767035 (a6989586621679767035 ~> [a6989586621679767035]) -> Type) (arg6989586621679767327 :: a6989586621679767035) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (EnumFromToSym0 :: TyFun a6989586621679767035 (a6989586621679767035 ~> [a6989586621679767035]) -> Type) (arg6989586621679767327 :: a6989586621679767035) = EnumFromToSym1 arg6989586621679767327

data EnumFromToSym1 (arg6989586621679767327 :: a6989586621679767035) :: (~>) a6989586621679767035 [a6989586621679767035] Source #

Instances

Instances details
(SEnum a, SingI d) => SingI (EnumFromToSym1 d :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

SuppressUnusedWarnings (EnumFromToSym1 arg6989586621679767327 :: TyFun a6989586621679767035 [a6989586621679767035] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (EnumFromToSym1 arg6989586621679767327 :: TyFun a [a] -> Type) (arg6989586621679767328 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (EnumFromToSym1 arg6989586621679767327 :: TyFun a [a] -> Type) (arg6989586621679767328 :: a) = EnumFromTo arg6989586621679767327 arg6989586621679767328

type EnumFromToSym2 (arg6989586621679767327 :: a6989586621679767035) (arg6989586621679767328 :: a6989586621679767035) = EnumFromTo arg6989586621679767327 arg6989586621679767328 Source #

data FromEnumSym0 :: forall a6989586621679767035. (~>) a6989586621679767035 Nat Source #

Instances

Instances details
SEnum a => SingI (FromEnumSym0 :: TyFun a Nat -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

SuppressUnusedWarnings (FromEnumSym0 :: TyFun a6989586621679767035 Nat -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (FromEnumSym0 :: TyFun a Nat -> Type) (arg6989586621679767325 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (FromEnumSym0 :: TyFun a Nat -> Type) (arg6989586621679767325 :: a) = FromEnum arg6989586621679767325

type FromEnumSym1 (arg6989586621679767325 :: a6989586621679767035) = FromEnum arg6989586621679767325 Source #

data ToEnumSym0 :: forall a6989586621679767035. (~>) Nat a6989586621679767035 Source #

Instances

Instances details
SEnum a => SingI (ToEnumSym0 :: TyFun Nat a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

SuppressUnusedWarnings (ToEnumSym0 :: TyFun Nat a6989586621679767035 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (ToEnumSym0 :: TyFun Nat k2 -> Type) (arg6989586621679767323 :: Nat) Source # 
Instance details

Defined in Data.Singletons.Prelude.Enum

type Apply (ToEnumSym0 :: TyFun Nat k2 -> Type) (arg6989586621679767323 :: Nat) = ToEnum arg6989586621679767323 :: k2

type ToEnumSym1 (arg6989586621679767323 :: Nat) = ToEnum arg6989586621679767323 Source #

Singletons numbers

type family (a :: Nat) ^ (b :: Nat) :: Nat where ... infixr 8 #

Exponentiation of type-level naturals.

Since: base-4.7.0.0

(%^) :: Sing a -> Sing b -> Sing (a ^ b) infixr 8 Source #

The singleton analogue of (^) for Nats.

Singleton Show

class PShow (a :: Type) Source #

Associated Types

type ShowsPrec (arg :: Nat) (arg :: a) (arg :: Symbol) :: Symbol Source #

type ShowsPrec a a a = Apply (Apply (Apply ShowsPrec_6989586621680295074Sym0 a) a) a Source #

type Show_ (arg :: a) :: Symbol Source #

type Show_ a = Apply Show__6989586621680295088Sym0 a Source #

type ShowList (arg :: [a]) (arg :: Symbol) :: Symbol Source #

type ShowList a a = Apply (Apply ShowList_6989586621680295096Sym0 a) a Source #

Instances

Instances details
PShow Bool Source # 
Instance details

Defined in Data.Singletons.Prelude.Show

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow Ordering Source # 
Instance details

Defined in Data.Singletons.Prelude.Show

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow Nat Source # 
Instance details

Defined in Data.Singletons.Prelude.Show

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow Symbol Source # 
Instance details

Defined in Data.Singletons.Prelude.Show

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow () Source # 
Instance details

Defined in Data.Singletons.Prelude.Show

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow Void Source # 
Instance details

Defined in Data.Singletons.Prelude.Show

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow All Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow Any Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow [a] Source # 
Instance details

Defined in Data.Singletons.Prelude.Show

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (Maybe a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Show

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

PShow (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

<