singletons-2.6: A framework for generating singleton types
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Applicative

Description

Defines the promoted and singled versions of the Applicative type class.

Synopsis
  • class PApplicative (f :: Type -> Type) where
    • type Pure (arg :: a) :: f a
    • type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b
    • type LiftA2 (arg :: (~>) a ((~>) b c)) (arg :: f a) (arg :: f b) :: f c
    • type (arg :: f a) *> (arg :: f b) :: f b
    • type (arg :: f a) <* (arg :: f b) :: f a
  • class SFunctor f => SApplicative (f :: Type -> Type) where
  • class PAlternative (f :: Type -> Type) where
    • type Empty :: f a
    • type (arg :: f a) <|> (arg :: f a) :: f a
  • class SApplicative f => SAlternative (f :: Type -> Type) where
  • type family Sing :: k -> Type
  • data SConst :: forall (k :: Type) (a :: Type) (b :: k). Const a b -> Type where
  • data Const a (b :: k)
  • type family GetConst (x :: Const a b) :: a where ...
  • type family (a :: (~>) a b) <$> (a :: f a) :: f b where ...
  • (%<$>) :: forall a b f (t :: (~>) a b) (t :: f a). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$>@#@$) t) t :: f b)
  • type family (arg :: a) <$ (arg :: f b) :: f a
  • (%<$) :: forall a b (t :: a) (t :: f b). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a)
  • type family (a :: f a) <**> (a :: f ((~>) a b)) :: f b where ...
  • (%<**>) :: forall f a b (t :: f a) (t :: f ((~>) a b)). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply (<**>@#@$) t) t :: f b)
  • type family LiftA (a :: (~>) a b) (a :: f a) :: f b where ...
  • sLiftA :: forall a b f (t :: (~>) a b) (t :: f a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply LiftASym0 t) t :: f b)
  • type family LiftA3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: f a) (a :: f b) (a :: f c) :: f d where ...
  • sLiftA3 :: forall a b c d f (t :: (~>) a ((~>) b ((~>) c d))) (t :: f a) (t :: f b) (t :: f c). SApplicative f => Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply LiftA3Sym0 t) t) t) t :: f d)
  • type family Optional (a :: f a) :: f (Maybe a) where ...
  • sOptional :: forall f a (t :: f a). SAlternative f => Sing t -> Sing (Apply OptionalSym0 t :: f (Maybe a))
  • data PureSym0 :: forall a6989586621679570825 f6989586621679570824. (~>) a6989586621679570825 (f6989586621679570824 a6989586621679570825)
  • type PureSym1 (arg6989586621679571235 :: a6989586621679570825) = Pure arg6989586621679571235
  • data (<*>@#@$) :: forall f6989586621679570824 a6989586621679570826 b6989586621679570827. (~>) (f6989586621679570824 ((~>) a6989586621679570826 b6989586621679570827)) ((~>) (f6989586621679570824 a6989586621679570826) (f6989586621679570824 b6989586621679570827))
  • data (<*>@#@$$) (arg6989586621679571237 :: f6989586621679570824 ((~>) a6989586621679570826 b6989586621679570827)) :: (~>) (f6989586621679570824 a6989586621679570826) (f6989586621679570824 b6989586621679570827)
  • type (<*>@#@$$$) (arg6989586621679571237 :: f6989586621679570824 ((~>) a6989586621679570826 b6989586621679570827)) (arg6989586621679571238 :: f6989586621679570824 a6989586621679570826) = (<*>) arg6989586621679571237 arg6989586621679571238
  • data (*>@#@$) :: forall f6989586621679570824 a6989586621679570831 b6989586621679570832. (~>) (f6989586621679570824 a6989586621679570831) ((~>) (f6989586621679570824 b6989586621679570832) (f6989586621679570824 b6989586621679570832))
  • data (*>@#@$$) (arg6989586621679571247 :: f6989586621679570824 a6989586621679570831) :: forall b6989586621679570832. (~>) (f6989586621679570824 b6989586621679570832) (f6989586621679570824 b6989586621679570832)
  • type (*>@#@$$$) (arg6989586621679571247 :: f6989586621679570824 a6989586621679570831) (arg6989586621679571248 :: f6989586621679570824 b6989586621679570832) = (*>) arg6989586621679571247 arg6989586621679571248
  • data (<*@#@$) :: forall f6989586621679570824 a6989586621679570833 b6989586621679570834. (~>) (f6989586621679570824 a6989586621679570833) ((~>) (f6989586621679570824 b6989586621679570834) (f6989586621679570824 a6989586621679570833))
  • data (<*@#@$$) (arg6989586621679571251 :: f6989586621679570824 a6989586621679570833) :: forall b6989586621679570834. (~>) (f6989586621679570824 b6989586621679570834) (f6989586621679570824 a6989586621679570833)
  • type (<*@#@$$$) (arg6989586621679571251 :: f6989586621679570824 a6989586621679570833) (arg6989586621679571252 :: f6989586621679570824 b6989586621679570834) = (<*) arg6989586621679571251 arg6989586621679571252
  • type EmptySym0 = Empty
  • data (<|>@#@$) :: forall f6989586621679570899 a6989586621679570901. (~>) (f6989586621679570899 a6989586621679570901) ((~>) (f6989586621679570899 a6989586621679570901) (f6989586621679570899 a6989586621679570901))
  • data (<|>@#@$$) (arg6989586621679571359 :: f6989586621679570899 a6989586621679570901) :: (~>) (f6989586621679570899 a6989586621679570901) (f6989586621679570899 a6989586621679570901)
  • type (<|>@#@$$$) (arg6989586621679571359 :: f6989586621679570899 a6989586621679570901) (arg6989586621679571360 :: f6989586621679570899 a6989586621679570901) = (<|>) arg6989586621679571359 arg6989586621679571360
  • data ConstSym0 :: forall (a6989586621679097555 :: Type) k6989586621679097554 (b6989586621679097556 :: k6989586621679097554). (~>) a6989586621679097555 (Const (a6989586621679097555 :: Type) (b6989586621679097556 :: k6989586621679097554))
  • type ConstSym1 (t6989586621680758421 :: a6989586621679097555) = 'Const t6989586621680758421
  • data GetConstSym0 :: forall a6989586621680758689 b6989586621680758690. (~>) (Const a6989586621680758689 b6989586621680758690) a6989586621680758689
  • type GetConstSym1 (x6989586621680758691 :: Const a6989586621680758689 b6989586621680758690) = GetConst x6989586621680758691
  • data (<$>@#@$) :: forall a6989586621679740996 b6989586621679740997 f6989586621679740995. (~>) ((~>) a6989586621679740996 b6989586621679740997) ((~>) (f6989586621679740995 a6989586621679740996) (f6989586621679740995 b6989586621679740997))
  • data (<$>@#@$$) (a6989586621679741077 :: (~>) a6989586621679740996 b6989586621679740997) :: forall f6989586621679740995. (~>) (f6989586621679740995 a6989586621679740996) (f6989586621679740995 b6989586621679740997)
  • type (<$>@#@$$$) (a6989586621679741077 :: (~>) a6989586621679740996 b6989586621679740997) (a6989586621679741078 :: f6989586621679740995 a6989586621679740996) = (<$>) a6989586621679741077 a6989586621679741078
  • data (<$@#@$) :: forall a6989586621679570822 f6989586621679570819 b6989586621679570823. (~>) a6989586621679570822 ((~>) (f6989586621679570819 b6989586621679570823) (f6989586621679570819 a6989586621679570822))
  • data (<$@#@$$) (arg6989586621679571215 :: a6989586621679570822) :: forall f6989586621679570819 b6989586621679570823. (~>) (f6989586621679570819 b6989586621679570823) (f6989586621679570819 a6989586621679570822)
  • type (<$@#@$$$) (arg6989586621679571215 :: a6989586621679570822) (arg6989586621679571216 :: f6989586621679570819 b6989586621679570823) = (<$) arg6989586621679571215 arg6989586621679571216
  • data (<**>@#@$) :: forall f6989586621679570784 a6989586621679570785 b6989586621679570786. (~>) (f6989586621679570784 a6989586621679570785) ((~>) (f6989586621679570784 ((~>) a6989586621679570785 b6989586621679570786)) (f6989586621679570784 b6989586621679570786))
  • data (<**>@#@$$) (a6989586621679571195 :: f6989586621679570784 a6989586621679570785) :: forall b6989586621679570786. (~>) (f6989586621679570784 ((~>) a6989586621679570785 b6989586621679570786)) (f6989586621679570784 b6989586621679570786)
  • type (<**>@#@$$$) (a6989586621679571195 :: f6989586621679570784 a6989586621679570785) (a6989586621679571196 :: f6989586621679570784 ((~>) a6989586621679570785 b6989586621679570786)) = (<**>) a6989586621679571195 a6989586621679571196
  • data LiftASym0 :: forall a6989586621679570782 b6989586621679570783 f6989586621679570781. (~>) ((~>) a6989586621679570782 b6989586621679570783) ((~>) (f6989586621679570781 a6989586621679570782) (f6989586621679570781 b6989586621679570783))
  • data LiftASym1 (a6989586621679571185 :: (~>) a6989586621679570782 b6989586621679570783) :: forall f6989586621679570781. (~>) (f6989586621679570781 a6989586621679570782) (f6989586621679570781 b6989586621679570783)
  • type LiftASym2 (a6989586621679571185 :: (~>) a6989586621679570782 b6989586621679570783) (a6989586621679571186 :: f6989586621679570781 a6989586621679570782) = LiftA a6989586621679571185 a6989586621679571186
  • data LiftA2Sym0 :: forall a6989586621679570828 b6989586621679570829 c6989586621679570830 f6989586621679570824. (~>) ((~>) a6989586621679570828 ((~>) b6989586621679570829 c6989586621679570830)) ((~>) (f6989586621679570824 a6989586621679570828) ((~>) (f6989586621679570824 b6989586621679570829) (f6989586621679570824 c6989586621679570830)))
  • data LiftA2Sym1 (arg6989586621679571241 :: (~>) a6989586621679570828 ((~>) b6989586621679570829 c6989586621679570830)) :: forall f6989586621679570824. (~>) (f6989586621679570824 a6989586621679570828) ((~>) (f6989586621679570824 b6989586621679570829) (f6989586621679570824 c6989586621679570830))
  • data LiftA2Sym2 (arg6989586621679571241 :: (~>) a6989586621679570828 ((~>) b6989586621679570829 c6989586621679570830)) (arg6989586621679571242 :: f6989586621679570824 a6989586621679570828) :: (~>) (f6989586621679570824 b6989586621679570829) (f6989586621679570824 c6989586621679570830)
  • type LiftA2Sym3 (arg6989586621679571241 :: (~>) a6989586621679570828 ((~>) b6989586621679570829 c6989586621679570830)) (arg6989586621679571242 :: f6989586621679570824 a6989586621679570828) (arg6989586621679571243 :: f6989586621679570824 b6989586621679570829) = LiftA2 arg6989586621679571241 arg6989586621679571242 arg6989586621679571243
  • data LiftA3Sym0 :: forall a6989586621679570777 b6989586621679570778 c6989586621679570779 d6989586621679570780 f6989586621679570776. (~>) ((~>) a6989586621679570777 ((~>) b6989586621679570778 ((~>) c6989586621679570779 d6989586621679570780))) ((~>) (f6989586621679570776 a6989586621679570777) ((~>) (f6989586621679570776 b6989586621679570778) ((~>) (f6989586621679570776 c6989586621679570779) (f6989586621679570776 d6989586621679570780))))
  • data LiftA3Sym1 (a6989586621679571173 :: (~>) a6989586621679570777 ((~>) b6989586621679570778 ((~>) c6989586621679570779 d6989586621679570780))) :: forall f6989586621679570776. (~>) (f6989586621679570776 a6989586621679570777) ((~>) (f6989586621679570776 b6989586621679570778) ((~>) (f6989586621679570776 c6989586621679570779) (f6989586621679570776 d6989586621679570780)))
  • data LiftA3Sym2 (a6989586621679571173 :: (~>) a6989586621679570777 ((~>) b6989586621679570778 ((~>) c6989586621679570779 d6989586621679570780))) (a6989586621679571174 :: f6989586621679570776 a6989586621679570777) :: (~>) (f6989586621679570776 b6989586621679570778) ((~>) (f6989586621679570776 c6989586621679570779) (f6989586621679570776 d6989586621679570780))
  • data LiftA3Sym3 (a6989586621679571173 :: (~>) a6989586621679570777 ((~>) b6989586621679570778 ((~>) c6989586621679570779 d6989586621679570780))) (a6989586621679571174 :: f6989586621679570776 a6989586621679570777) (a6989586621679571175 :: f6989586621679570776 b6989586621679570778) :: (~>) (f6989586621679570776 c6989586621679570779) (f6989586621679570776 d6989586621679570780)
  • data OptionalSym0 :: forall f6989586621681265757 a6989586621681265758. (~>) (f6989586621681265757 a6989586621681265758) (f6989586621681265757 (Maybe a6989586621681265758))
  • type OptionalSym1 (a6989586621681265795 :: f6989586621681265757 a6989586621681265758) = Optional a6989586621681265795

Documentation

class PApplicative (f :: Type -> Type) Source #

Associated Types

type Pure (arg :: a) :: f a Source #

type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b infixl 4 Source #

type (<*>) a a = Apply (Apply TFHelper_6989586621679571257Sym0 a) a Source #

type LiftA2 (arg :: (~>) a ((~>) b c)) (arg :: f a) (arg :: f b) :: f c Source #

type LiftA2 a a a = Apply (Apply (Apply LiftA2_6989586621679571274Sym0 a) a) a Source #

type (arg :: f a) *> (arg :: f b) :: f b infixl 4 Source #

type (*>) a a = Apply (Apply TFHelper_6989586621679571292Sym0 a) a Source #

type (arg :: f a) <* (arg :: f b) :: f a infixl 4 Source #

type (<*) a a = Apply (Apply TFHelper_6989586621679571304Sym0 a) a Source #

Instances

Instances details
PApplicative [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative First Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Down Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative (Either e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

class SFunctor f => SApplicative (f :: Type -> Type) where Source #

Minimal complete definition

sPure

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t :: f a) Source #

(%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) infixl 4 Source #

default (%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). (Apply (Apply (<*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679571257Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) Source #

sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) Source #

default sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) ~ Apply (Apply (Apply LiftA2_6989586621679571274Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) Source #

(%*>) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) infixl 4 Source #

default (%*>) :: forall a b (t :: f a) (t :: f b). (Apply (Apply (*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679571292Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) Source #

(%<*) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) infixl 4 Source #

default (%<*) :: forall a b (t :: f a) (t :: f b). (Apply (Apply (<*@#@$) t) t :: f a) ~ Apply (Apply TFHelper_6989586621679571304Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) Source #

Instances

Instances details
SApplicative [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: [a ~> b]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Maybe (a ~> b)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Min (a ~> b)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Max (a ~> b)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: First (a ~> b)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: First a) (t :: First b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Last (a ~> b)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Option (a ~> b)) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Option a) (t :: Option b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Option a) (t :: Option b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Option a) (t :: Option b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Identity (a ~> b)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative First Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: First (a ~> b)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: First a) (t :: First b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Last (a ~> b)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Dual (a ~> b)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Sum (a ~> b)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Product (a ~> b)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Down Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Down (a ~> b)) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: NonEmpty (a ~> b)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative (Either e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Either e (a ~> b)) (t :: Either e a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SMonoid a => SApplicative ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

Methods

sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a0 b (t :: (a, a0 ~> b)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a0 b c (t :: a0 ~> (b ~> c)) (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Const m (a ~> b)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

class PAlternative (f :: Type -> Type) Source #

Associated Types

type Empty :: f a Source #

type (arg :: f a) <|> (arg :: f a) :: f a infixl 3 Source #

Instances

Instances details
PAlternative [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Empty :: f a Source #

type arg <|> arg :: f a Source #

PAlternative Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Empty :: f a Source #

type arg <|> arg :: f a Source #

PAlternative Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Empty :: f a Source #

type arg <|> arg :: f a Source #

class SApplicative f => SAlternative (f :: Type -> Type) where Source #

Methods

sEmpty :: forall a. Sing (EmptySym0 :: f a) Source #

(%<|>) :: forall a (t :: f a) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t :: f a) infixl 3 Source #

Instances

Instances details
SAlternative [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t) Source #

SAlternative Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t) Source #

SAlternative Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t :: Option a) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t) Source #

type family Sing :: k -> Type Source #

The singleton kind-indexed type family.

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.TypeError

type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SOption :: Option a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type Sing = SArg :: Arg a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Internal

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Internal

type Sing Source # 
Instance details

Defined in Data.Singletons.Sigma

type Sing = SSigma :: Sigma s t -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SConst :: forall (k :: Type) (a :: Type) (b :: k). Const a b -> Type where Source #

Constructors

SConst 

Fields

Instances

Instances details
SDecide a => TestCoercion (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (Coercion a0 b0) #

SDecide a => TestEquality (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

testEquality :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (a0 :~: b0) #

data Const a (b :: k) #

The Const functor.

Instances

Instances details
Generic1 (Const a :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Associated Types

type Rep1 (Const a) :: k -> Type #

Methods

from1 :: forall (a0 :: k0). Const a a0 -> Rep1 (Const a) a0 #

to1 :: forall (a0 :: k0). Rep1 (Const a) a0 -> Const a a0 #

Bifunctor (Const :: Type -> Type -> Type)

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> Const a c -> Const b d #

first :: (a -> b) -> Const a c -> Const b c #

second :: (b -> c) -> Const a b -> Const a c #

Eq2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Const a c -> Const b d -> Bool #

Ord2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Const a c -> Const b d -> Ordering #

Read2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) #

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] #

liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) #

liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] #

Show2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Const a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Const a b] -> ShowS #

Functor (Const m :: Type -> Type)

Since: base-2.1

Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b #

(<$) :: a -> Const m b -> Const m a #

Monoid m => Applicative (Const m :: Type -> Type)

Since: base-2.0.1

Instance details

Defined in Data.Functor.Const

Methods

pure :: a -> Const m a #

(<*>) :: Const m (a -> b) -> Const m a -> Const m b #

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c #

(*>) :: Const m a -> Const m b -> Const m b #

(<*) :: Const m a -> Const m b -> Const m a #

Foldable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldr :: (a -> b -> b) -> b -> Const m a -> b #

foldr' :: (a -> b -> b) -> b -> Const m a -> b #

foldl :: (b -> a -> b) -> b -> Const m a -> b #

foldl' :: (b -> a -> b) -> b -> Const m a -> b #

foldr1 :: (a -> a -> a) -> Const m a -> a #

foldl1 :: (a -> a -> a) -> Const m a -> a #

toList :: Const m a -> [a] #

null :: Const m a -> Bool #

length :: Const m a -> Int #

elem :: Eq a => a -> Const m a -> Bool #

maximum :: Ord a => Const m a -> a #

minimum :: Ord a => Const m a -> a #

sum :: Num a => Const m a -> a #

product :: Num a => Const m a -> a #

Traversable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) #

Eq a => Eq1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a0 -> b -> Bool) -> Const a a0 -> Const a b -> Bool #

Ord a => Ord1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a0 -> b -> Ordering) -> Const a a0 -> Const a b -> Ordering #

Read a => Read1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) #

liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] #

liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) #

liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] #

Show a => Show1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> Int -> Const a a0 -> ShowS #

liftShowList :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> [Const a a0] -> ShowS #

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Const m (a ~> b)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

SFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sFold :: forall m0 (t :: Const m m0). SMonoid m0 => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m0 (t :: a ~> m0) (t :: Const m a). SMonoid m0 => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Const m a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Const m a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Const m a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Const m a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

PFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

STraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

Methods

sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Const m a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source #

sSequenceA :: forall (f :: Type -> Type) a (t :: Const m (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source #

sMapM :: forall a (m0 :: Type -> Type) b (t :: a ~> m0 b) (t :: Const m a). SMonad m0 => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source #

sSequence :: forall (m0 :: Type -> Type) a (t :: Const m (m0 a)). SMonad m0 => Sing t -> Sing (Apply SequenceSym0 t) Source #

PTraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

Associated Types

type Traverse arg arg :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg :: m (t b) Source #

type Sequence arg :: m (t a) Source #

SingI (ConstSym0 :: TyFun a6989586621679097555 (Const a6989586621679097555 b6989586621679097556) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

SuppressUnusedWarnings (ConstSym0 :: TyFun a6989586621679097555 (Const a6989586621679097555 b6989586621679097556) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

SuppressUnusedWarnings (GetConstSym0 :: TyFun (Const a6989586621680758689 b6989586621680758690) a6989586621680758689 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Bounded a => Bounded (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

minBound :: Const a b #

maxBound :: Const a b #

Enum a => Enum (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

succ :: Const a b -> Const a b #

pred :: Const a b -> Const a b #

toEnum :: Int -> Const a b #

fromEnum :: Const a b -> Int #

enumFrom :: Const a b -> [Const a b] #

enumFromThen :: Const a b -> Const a b -> [Const a b] #

enumFromTo :: Const a b -> Const a b -> [Const a b] #

enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] #

Eq a => Eq (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(==) :: Const a b -> Const a b -> Bool #

(/=) :: Const a b -> Const a b -> Bool #

Floating a => Floating (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

pi :: Const a b #

exp :: Const a b -> Const a b #

log :: Const a b -> Const a b #

sqrt :: Const a b -> Const a b #

(**) :: Const a b -> Const a b -> Const a b #

logBase :: Const a b -> Const a b -> Const a b #

sin :: Const a b -> Const a b #

cos :: Const a b -> Const a b #

tan :: Const a b -> Const a b #

asin :: Const a b -> Const a b #

acos :: Const a b -> Const a b #

atan :: Const a b -> Const a b #

sinh :: Const a b -> Const a b #

cosh :: Const a b -> Const a b #

tanh :: Const a b -> Const a b #

asinh :: Const a b -> Const a b #

acosh :: Const a b -> Const a b #

atanh :: Const a b -> Const a b #

log1p :: Const a b -> Const a b #

expm1 :: Const a b -> Const a b #

log1pexp :: Const a b -> Const a b #

log1mexp :: Const a b -> Const a b #

Fractional a => Fractional (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b #

recip :: Const a b -> Const a b #

fromRational :: Rational -> Const a b #

Integral a => Integral (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b #

rem :: Const a b -> Const a b -> Const a b #

div :: Const a b -> Const a b -> Const a b #

mod :: Const a b -> Const a b -> Const a b #

quotRem :: Const a b -> Const a b -> (Const a b, Const a b) #

divMod :: Const a b -> Const a b -> (Const a b, Const a b) #

toInteger :: Const a b -> Integer #

(Typeable k, Data a, Typeable b) => Data (Const a b)

Since: base-4.10.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) #

toConstr :: Const a b -> Constr #

dataTypeOf :: Const a b -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) #

Num a => Num (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(+) :: Const a b -> Const a b -> Const a b #

(-) :: Const a b -> Const a b -> Const a b #

(*) :: Const a b -> Const a b -> Const a b #

negate :: Const a b -> Const a b #

abs :: Const a b -> Const a b #

signum :: Const a b -> Const a b #

fromInteger :: Integer -> Const a b #

Ord a => Ord (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

compare :: Const a b -> Const a b -> Ordering #

(<) :: Const a b -> Const a b -> Bool #

(<=) :: Const a b -> Const a b -> Bool #

(>) :: Const a b -> Const a b -> Bool #

(>=) :: Const a b -> Const a b -> Bool #

max :: Const a b -> Const a b -> Const a b #

min :: Const a b -> Const a b -> Const a b #

Read a => Read (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Const

Real a => Real (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

toRational :: Const a b -> Rational #

RealFloat a => RealFloat (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

floatRadix :: Const a b -> Integer #

floatDigits :: Const a b -> Int #

floatRange :: Const a b -> (Int, Int) #

decodeFloat :: Const a b -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Const a b #

exponent :: Const a b -> Int #

significand :: Const a b -> Const a b #

scaleFloat :: Int -> Const a b -> Const a b #

isNaN :: Const a b -> Bool #

isInfinite :: Const a b -> Bool #

isDenormalized :: Const a b -> Bool #

isNegativeZero :: Const a b -> Bool #

isIEEE :: Const a b -> Bool #

atan2 :: Const a b -> Const a b -> Const a b #

RealFrac a => RealFrac (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b) #

truncate :: Integral b0 => Const a b -> b0 #

round :: Integral b0 => Const a b -> b0 #

ceiling :: Integral b0 => Const a b -> b0 #

floor :: Integral b0 => Const a b -> b0 #

Show a => Show (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Const

Methods

showsPrec :: Int -> Const a b -> ShowS #

show :: Const a b -> String #

showList :: [Const a b] -> ShowS #

Ix a => Ix (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

range :: (Const a b, Const a b) -> [Const a b] #

index :: (Const a b, Const a b) -> Const a b -> Int #

unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int #

inRange :: (Const a b, Const a b) -> Const a b -> Bool #

rangeSize :: (Const a b, Const a b) -> Int #

unsafeRangeSize :: (Const a b, Const a b) -> Int #

IsString a => IsString (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.String

Methods

fromString :: String -> Const a b #

Generic (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Associated Types

type Rep (Const a b) :: Type -> Type #

Methods

from :: Const a b -> Rep (Const a b) x #

to :: Rep (Const a b) x -> Const a b #

Semigroup a => Semigroup (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(<>) :: Const a b -> Const a b -> Const a b #

sconcat :: NonEmpty (Const a b) -> Const a b #

stimes :: Integral b0 => b0 -> Const a b -> Const a b #

Monoid a => Monoid (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

mempty :: Const a b #

mappend :: Const a b -> Const a b -> Const a b #

mconcat :: [Const a b] -> Const a b #

Storable a => Storable (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

sizeOf :: Const a b -> Int #

alignment :: Const a b -> Int #

peekElemOff :: Ptr (Const a b) -> Int -> IO (Const a b) #

pokeElemOff :: Ptr (Const a b) -> Int -> Const a b -> IO () #

peekByteOff :: Ptr b0 -> Int -> IO (Const a b) #

pokeByteOff :: Ptr b0 -> Int -> Const a b -> IO () #

peek :: Ptr (Const a b) -> IO (Const a b) #

poke :: Ptr (Const a b) -> Const a b -> IO () #

Bits a => Bits (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(.&.) :: Const a b -> Const a b -> Const a b #

(.|.) :: Const a b -> Const a b -> Const a b #

xor :: Const a b -> Const a b -> Const a b #

complement :: Const a b -> Const a b #

shift :: Const a b -> Int -> Const a b #

rotate :: Const a b -> Int -> Const a b #

zeroBits :: Const a b #

bit :: Int -> Const a b #

setBit :: Const a b -> Int -> Const a b #

clearBit :: Const a b -> Int -> Const a b #

complementBit :: Const a b -> Int -> Const a b #

testBit :: Const a b -> Int -> Bool #

bitSizeMaybe :: Const a b -> Maybe Int #

bitSize :: Const a b -> Int #

isSigned :: Const a b -> Bool #

shiftL :: Const a b -> Int -> Const a b #

unsafeShiftL :: Const a b -> Int -> Const a b #

shiftR :: Const a b -> Int -> Const a b #

unsafeShiftR :: Const a b -> Int -> Const a b #

rotateL :: Const a b -> Int -> Const a b #

rotateR :: Const a b -> Int -> Const a b #

popCount :: Const a b -> Int #

FiniteBits a => FiniteBits (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Prim a => Prim (Const a b)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Methods

sizeOf# :: Const a b -> Int# #

alignment# :: Const a b -> Int# #

indexByteArray# :: ByteArray# -> Int# -> Const a b #

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Const a b #) #

writeByteArray# :: MutableByteArray# s -> Int# -> Const a b -> State# s -> State# s #

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Const a b -> State# s -> State# s #

indexOffAddr# :: Addr# -> Int# -> Const a b #

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Const a b #) #

writeOffAddr# :: Addr# -> Int# -> Const a b -> State# s -> State# s #

setOffAddr# :: Addr# -> Int# -> Int# -> Const a b -> State# s -> State# s #

SingKind a => SingKind (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Demote (Const a b) = (r :: Type) Source #

Methods

fromSing :: forall (a0 :: Const a b). Sing a0 -> Demote (Const a b) Source #

toSing :: Demote (Const a b) -> SomeSing (Const a b) Source #

SDecide a => SDecide (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

(%~) :: forall (a0 :: Const a b) (b0 :: Const a b). Sing a0 -> Sing b0 -> Decision (a0 :~: b0) Source #

PEq (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

SEq a => SEq (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

(%==) :: forall (a0 :: Const a b) (b0 :: Const a b). Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: forall (a0 :: Const a b) (b0 :: Const a b). Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

SOrd a => SOrd (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sCompare :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

POrd (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

SNum a => SNum (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

(%+) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (+@#@$) t) t) Source #

(%-) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t) Source #

(%*) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (*@#@$) t) t) Source #

sNegate :: forall (t :: Const a b). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Const a b). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Const a b). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Nat). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

PNum (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type arg + arg :: a Source #

type arg - arg :: a Source #

type arg * arg :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

SBounded a => SBounded (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

PBounded (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

SEnum a => SEnum (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sSucc :: forall (t :: Const a b). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Const a b). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Const a b). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Const a b) (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

PEnum (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

SSemigroup a => SSemigroup (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

(%<>) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Const a b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

PSemigroup (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

SShow a => SShow (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sShowsPrec :: forall (t :: Nat) (t :: Const a b) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Const a b). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Const a b]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

PShow (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

SMonoid a => SMonoid (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t) Source #

sMconcat :: forall (t :: [Const a b]). Sing t -> Sing (Apply MconcatSym0 t) Source #

PMonoid (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Mempty :: a Source #

type Mappend arg arg :: a Source #

type Mconcat arg :: a Source #

SIsString a => SIsString (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.IsString

Methods

sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t) Source #

PIsString (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.IsString

Associated Types

type FromString arg :: a Source #

SDecide a => TestCoercion (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (Coercion a0 b0) #

SDecide a => TestEquality (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

testEquality :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (a0 :~: b0) #

SingI a2 => SingI ('Const a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sing :: Sing ('Const0 a2) Source #

type Traverse (a1 :: a6989586621680798695 ~> f6989586621680798694 b6989586621680798696) (a2 :: Const m a6989586621680798695) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Traverse (a1 :: a6989586621680798695 ~> f6989586621680798694 b6989586621680798696) (a2 :: Const m a6989586621680798695)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Const m a0)
type LiftA2 (a1 :: a6989586621679570828 ~> (b6989586621679570829 ~> c6989586621679570830)) (a2 :: Const m a6989586621679570828) (a3 :: Const m b6989586621679570829) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type LiftA2 (a1 :: a6989586621679570828 ~> (b6989586621679570829 ~> c6989586621679570830)) (a2 :: Const m a6989586621679570828) (a3 :: Const m b6989586621679570829)
type Fmap (a1 :: a6989586621679570820 ~> b6989586621679570821) (a2 :: Const m a6989586621679570820) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Fmap (a1 :: a6989586621679570820 ~> b6989586621679570821) (a2 :: Const m a6989586621679570820)
type FoldMap (a1 :: a6989586621680490505 ~> k2) (a2 :: Const m a6989586621680490505) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type FoldMap (a1 :: a6989586621680490505 ~> k2) (a2 :: Const m a6989586621680490505)
type Foldr (a1 :: a6989586621680490506 ~> (k2 ~> k2)) (a2 :: k2) (a3 :: Const m a6989586621680490506) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldr (a1 :: a6989586621680490506 ~> (k2 ~> k2)) (a2 :: k2) (a3 :: Const m a6989586621680490506)
type Foldr' (arg1 :: a0 ~> (b0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldr' (arg1 :: a0 ~> (b0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0)
type Foldl (arg1 :: b0 ~> (a0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldl (arg1 :: b0 ~> (a0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0)
type Foldl' (arg1 :: b0 ~> (a0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldl' (arg1 :: b0 ~> (a0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0)
type Rep1 (Const a :: k -> Type) 
Instance details

Defined in Data.Functor.Const

type Rep1 (Const a :: k -> Type) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Pure (a :: k1) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Pure (a :: k1)
type Foldr1 (arg1 :: a0 ~> (a0 ~> a0)) (arg2 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldr1 (arg1 :: a0 ~> (a0 ~> a0)) (arg2 :: Const m a0)
type Foldl1 (arg1 :: a0 ~> (a0 ~> a0)) (arg2 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldl1 (arg1 :: a0 ~> (a0 ~> a0)) (arg2 :: Const m a0)
type Elem (arg1 :: a0) (arg2 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Elem (arg1 :: a0) (arg2 :: Const m a0)
type (a1 :: k1) <$ (a2 :: Const m b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a1 :: k1) <$ (a2 :: Const m b6989586621679570823)
type Apply (ConstSym0 :: TyFun a (Const a b6989586621679097556) -> Type) (t6989586621680758421 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (ConstSym0 :: TyFun a (Const a b6989586621679097556) -> Type) (t6989586621680758421 :: a) = 'Const t6989586621680758421 :: Const a b6989586621679097556
type Fold (arg0 :: Const m m0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Fold (arg0 :: Const m m0)
type ToList (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type ToList (arg0 :: Const m a0)
type Null (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Null (arg0 :: Const m a0)
type Length (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Length (arg0 :: Const m a0)
type Maximum (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Maximum (arg0 :: Const m a0)
type Minimum (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Minimum (arg0 :: Const m a0)
type Sum (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Sum (arg0 :: Const m a0)
type Product (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Product (arg0 :: Const m a0)
type SequenceA (arg0 :: Const m (f0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type SequenceA (arg0 :: Const m (f0 a0))
type Sequence (arg0 :: Const m (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: Const m (m0 a0))
type (a1 :: Const m (a6989586621679570826 ~> b6989586621679570827)) <*> (a2 :: Const m a6989586621679570826) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a1 :: Const m (a6989586621679570826 ~> b6989586621679570827)) <*> (a2 :: Const m a6989586621679570826)
type (arg1 :: Const m a0) *> (arg2 :: Const m b0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const m a0) *> (arg2 :: Const m b0)
type (arg1 :: Const m a0) <* (arg2 :: Const m b0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const m a0) <* (arg2 :: Const m b0)
type Rep (Const a b) 
Instance details

Defined in Data.Functor.Const

type Rep (Const a b) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Demote (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Demote (Const a b) = Const (Demote a) b
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Sing = SConst :: Const a b -> Type
type MinBound Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type MaxBound Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Mempty Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Mempty
type Negate (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Negate (a2 :: Const a1 b)
type Abs (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Abs (a2 :: Const a1 b)
type Signum (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Signum (a2 :: Const a1 b)
type FromInteger a2 Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type FromInteger a2
type Succ (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Succ (a2 :: Const a1 b)
type Pred (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Pred (a2 :: Const a1 b)
type ToEnum a2 Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type ToEnum a2
type FromEnum (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type FromEnum (a2 :: Const a1 b)
type Sconcat (arg0 :: NonEmpty (Const a b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Sconcat (arg0 :: NonEmpty (Const a b))
type Show_ (arg0 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Show_ (arg0 :: Const a b)
type Mconcat (arg0 :: [Const a b]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Mconcat (arg0 :: [Const a b])
type FromString a2 Source # 
Instance details

Defined in Data.Singletons.Prelude.IsString

type FromString a2
type (a2 :: Const a1 b1) == (b2 :: Const a1 b1) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a2 :: Const a1 b1) == (b2 :: Const a1 b1)
type (x :: Const a b) /= (y :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (x :: Const a b) /= (y :: Const a b) = Not (x == y)
type Compare (a2 :: Const a1 b) (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Compare (a2 :: Const a1 b) (a3 :: Const a1 b)
type (arg1 :: Const a b) < (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const a b) < (arg2 :: Const a b)
type (arg1 :: Const a b) <= (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const a b) <= (arg2 :: Const a b)
type (arg1 :: Const a b) > (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const a b) > (arg2 :: Const a b)
type (arg1 :: Const a b) >= (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const a b) >= (arg2 :: Const a b)
type Max (arg1 :: Const a b) (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Max (arg1 :: Const a b) (arg2 :: Const a b)
type Min (arg1 :: Const a b) (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Min (arg1 :: Const a b) (arg2 :: Const a b)
type (a2 :: Const a1 b) + (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a2 :: Const a1 b) + (a3 :: Const a1 b)
type (a2 :: Const a1 b) - (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a2 :: Const a1 b) - (a3 :: Const a1 b)
type (a2 :: Const a1 b) * (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a2 :: Const a1 b) * (a3 :: Const a1 b)
type EnumFromTo (a2 :: Const a1 b) (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type EnumFromTo (a2 :: Const a1 b) (a3 :: Const a1 b)
type (a2 :: Const a1 b) <> (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a2 :: Const a1 b) <> (a3 :: Const a1 b)
type ShowList (arg1 :: [Const a b]) arg2 Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type ShowList (arg1 :: [Const a b]) arg2
type Mappend (arg1 :: Const a b) (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Mappend (arg1 :: Const a b) (arg2 :: Const a b)
type EnumFromThenTo (a2 :: Const a1 b) (a3 :: Const a1 b) (a4 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type EnumFromThenTo (a2 :: Const a1 b) (a3 :: Const a1 b) (a4 :: Const a1 b)
type ShowsPrec a2 (a3 :: Const a1 b) a4 Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type ShowsPrec a2 (a3 :: Const a1 b) a4
type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (x6989586621680758691 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (x6989586621680758691 :: Const a b) = GetConst x6989586621680758691

type family GetConst (x :: Const a b) :: a where ... Source #

Equations

GetConst ('Const x) = x 

type family (a :: (~>) a b) <$> (a :: f a) :: f b where ... infixl 4 Source #

Equations

a_6989586621679741073 <$> a_6989586621679741075 = Apply (Apply FmapSym0 a_6989586621679741073) a_6989586621679741075 

(%<$>) :: forall a b f (t :: (~>) a b) (t :: f a). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$>@#@$) t) t :: f b) infixl 4 Source #

type family (arg :: a) <$ (arg :: f b) :: f a infixl 4 Source #

Instances

Instances details
type (a1 :: k1) <$ (a2 :: Maybe b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type (a1 :: k1) <$ (a2 :: Maybe b6989586621679570823)
type (a1 :: k1) <$ (a2 :: NonEmpty b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type (a1 :: k1) <$ (a2 :: NonEmpty b6989586621679570823)
type (a1 :: k1) <$ (a2 :: [b6989586621679570823]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type (a1 :: k1) <$ (a2 :: [b6989586621679570823])
type (a1 :: k1) <$ (a2 :: Down b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type (a1 :: k1) <$ (a2 :: Down b6989586621679570823)
type (a1 :: k1) <$ (a2 :: Dual b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type (a1 :: k1) <$ (a2 :: Dual b6989586621679570823)
type (a1 :: k1) <$ (a2 :: Sum b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type (a1 :: k1) <$ (a2 :: Sum b6989586621679570823)
type (a1 :: k1) <$ (a2 :: Product b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type (a1 :: k1) <$ (a2 :: Product b6989586621679570823)
type (a1 :: k1) <$ (a2 :: First b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

type (a1 :: k1) <$ (a2 :: First b6989586621679570823)
type (a1 :: k1) <$ (a2 :: Last b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

type (a1 :: k1) <$ (a2 :: Last b6989586621679570823)
type (a1 :: k1) <$ (a2 :: Identity b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

type (a1 :: k1) <$ (a2 :: Identity b6989586621679570823)
type (a1 :: k1) <$ (a2 :: Min b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a1 :: k1) <$ (a2 :: Min b6989586621679570823)
type (a1 :: k1) <$ (a2 :: Max b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a1 :: k1) <$ (a2 :: Max b6989586621679570823)
type (a1 :: k1) <$ (a2 :: First b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a1 :: k1) <$ (a2 :: First b6989586621679570823)
type (a1 :: k1) <$ (a2 :: Last b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a1 :: k1) <$ (a2 :: Last b6989586621679570823)
type (a1 :: k1) <$ (a2 :: Option b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a1 :: k1) <$ (a2 :: Option b6989586621679570823)
type (a2 :: k1) <$ (a3 :: Either a1 b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type (a2 :: k1) <$ (a3 :: Either a1 b6989586621679570823)
type (a2 :: k1) <$ (a3 :: (a1, b6989586621679570823)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type (a2 :: k1) <$ (a3 :: (a1, b6989586621679570823))
type (a2 :: k1) <$ (a3 :: Arg a1 b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a2 :: k1) <$ (a3 :: Arg a1 b6989586621679570823)
type (a1 :: k1) <$ (a2 :: Const m b6989586621679570823) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a1 :: k1) <$ (a2 :: Const m b6989586621679570823)

(%<$) :: forall a b (t :: a) (t :: f b). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a) infixl 4 Source #

type family (a :: f a) <**> (a :: f ((~>) a b)) :: f b where ... infixl 4 Source #

Equations

a_6989586621679571191 <**> a_6989586621679571193 = Apply (Apply (Apply LiftA2Sym0 (Apply (Apply Lambda_6989586621679571201Sym0 a_6989586621679571191) a_6989586621679571193)) a_6989586621679571191) a_6989586621679571193 

(%<**>) :: forall f a b (t :: f a) (t :: f ((~>) a b)). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply (<**>@#@$) t) t :: f b) infixl 4 Source #

type family LiftA (a :: (~>) a b) (a :: f a) :: f b where ... Source #

Equations

LiftA f a = Apply (Apply (<*>@#@$) (Apply PureSym0 f)) a 

sLiftA :: forall a b f (t :: (~>) a b) (t :: f a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply LiftASym0 t) t :: f b) Source #

type family LiftA3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: f a) (a :: f b) (a :: f c) :: f d where ... Source #

Equations

LiftA3 f a b c = Apply (Apply (<*>@#@$) (Apply (Apply (Apply LiftA2Sym0 f) a) b)) c 

sLiftA3 :: forall a b c d f (t :: (~>) a ((~>) b ((~>) c d))) (t :: f a) (t :: f b) (t :: f c). SApplicative f => Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply LiftA3Sym0 t) t) t) t :: f d) Source #

type family Optional (a :: f a) :: f (Maybe a) where ... Source #

sOptional :: forall f a (t :: f a). SAlternative f => Sing t -> Sing (Apply OptionalSym0 t :: f (Maybe a)) Source #

Defunctionalization symbols

data PureSym0 :: forall a6989586621679570825 f6989586621679570824. (~>) a6989586621679570825 (f6989586621679570824 a6989586621679570825) Source #

Instances

Instances details
SApplicative f => SingI (PureSym0 :: TyFun a (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (PureSym0 :: TyFun a6989586621679570825 (f6989586621679570824 a6989586621679570825) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (PureSym0 :: TyFun a (f6989586621679570824 a) -> Type) (arg6989586621679571235 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (PureSym0 :: TyFun a (f6989586621679570824 a) -> Type) (arg6989586621679571235 :: a) = Pure arg6989586621679571235 :: f6989586621679570824 a

type PureSym1 (arg6989586621679571235 :: a6989586621679570825) = Pure arg6989586621679571235 Source #

data (<*>@#@$) :: forall f6989586621679570824 a6989586621679570826 b6989586621679570827. (~>) (f6989586621679570824 ((~>) a6989586621679570826 b6989586621679570827)) ((~>) (f6989586621679570824 a6989586621679570826) (f6989586621679570824 b6989586621679570827)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((<*>@#@$) :: TyFun (f6989586621679570824 (a6989586621679570826 ~> b6989586621679570827)) (f6989586621679570824 a6989586621679570826 ~> f6989586621679570824 b6989586621679570827) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*>@#@$) :: TyFun (f6989586621679570824 (a6989586621679570826 ~> b6989586621679570827)) (f6989586621679570824 a6989586621679570826 ~> f6989586621679570824 b6989586621679570827) -> Type) (arg6989586621679571237 :: f6989586621679570824 (a6989586621679570826 ~> b6989586621679570827)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*>@#@$) :: TyFun (f6989586621679570824 (a6989586621679570826 ~> b6989586621679570827)) (f6989586621679570824 a6989586621679570826 ~> f6989586621679570824 b6989586621679570827) -> Type) (arg6989586621679571237 :: f6989586621679570824 (a6989586621679570826 ~> b6989586621679570827)) = (<*>@#@$$) arg6989586621679571237

data (<*>@#@$$) (arg6989586621679571237 :: f6989586621679570824 ((~>) a6989586621679570826 b6989586621679570827)) :: (~>) (f6989586621679570824 a6989586621679570826) (f6989586621679570824 b6989586621679570827) infixl 4 Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI ((<*>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing ((<*>@#@$$) d) Source #

SuppressUnusedWarnings ((<*>@#@$$) arg6989586621679571237 :: TyFun (f6989586621679570824 a6989586621679570826) (f6989586621679570824 b6989586621679570827) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*>@#@$$) arg6989586621679571237 :: TyFun (f a) (f b) -> Type) (arg6989586621679571238 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*>@#@$$) arg6989586621679571237 :: TyFun (f a) (f b) -> Type) (arg6989586621679571238 :: f a) = arg6989586621679571237 <*> arg6989586621679571238

type (<*>@#@$$$) (arg6989586621679571237 :: f6989586621679570824 ((~>) a6989586621679570826 b6989586621679570827)) (arg6989586621679571238 :: f6989586621679570824 a6989586621679570826) = (<*>) arg6989586621679571237 arg6989586621679571238 Source #

data (*>@#@$) :: forall f6989586621679570824 a6989586621679570831 b6989586621679570832. (~>) (f6989586621679570824 a6989586621679570831) ((~>) (f6989586621679570824 b6989586621679570832) (f6989586621679570824 b6989586621679570832)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((*>@#@$) :: TyFun (f6989586621679570824 a6989586621679570831) (f6989586621679570824 b6989586621679570832 ~> f6989586621679570824 b6989586621679570832) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((*>@#@$) :: TyFun (f6989586621679570824 a6989586621679570831) (f6989586621679570824 b6989586621679570832 ~> f6989586621679570824 b6989586621679570832) -> Type) (arg6989586621679571247 :: f6989586621679570824 a6989586621679570831) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((*>@#@$) :: TyFun (f6989586621679570824 a6989586621679570831) (f6989586621679570824 b6989586621679570832 ~> f6989586621679570824 b6989586621679570832) -> Type) (arg6989586621679571247 :: f6989586621679570824 a6989586621679570831) = arg6989586621679571247 *>@#@$$ b6989586621679570832 :: TyFun (f6989586621679570824 b6989586621679570832) (f6989586621679570824 b6989586621679570832) -> Type

data (*>@#@$$) (arg6989586621679571247 :: f6989586621679570824 a6989586621679570831) :: forall b6989586621679570832. (~>) (f6989586621679570824 b6989586621679570832) (f6989586621679570824 b6989586621679570832) infixl 4 Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (d *>@#@$$ b :: TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (d *>@#@$$ b) Source #

SuppressUnusedWarnings (arg6989586621679571247 *>@#@$$ b6989586621679570832 :: TyFun (f6989586621679570824 b6989586621679570832) (f6989586621679570824 b6989586621679570832) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679571247 *>@#@$$ b :: TyFun (f b) (f b) -> Type) (arg6989586621679571248 :: f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679571247 *>@#@$$ b :: TyFun (f b) (f b) -> Type) (arg6989586621679571248 :: f b) = arg6989586621679571247 *> arg6989586621679571248

type (*>@#@$$$) (arg6989586621679571247 :: f6989586621679570824 a6989586621679570831) (arg6989586621679571248 :: f6989586621679570824 b6989586621679570832) = (*>) arg6989586621679571247 arg6989586621679571248 Source #

data (<*@#@$) :: forall f6989586621679570824 a6989586621679570833 b6989586621679570834. (~>) (f6989586621679570824 a6989586621679570833) ((~>) (f6989586621679570824 b6989586621679570834) (f6989586621679570824 a6989586621679570833)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((<*@#@$) :: TyFun (f6989586621679570824 a6989586621679570833) (f6989586621679570824 b6989586621679570834 ~> f6989586621679570824 a6989586621679570833) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*@#@$) :: TyFun (f6989586621679570824 a6989586621679570833) (f6989586621679570824 b6989586621679570834 ~> f6989586621679570824 a6989586621679570833) -> Type) (arg6989586621679571251 :: f6989586621679570824 a6989586621679570833) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*@#@$) :: TyFun (f6989586621679570824 a6989586621679570833) (f6989586621679570824 b6989586621679570834 ~> f6989586621679570824 a6989586621679570833) -> Type) (arg6989586621679571251 :: f6989586621679570824 a6989586621679570833) = arg6989586621679571251 <*@#@$$ b6989586621679570834 :: TyFun (f6989586621679570824 b6989586621679570834) (f6989586621679570824 a6989586621679570833) -> Type

data (<*@#@$$) (arg6989586621679571251 :: f6989586621679570824 a6989586621679570833) :: forall b6989586621679570834. (~>) (f6989586621679570824 b6989586621679570834) (f6989586621679570824 a6989586621679570833) infixl 4 Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (d <*@#@$$ b :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (d <*@#@$$ b) Source #

SuppressUnusedWarnings (arg6989586621679571251 <*@#@$$ b6989586621679570834 :: TyFun (f6989586621679570824 b6989586621679570834) (f6989586621679570824 a6989586621679570833) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679571251 <*@#@$$ b :: TyFun (f b) (f a) -> Type) (arg6989586621679571252 :: f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679571251 <*@#@$$ b :: TyFun (f b) (f a) -> Type) (arg6989586621679571252 :: f b) = arg6989586621679571251 <* arg6989586621679571252

type (<*@#@$$$) (arg6989586621679571251 :: f6989586621679570824 a6989586621679570833) (arg6989586621679571252 :: f6989586621679570824 b6989586621679570834) = (<*) arg6989586621679571251 arg6989586621679571252 Source #

data (<|>@#@$) :: forall f6989586621679570899 a6989586621679570901. (~>) (f6989586621679570899 a6989586621679570901) ((~>) (f6989586621679570899 a6989586621679570901) (f6989586621679570899 a6989586621679570901)) infixl 3 Source #

Instances

Instances details
SAlternative f => SingI ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((<|>@#@$) :: TyFun (f6989586621679570899 a6989586621679570901) (f6989586621679570899 a6989586621679570901 ~> f6989586621679570899 a6989586621679570901) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<|>@#@$) :: TyFun (f6989586621679570899 a6989586621679570901) (f6989586621679570899 a6989586621679570901 ~> f6989586621679570899 a6989586621679570901) -> Type) (arg6989586621679571359 :: f6989586621679570899 a6989586621679570901) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<|>@#@$) :: TyFun (f6989586621679570899 a6989586621679570901) (f6989586621679570899 a6989586621679570901 ~> f6989586621679570899 a6989586621679570901) -> Type) (arg6989586621679571359 :: f6989586621679570899 a6989586621679570901) = (<|>@#@$$) arg6989586621679571359

data (<|>@#@$$) (arg6989586621679571359 :: f6989586621679570899 a6989586621679570901) :: (~>) (f6989586621679570899 a6989586621679570901) (f6989586621679570899 a6989586621679570901) infixl 3 Source #

Instances

Instances details
(SAlternative f, SingI d) => SingI ((<|>@#@$$) d :: TyFun (f a) (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing ((<|>@#@$$) d) Source #

SuppressUnusedWarnings ((<|>@#@$$) arg6989586621679571359 :: TyFun (f6989586621679570899 a6989586621679570901) (f6989586621679570899 a6989586621679570901) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<|>@#@$$) arg6989586621679571359 :: TyFun (f a) (f a) -> Type) (arg6989586621679571360 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<|>@#@$$) arg6989586621679571359 :: TyFun (f a) (f a) -> Type) (arg6989586621679571360 :: f a) = arg6989586621679571359 <|> arg6989586621679571360

type (<|>@#@$$$) (arg6989586621679571359 :: f6989586621679570899 a6989586621679570901) (arg6989586621679571360 :: f6989586621679570899 a6989586621679570901) = (<|>) arg6989586621679571359 arg6989586621679571360 Source #

data ConstSym0 :: forall (a6989586621679097555 :: Type) k6989586621679097554 (b6989586621679097556 :: k6989586621679097554). (~>) a6989586621679097555 (Const (a6989586621679097555 :: Type) (b6989586621679097556 :: k6989586621679097554)) Source #

Instances

Instances details
SingI (ConstSym0 :: TyFun a6989586621679097555 (Const a6989586621679097555 b6989586621679097556) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

SuppressUnusedWarnings (ConstSym0 :: TyFun a6989586621679097555 (Const a6989586621679097555 b6989586621679097556) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (ConstSym0 :: TyFun a (Const a b6989586621679097556) -> Type) (t6989586621680758421 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (ConstSym0 :: TyFun a (Const a b6989586621679097556) -> Type) (t6989586621680758421 :: a) = 'Const t6989586621680758421 :: Const a b6989586621679097556

type ConstSym1 (t6989586621680758421 :: a6989586621679097555) = 'Const t6989586621680758421 Source #

data GetConstSym0 :: forall a6989586621680758689 b6989586621680758690. (~>) (Const a6989586621680758689 b6989586621680758690) a6989586621680758689 Source #

Instances

Instances details
SuppressUnusedWarnings (GetConstSym0 :: TyFun (Const a6989586621680758689 b6989586621680758690) a6989586621680758689 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (x6989586621680758691 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (x6989586621680758691 :: Const a b) = GetConst x6989586621680758691

type GetConstSym1 (x6989586621680758691 :: Const a6989586621680758689 b6989586621680758690) = GetConst x6989586621680758691 Source #

data (<$>@#@$) :: forall a6989586621679740996 b6989586621679740997 f6989586621679740995. (~>) ((~>) a6989586621679740996 b6989586621679740997) ((~>) (f6989586621679740995 a6989586621679740996) (f6989586621679740995 b6989586621679740997)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

SuppressUnusedWarnings ((<$>@#@$) :: TyFun (a6989586621679740996 ~> b6989586621679740997) (f6989586621679740995 a6989586621679740996 ~> f6989586621679740995 b6989586621679740997) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type Apply ((<$>@#@$) :: TyFun (a6989586621679740996 ~> b6989586621679740997) (f6989586621679740995 a6989586621679740996 ~> f6989586621679740995 b6989586621679740997) -> Type) (a6989586621679741077 :: a6989586621679740996 ~> b6989586621679740997) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type Apply ((<$>@#@$) :: TyFun (a6989586621679740996 ~> b6989586621679740997) (f6989586621679740995 a6989586621679740996 ~> f6989586621679740995 b6989586621679740997) -> Type) (a6989586621679741077 :: a6989586621679740996 ~> b6989586621679740997) = a6989586621679741077 <$>@#@$$ f6989586621679740995 :: TyFun (f6989586621679740995 a6989586621679740996) (f6989586621679740995 b6989586621679740997) -> Type

data (<$>@#@$$) (a6989586621679741077 :: (~>) a6989586621679740996 b6989586621679740997) :: forall f6989586621679740995. (~>) (f6989586621679740995 a6989586621679740996) (f6989586621679740995 b6989586621679740997) infixl 4 Source #

Instances

Instances details
(SFunctor f, SingI d) => SingI (d <$>@#@$$ f :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

Methods

sing :: Sing (d <$>@#@$$ f) Source #

SuppressUnusedWarnings (a6989586621679741077 <$>@#@$$ f6989586621679740995 :: TyFun (f6989586621679740995 a6989586621679740996) (f6989586621679740995 b6989586621679740997) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type Apply (a6989586621679741077 <$>@#@$$ f :: TyFun (f a) (f b) -> Type) (a6989586621679741078 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type Apply (a6989586621679741077 <$>@#@$$ f :: TyFun (f a) (f b) -> Type) (a6989586621679741078 :: f a) = a6989586621679741077 <$> a6989586621679741078

type (<$>@#@$$$) (a6989586621679741077 :: (~>) a6989586621679740996 b6989586621679740997) (a6989586621679741078 :: f6989586621679740995 a6989586621679740996) = (<$>) a6989586621679741077 a6989586621679741078 Source #

data (<$@#@$) :: forall a6989586621679570822 f6989586621679570819 b6989586621679570823. (~>) a6989586621679570822 ((~>) (f6989586621679570819 b6989586621679570823) (f6989586621679570819 a6989586621679570822)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((<$@#@$) :: TyFun a6989586621679570822 (f6989586621679570819 b6989586621679570823 ~> f6989586621679570819 a6989586621679570822) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<$@#@$) :: TyFun a6989586621679570822 (f6989586621679570819 b6989586621679570823 ~> f6989586621679570819 a6989586621679570822) -> Type) (arg6989586621679571215 :: a6989586621679570822) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<$@#@$) :: TyFun a6989586621679570822 (f6989586621679570819 b6989586621679570823 ~> f6989586621679570819 a6989586621679570822) -> Type) (arg6989586621679571215 :: a6989586621679570822) = (arg6989586621679571215 <$@#@$$ f6989586621679570819) b6989586621679570823 :: TyFun (f6989586621679570819 b6989586621679570823) (f6989586621679570819 a6989586621679570822) -> Type

data (<$@#@$$) (arg6989586621679571215 :: a6989586621679570822) :: forall f6989586621679570819 b6989586621679570823. (~>) (f6989586621679570819 b6989586621679570823) (f6989586621679570819 a6989586621679570822) infixl 4 Source #

Instances

Instances details
(SFunctor f, SingI d) => SingI ((d <$@#@$$ f) b :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing ((d <$@#@$$ f) b) Source #

SuppressUnusedWarnings ((arg6989586621679571215 <$@#@$$ f6989586621679570819) b6989586621679570823 :: TyFun (f6989586621679570819 b6989586621679570823) (f6989586621679570819 a6989586621679570822) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((arg6989586621679571215 <$@#@$$ f) b :: TyFun (f b) (f a) -> Type) (arg6989586621679571216 :: f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((arg6989586621679571215 <$@#@$$ f) b :: TyFun (f b) (f a) -> Type) (arg6989586621679571216 :: f b) = arg6989586621679571215 <$ arg6989586621679571216

type (<$@#@$$$) (arg6989586621679571215 :: a6989586621679570822) (arg6989586621679571216 :: f6989586621679570819 b6989586621679570823) = (<$) arg6989586621679571215 arg6989586621679571216 Source #

data (<**>@#@$) :: forall f6989586621679570784 a6989586621679570785 b6989586621679570786. (~>) (f6989586621679570784 a6989586621679570785) ((~>) (f6989586621679570784 ((~>) a6989586621679570785 b6989586621679570786)) (f6989586621679570784 b6989586621679570786)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((<**>@#@$) :: TyFun (f6989586621679570784 a6989586621679570785) (f6989586621679570784 (a6989586621679570785 ~> b6989586621679570786) ~> f6989586621679570784 b6989586621679570786) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<**>@#@$) :: TyFun (f6989586621679570784 a6989586621679570785) (f6989586621679570784 (a6989586621679570785 ~> b6989586621679570786) ~> f6989586621679570784 b6989586621679570786) -> Type) (a6989586621679571195 :: f6989586621679570784 a6989586621679570785) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<**>@#@$) :: TyFun (f6989586621679570784 a6989586621679570785) (f6989586621679570784 (a6989586621679570785 ~> b6989586621679570786) ~> f6989586621679570784 b6989586621679570786) -> Type) (a6989586621679571195 :: f6989586621679570784 a6989586621679570785) = a6989586621679571195 <**>@#@$$ b6989586621679570786 :: TyFun (f6989586621679570784 (a6989586621679570785 ~> b6989586621679570786)) (f6989586621679570784 b6989586621679570786) -> Type

data (<**>@#@$$) (a6989586621679571195 :: f6989586621679570784 a6989586621679570785) :: forall b6989586621679570786. (~>) (f6989586621679570784 ((~>) a6989586621679570785 b6989586621679570786)) (f6989586621679570784 b6989586621679570786) infixl 4 Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (d <**>@#@$$ b :: TyFun (f (a ~> b)) (f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (d <**>@#@$$ b) Source #

SuppressUnusedWarnings (a6989586621679571195 <**>@#@$$ b6989586621679570786 :: TyFun (f6989586621679570784 (a6989586621679570785 ~> b6989586621679570786)) (f6989586621679570784 b6989586621679570786) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (a6989586621679571195 <**>@#@$$ b :: TyFun (f (a ~> b)) (f b) -> Type) (a6989586621679571196 :: f (a ~> b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (a6989586621679571195 <**>@#@$$ b :: TyFun (f (a ~> b)) (f b) -> Type) (a6989586621679571196 :: f (a ~> b)) = a6989586621679571195 <**> a6989586621679571196

type (<**>@#@$$$) (a6989586621679571195 :: f6989586621679570784 a6989586621679570785) (a6989586621679571196 :: f6989586621679570784 ((~>) a6989586621679570785 b6989586621679570786)) = (<**>) a6989586621679571195 a6989586621679571196 Source #

data LiftASym0 :: forall a6989586621679570782 b6989586621679570783 f6989586621679570781. (~>) ((~>) a6989586621679570782 b6989586621679570783) ((~>) (f6989586621679570781 a6989586621679570782) (f6989586621679570781 b6989586621679570783)) Source #

Instances

Instances details
SApplicative f => SingI (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (LiftASym0 :: TyFun (a6989586621679570782 ~> b6989586621679570783) (f6989586621679570781 a6989586621679570782 ~> f6989586621679570781 b6989586621679570783) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftASym0 :: TyFun (a6989586621679570782 ~> b6989586621679570783) (f6989586621679570781 a6989586621679570782 ~> f6989586621679570781 b6989586621679570783) -> Type) (a6989586621679571185 :: a6989586621679570782 ~> b6989586621679570783) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftASym0 :: TyFun (a6989586621679570782 ~> b6989586621679570783) (f6989586621679570781 a6989586621679570782 ~> f6989586621679570781 b6989586621679570783) -> Type) (a6989586621679571185 :: a6989586621679570782 ~> b6989586621679570783) = LiftASym1 a6989586621679571185 f6989586621679570781 :: TyFun (f6989586621679570781 a6989586621679570782) (f6989586621679570781 b6989586621679570783) -> Type

data LiftASym1 (a6989586621679571185 :: (~>) a6989586621679570782 b6989586621679570783) :: forall f6989586621679570781. (~>) (f6989586621679570781 a6989586621679570782) (f6989586621679570781 b6989586621679570783) Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (LiftASym1 d f :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftASym1 d f) Source #

SuppressUnusedWarnings (LiftASym1 a6989586621679571185 f6989586621679570781 :: TyFun (f6989586621679570781 a6989586621679570782) (f6989586621679570781 b6989586621679570783) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftASym1 a6989586621679571185 f :: TyFun (f a) (f b) -> Type) (a6989586621679571186 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftASym1 a6989586621679571185 f :: TyFun (f a) (f b) -> Type) (a6989586621679571186 :: f a) = LiftA a6989586621679571185 a6989586621679571186

type LiftASym2 (a6989586621679571185 :: (~>) a6989586621679570782 b6989586621679570783) (a6989586621679571186 :: f6989586621679570781 a6989586621679570782) = LiftA a6989586621679571185 a6989586621679571186 Source #

data LiftA2Sym0 :: forall a6989586621679570828 b6989586621679570829 c6989586621679570830 f6989586621679570824. (~>) ((~>) a6989586621679570828 ((~>) b6989586621679570829 c6989586621679570830)) ((~>) (f6989586621679570824 a6989586621679570828) ((~>) (f6989586621679570824 b6989586621679570829) (f6989586621679570824 c6989586621679570830))) Source #

Instances

Instances details
SApplicative f => SingI (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (LiftA2Sym0 :: TyFun (a6989586621679570828 ~> (b6989586621679570829 ~> c6989586621679570830)) (f6989586621679570824 a6989586621679570828 ~> (f6989586621679570824 b6989586621679570829 ~> f6989586621679570824 c6989586621679570830)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym0 :: TyFun (a6989586621679570828 ~> (b6989586621679570829 ~> c6989586621679570830)) (f6989586621679570824 a6989586621679570828 ~> (f6989586621679570824 b6989586621679570829 ~> f6989586621679570824 c6989586621679570830)) -> Type) (arg6989586621679571241 :: a6989586621679570828 ~> (b6989586621679570829 ~> c6989586621679570830)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym0 :: TyFun (a6989586621679570828 ~> (b6989586621679570829 ~> c6989586621679570830)) (f6989586621679570824 a6989586621679570828 ~> (f6989586621679570824 b6989586621679570829 ~> f6989586621679570824 c6989586621679570830)) -> Type) (arg6989586621679571241 :: a6989586621679570828 ~> (b6989586621679570829 ~> c6989586621679570830)) = LiftA2Sym1 arg6989586621679571241 f6989586621679570824 :: TyFun (f6989586621679570824 a6989586621679570828) (f6989586621679570824 b6989586621679570829 ~> f6989586621679570824 c6989586621679570830) -> Type

data LiftA2Sym1 (arg6989586621679571241 :: (~>) a6989586621679570828 ((~>) b6989586621679570829 c6989586621679570830)) :: forall f6989586621679570824. (~>) (f6989586621679570824 a6989586621679570828) ((~>) (f6989586621679570824 b6989586621679570829) (f6989586621679570824 c6989586621679570830)) Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (LiftA2Sym1 d f :: TyFun (f a) (f b ~> f c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftA2Sym1 d f) Source #

SuppressUnusedWarnings (LiftA2Sym1 arg6989586621679571241 f6989586621679570824 :: TyFun (f6989586621679570824 a6989586621679570828) (f6989586621679570824 b6989586621679570829 ~> f6989586621679570824 c6989586621679570830) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym1 arg6989586621679571241 f6989586621679570824 :: TyFun (f6989586621679570824 a6989586621679570828) (f6989586621679570824 b6989586621679570829 ~> f6989586621679570824 c6989586621679570830) -> Type) (arg6989586621679571242 :: f6989586621679570824 a6989586621679570828) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym1 arg6989586621679571241 f6989586621679570824 :: TyFun (f6989586621679570824 a6989586621679570828) (f6989586621679570824 b6989586621679570829 ~> f6989586621679570824 c6989586621679570830) -> Type) (arg6989586621679571242 :: f6989586621679570824 a6989586621679570828) = LiftA2Sym2 arg6989586621679571241 arg6989586621679571242

data LiftA2Sym2 (arg6989586621679571241 :: (~>) a6989586621679570828 ((~>) b6989586621679570829 c6989586621679570830)) (arg6989586621679571242 :: f6989586621679570824 a6989586621679570828) :: (~>) (f6989586621679570824 b6989586621679570829) (f6989586621679570824 c6989586621679570830) Source #

Instances

Instances details
(SApplicative f, SingI d1, SingI d2) => SingI (LiftA2Sym2 d1 d2 :: TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftA2Sym2 d1 d2) Source #

SuppressUnusedWarnings (LiftA2Sym2 arg6989586621679571242 arg6989586621679571241 :: TyFun (f6989586621679570824 b6989586621679570829) (f6989586621679570824 c6989586621679570830) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym2 arg6989586621679571242 arg6989586621679571241 :: TyFun (f b) (f c) -> Type) (arg6989586621679571243 :: f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym2 arg6989586621679571242 arg6989586621679571241 :: TyFun (f b) (f c) -> Type) (arg6989586621679571243 :: f b) = LiftA2 arg6989586621679571242 arg6989586621679571241 arg6989586621679571243

type LiftA2Sym3 (arg6989586621679571241 :: (~>) a6989586621679570828 ((~>) b6989586621679570829 c6989586621679570830)) (arg6989586621679571242 :: f6989586621679570824 a6989586621679570828) (arg6989586621679571243 :: f6989586621679570824 b6989586621679570829) = LiftA2 arg6989586621679571241 arg6989586621679571242 arg6989586621679571243 Source #

data LiftA3Sym0 :: forall a6989586621679570777 b6989586621679570778 c6989586621679570779 d6989586621679570780 f6989586621679570776. (~>) ((~>) a6989586621679570777 ((~>) b6989586621679570778 ((~>) c6989586621679570779 d6989586621679570780))) ((~>) (f6989586621679570776 a6989586621679570777) ((~>) (f6989586621679570776 b6989586621679570778) ((~>) (f6989586621679570776 c6989586621679570779) (f6989586621679570776 d6989586621679570780)))) Source #

Instances

Instances details
SApplicative f => SingI (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (LiftA3Sym0 :: TyFun (a6989586621679570777 ~> (b6989586621679570778 ~> (c6989586621679570779 ~> d6989586621679570780))) (f6989586621679570776 a6989586621679570777 ~> (f6989586621679570776 b6989586621679570778 ~> (f6989586621679570776 c6989586621679570779 ~> f6989586621679570776 d6989586621679570780))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym0 :: TyFun (a6989586621679570777 ~> (b6989586621679570778 ~> (c6989586621679570779 ~> d6989586621679570780))) (f6989586621679570776 a6989586621679570777 ~> (f6989586621679570776 b6989586621679570778 ~> (f6989586621679570776 c6989586621679570779 ~> f6989586621679570776 d6989586621679570780))) -> Type) (a6989586621679571173 :: a6989586621679570777 ~> (b6989586621679570778 ~> (c6989586621679570779 ~> d6989586621679570780))) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym0 :: TyFun (a6989586621679570777 ~> (b6989586621679570778 ~> (c6989586621679570779 ~> d6989586621679570780))) (f6989586621679570776 a6989586621679570777 ~> (f6989586621679570776 b6989586621679570778 ~> (f6989586621679570776 c6989586621679570779 ~> f6989586621679570776 d6989586621679570780))) -> Type) (a6989586621679571173 :: a6989586621679570777 ~> (b6989586621679570778 ~> (c6989586621679570779 ~> d6989586621679570780))) = LiftA3Sym1 a6989586621679571173 f6989586621679570776 :: TyFun (f6989586621679570776 a6989586621679570777) (f6989586621679570776 b6989586621679570778 ~> (f6989586621679570776 c6989586621679570779 ~> f6989586621679570776 d6989586621679570780)) -> Type

data LiftA3Sym1 (a6989586621679571173 :: (~>) a6989586621679570777 ((~>) b6989586621679570778 ((~>) c6989586621679570779 d6989586621679570780))) :: forall f6989586621679570776. (~>) (f6989586621679570776 a6989586621679570777) ((~>) (f6989586621679570776 b6989586621679570778) ((~>) (f6989586621679570776 c6989586621679570779) (f6989586621679570776 d6989586621679570780))) Source #

Instances

Instances details
(SApplicative f, SingI d2) => SingI (LiftA3Sym1 d2 f :: TyFun (f a) (f b ~> (f c ~> f d1)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftA3Sym1 d2 f) Source #

SuppressUnusedWarnings (LiftA3Sym1 a6989586621679571173 f6989586621679570776 :: TyFun (f6989586621679570776 a6989586621679570777) (f6989586621679570776 b6989586621679570778 ~> (f6989586621679570776 c6989586621679570779 ~> f6989586621679570776 d6989586621679570780)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym1 a6989586621679571173 f6989586621679570776 :: TyFun (f6989586621679570776 a6989586621679570777) (f6989586621679570776 b6989586621679570778 ~> (f6989586621679570776 c6989586621679570779 ~> f6989586621679570776 d6989586621679570780)) -> Type) (a6989586621679571174 :: f6989586621679570776 a6989586621679570777) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym1 a6989586621679571173 f6989586621679570776 :: TyFun (f6989586621679570776 a6989586621679570777) (f6989586621679570776 b6989586621679570778 ~> (f6989586621679570776 c6989586621679570779 ~> f6989586621679570776 d6989586621679570780)) -> Type) (a6989586621679571174 :: f6989586621679570776 a6989586621679570777) = LiftA3Sym2 a6989586621679571173 a6989586621679571174

data LiftA3Sym2 (a6989586621679571173 :: (~>) a6989586621679570777 ((~>) b6989586621679570778 ((~>) c6989586621679570779 d6989586621679570780))) (a6989586621679571174 :: f6989586621679570776 a6989586621679570777) :: (~>) (f6989586621679570776 b6989586621679570778) ((~>) (f6989586621679570776 c6989586621679570779) (f6989586621679570776 d6989586621679570780)) Source #

Instances

Instances details
(SApplicative f, SingI d2, SingI d3) => SingI (LiftA3Sym2 d2 d3 :: TyFun (f b) (f c ~> f d1) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftA3Sym2 d2 d3) Source #

SuppressUnusedWarnings (LiftA3Sym2 a6989586621679571174 a6989586621679571173 :: TyFun (f6989586621679570776 b6989586621679570778) (f6989586621679570776 c6989586621679570779 ~> f6989586621679570776 d6989586621679570780) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym2 a6989586621679571174 a6989586621679571173 :: TyFun (f6989586621679570776 b6989586621679570778) (f6989586621679570776 c6989586621679570779 ~> f6989586621679570776 d6989586621679570780) -> Type) (a6989586621679571175 :: f6989586621679570776 b6989586621679570778) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym2 a6989586621679571174 a6989586621679571173 :: TyFun (f6989586621679570776 b6989586621679570778) (f6989586621679570776 c6989586621679570779 ~> f6989586621679570776 d6989586621679570780) -> Type) (a6989586621679571175 :: f6989586621679570776 b6989586621679570778) = LiftA3Sym3 a6989586621679571174 a6989586621679571173 a6989586621679571175

data LiftA3Sym3 (a6989586621679571173 :: (~>) a6989586621679570777 ((~>) b6989586621679570778 ((~>) c6989586621679570779 d6989586621679570780))) (a6989586621679571174 :: f6989586621679570776 a6989586621679570777) (a6989586621679571175 :: f6989586621679570776 b6989586621679570778) :: (~>) (f6989586621679570776 c6989586621679570779) (f6989586621679570776 d6989586621679570780) Source #

Instances

Instances details
(SApplicative f, SingI d2, SingI d3, SingI d4) => SingI (LiftA3Sym3 d2 d3 d4 :: TyFun (f c) (f d1) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftA3Sym3 d2 d3 d4) Source #

SuppressUnusedWarnings (LiftA3Sym3 a6989586621679571175 a6989586621679571174 a6989586621679571173 :: TyFun (f6989586621679570776 c6989586621679570779) (f6989586621679570776 d6989586621679570780) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym3 a6989586621679571175 a6989586621679571174 a6989586621679571173 :: TyFun (f c) (f d) -> Type) (a6989586621679571176 :: f c) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym3 a6989586621679571175 a6989586621679571174 a6989586621679571173 :: TyFun (f c) (f d) -> Type) (a6989586621679571176 :: f c) = LiftA3 a6989586621679571175 a6989586621679571174 a6989586621679571173 a6989586621679571176

data OptionalSym0 :: forall f6989586621681265757 a6989586621681265758. (~>) (f6989586621681265757 a6989586621681265758) (f6989586621681265757 (Maybe a6989586621681265758)) Source #

Instances

Instances details
SAlternative f => SingI (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

SuppressUnusedWarnings (OptionalSym0 :: TyFun (f6989586621681265757 a6989586621681265758) (f6989586621681265757 (Maybe a6989586621681265758)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

type Apply (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) (a6989586621681265795 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

type Apply (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) (a6989586621681265795 :: f a) = Optional a6989586621681265795

type OptionalSym1 (a6989586621681265795 :: f6989586621681265757 a6989586621681265758) = Optional a6989586621681265795 Source #

Orphan instances

SApplicative Down Source # 
Instance details

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Down (a ~> b)) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

PApplicative Down Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

SMonoid a => SApplicative ((,) a) Source # 
Instance details

Methods

sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a0 b (t :: (a, a0 ~> b)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a0 b c (t :: a0 ~> (b ~> c)) (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

PApplicative ((,) a) Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #