singletons-2.6: A framework for generating singleton types
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Foldable

Description

Defines the promoted and singled versions of the Foldable type class.

Synopsis
  • class PFoldable (t :: Type -> Type) where
  • class SFoldable (t :: Type -> Type) where
  • type family FoldrM (a :: (~>) a ((~>) b (m b))) (a :: b) (a :: t a) :: m b where ...
  • sFoldrM :: forall a b m t (t :: (~>) a ((~>) b (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrMSym0 t) t) t :: m b)
  • type family FoldlM (a :: (~>) b ((~>) a (m b))) (a :: b) (a :: t a) :: m b where ...
  • sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b)
  • type family Traverse_ (a :: (~>) a (f b)) (a :: t a) :: f () where ...
  • sTraverse_ :: forall a f b t (t :: (~>) a (f b)) (t :: t a). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply Traverse_Sym0 t) t :: f ())
  • type family For_ (a :: t a) (a :: (~>) a (f b)) :: f () where ...
  • sFor_ :: forall t a f b (t :: t a) (t :: (~>) a (f b)). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply For_Sym0 t) t :: f ())
  • type family SequenceA_ (a :: t (f a)) :: f () where ...
  • sSequenceA_ :: forall t f a (t :: t (f a)). (SFoldable t, SApplicative f) => Sing t -> Sing (Apply SequenceA_Sym0 t :: f ())
  • type family Asum (a :: t (f a)) :: f a where ...
  • sAsum :: forall t f a (t :: t (f a)). (SFoldable t, SAlternative f) => Sing t -> Sing (Apply AsumSym0 t :: f a)
  • type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ...
  • sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ())
  • type family ForM_ (a :: t a) (a :: (~>) a (m b)) :: m () where ...
  • sForM_ :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForM_Sym0 t) t :: m ())
  • type family Sequence_ (a :: t (m a)) :: m () where ...
  • sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ())
  • type family Msum (a :: t (m a)) :: m a where ...
  • sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a)
  • type family Concat (a :: t [a]) :: [a] where ...
  • sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a])
  • type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ...
  • sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b])
  • type family And (a :: t Bool) :: Bool where ...
  • sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool)
  • type family Or (a :: t Bool) :: Bool where ...
  • sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool)
  • type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool)
  • type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool)
  • type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
  • sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a)
  • type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
  • sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a)
  • type family NotElem (a :: a) (a :: t a) :: Bool where ...
  • sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool)
  • type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ...
  • sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a)
  • data FoldSym0 :: forall t6989586621680490502 m6989586621680490503. (~>) (t6989586621680490502 m6989586621680490503) m6989586621680490503
  • type FoldSym1 (arg6989586621680491121 :: t6989586621680490502 m6989586621680490503) = Fold arg6989586621680491121
  • data FoldMapSym0 :: forall a6989586621680490505 m6989586621680490504 t6989586621680490502. (~>) ((~>) a6989586621680490505 m6989586621680490504) ((~>) (t6989586621680490502 a6989586621680490505) m6989586621680490504)
  • data FoldMapSym1 (arg6989586621680491123 :: (~>) a6989586621680490505 m6989586621680490504) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490505) m6989586621680490504
  • type FoldMapSym2 (arg6989586621680491123 :: (~>) a6989586621680490505 m6989586621680490504) (arg6989586621680491124 :: t6989586621680490502 a6989586621680490505) = FoldMap arg6989586621680491123 arg6989586621680491124
  • data FoldrSym0 :: forall a6989586621680490506 b6989586621680490507 t6989586621680490502. (~>) ((~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) ((~>) b6989586621680490507 ((~>) (t6989586621680490502 a6989586621680490506) b6989586621680490507))
  • data FoldrSym1 (arg6989586621680491127 :: (~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) :: forall t6989586621680490502. (~>) b6989586621680490507 ((~>) (t6989586621680490502 a6989586621680490506) b6989586621680490507)
  • data FoldrSym2 (arg6989586621680491127 :: (~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) (arg6989586621680491128 :: b6989586621680490507) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490506) b6989586621680490507
  • type FoldrSym3 (arg6989586621680491127 :: (~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) (arg6989586621680491128 :: b6989586621680490507) (arg6989586621680491129 :: t6989586621680490502 a6989586621680490506) = Foldr arg6989586621680491127 arg6989586621680491128 arg6989586621680491129
  • data Foldr'Sym0 :: forall a6989586621680490508 b6989586621680490509 t6989586621680490502. (~>) ((~>) a6989586621680490508 ((~>) b6989586621680490509 b6989586621680490509)) ((~>) b6989586621680490509 ((~>) (t6989586621680490502 a6989586621680490508) b6989586621680490509))
  • data Foldr'Sym1 (arg6989586621680491133 :: (~>) a6989586621680490508 ((~>) b6989586621680490509 b6989586621680490509)) :: forall t6989586621680490502. (~>) b6989586621680490509 ((~>) (t6989586621680490502 a6989586621680490508) b6989586621680490509)
  • data Foldr'Sym2 (arg6989586621680491133 :: (~>) a6989586621680490508 ((~>) b6989586621680490509 b6989586621680490509)) (arg6989586621680491134 :: b6989586621680490509) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490508) b6989586621680490509
  • type Foldr'Sym3 (arg6989586621680491133 :: (~>) a6989586621680490508 ((~>) b6989586621680490509 b6989586621680490509)) (arg6989586621680491134 :: b6989586621680490509) (arg6989586621680491135 :: t6989586621680490502 a6989586621680490508) = Foldr' arg6989586621680491133 arg6989586621680491134 arg6989586621680491135
  • data FoldlSym0 :: forall b6989586621680490510 a6989586621680490511 t6989586621680490502. (~>) ((~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) ((~>) b6989586621680490510 ((~>) (t6989586621680490502 a6989586621680490511) b6989586621680490510))
  • data FoldlSym1 (arg6989586621680491139 :: (~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) :: forall t6989586621680490502. (~>) b6989586621680490510 ((~>) (t6989586621680490502 a6989586621680490511) b6989586621680490510)
  • data FoldlSym2 (arg6989586621680491139 :: (~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) (arg6989586621680491140 :: b6989586621680490510) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490511) b6989586621680490510
  • type FoldlSym3 (arg6989586621680491139 :: (~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) (arg6989586621680491140 :: b6989586621680490510) (arg6989586621680491141 :: t6989586621680490502 a6989586621680490511) = Foldl arg6989586621680491139 arg6989586621680491140 arg6989586621680491141
  • data Foldl'Sym0 :: forall b6989586621680490512 a6989586621680490513 t6989586621680490502. (~>) ((~>) b6989586621680490512 ((~>) a6989586621680490513 b6989586621680490512)) ((~>) b6989586621680490512 ((~>) (t6989586621680490502 a6989586621680490513) b6989586621680490512))
  • data Foldl'Sym1 (arg6989586621680491145 :: (~>) b6989586621680490512 ((~>) a6989586621680490513 b6989586621680490512)) :: forall t6989586621680490502. (~>) b6989586621680490512 ((~>) (t6989586621680490502 a6989586621680490513) b6989586621680490512)
  • data Foldl'Sym2 (arg6989586621680491145 :: (~>) b6989586621680490512 ((~>) a6989586621680490513 b6989586621680490512)) (arg6989586621680491146 :: b6989586621680490512) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490513) b6989586621680490512
  • type Foldl'Sym3 (arg6989586621680491145 :: (~>) b6989586621680490512 ((~>) a6989586621680490513 b6989586621680490512)) (arg6989586621680491146 :: b6989586621680490512) (arg6989586621680491147 :: t6989586621680490502 a6989586621680490513) = Foldl' arg6989586621680491145 arg6989586621680491146 arg6989586621680491147
  • data Foldr1Sym0 :: forall a6989586621680490514 t6989586621680490502. (~>) ((~>) a6989586621680490514 ((~>) a6989586621680490514 a6989586621680490514)) ((~>) (t6989586621680490502 a6989586621680490514) a6989586621680490514)
  • data Foldr1Sym1 (arg6989586621680491151 :: (~>) a6989586621680490514 ((~>) a6989586621680490514 a6989586621680490514)) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490514) a6989586621680490514
  • type Foldr1Sym2 (arg6989586621680491151 :: (~>) a6989586621680490514 ((~>) a6989586621680490514 a6989586621680490514)) (arg6989586621680491152 :: t6989586621680490502 a6989586621680490514) = Foldr1 arg6989586621680491151 arg6989586621680491152
  • data Foldl1Sym0 :: forall a6989586621680490515 t6989586621680490502. (~>) ((~>) a6989586621680490515 ((~>) a6989586621680490515 a6989586621680490515)) ((~>) (t6989586621680490502 a6989586621680490515) a6989586621680490515)
  • data Foldl1Sym1 (arg6989586621680491155 :: (~>) a6989586621680490515 ((~>) a6989586621680490515 a6989586621680490515)) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490515) a6989586621680490515
  • type Foldl1Sym2 (arg6989586621680491155 :: (~>) a6989586621680490515 ((~>) a6989586621680490515 a6989586621680490515)) (arg6989586621680491156 :: t6989586621680490502 a6989586621680490515) = Foldl1 arg6989586621680491155 arg6989586621680491156
  • data ToListSym0 :: forall t6989586621680490502 a6989586621680490516. (~>) (t6989586621680490502 a6989586621680490516) [a6989586621680490516]
  • type ToListSym1 (arg6989586621680491159 :: t6989586621680490502 a6989586621680490516) = ToList arg6989586621680491159
  • data NullSym0 :: forall t6989586621680490502 a6989586621680490517. (~>) (t6989586621680490502 a6989586621680490517) Bool
  • type NullSym1 (arg6989586621680491161 :: t6989586621680490502 a6989586621680490517) = Null arg6989586621680491161
  • data LengthSym0 :: forall t6989586621680490502 a6989586621680490518. (~>) (t6989586621680490502 a6989586621680490518) Nat
  • type LengthSym1 (arg6989586621680491163 :: t6989586621680490502 a6989586621680490518) = Length arg6989586621680491163
  • data ElemSym0 :: forall a6989586621680490519 t6989586621680490502. (~>) a6989586621680490519 ((~>) (t6989586621680490502 a6989586621680490519) Bool)
  • data ElemSym1 (arg6989586621680491165 :: a6989586621680490519) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490519) Bool
  • type ElemSym2 (arg6989586621680491165 :: a6989586621680490519) (arg6989586621680491166 :: t6989586621680490502 a6989586621680490519) = Elem arg6989586621680491165 arg6989586621680491166
  • data MaximumSym0 :: forall t6989586621680490502 a6989586621680490520. (~>) (t6989586621680490502 a6989586621680490520) a6989586621680490520
  • type MaximumSym1 (arg6989586621680491169 :: t6989586621680490502 a6989586621680490520) = Maximum arg6989586621680491169
  • data MinimumSym0 :: forall t6989586621680490502 a6989586621680490521. (~>) (t6989586621680490502 a6989586621680490521) a6989586621680490521
  • type MinimumSym1 (arg6989586621680491171 :: t6989586621680490502 a6989586621680490521) = Minimum arg6989586621680491171
  • data SumSym0 :: forall t6989586621680490502 a6989586621680490522. (~>) (t6989586621680490502 a6989586621680490522) a6989586621680490522
  • type SumSym1 (arg6989586621680491173 :: t6989586621680490502 a6989586621680490522) = Sum arg6989586621680491173
  • data ProductSym0 :: forall t6989586621680490502 a6989586621680490523. (~>) (t6989586621680490502 a6989586621680490523) a6989586621680490523
  • type ProductSym1 (arg6989586621680491175 :: t6989586621680490502 a6989586621680490523) = Product arg6989586621680491175
  • data FoldrMSym0 :: forall a6989586621680490463 b6989586621680490464 m6989586621680490462 t6989586621680490461. (~>) ((~>) a6989586621680490463 ((~>) b6989586621680490464 (m6989586621680490462 b6989586621680490464))) ((~>) b6989586621680490464 ((~>) (t6989586621680490461 a6989586621680490463) (m6989586621680490462 b6989586621680490464)))
  • data FoldrMSym1 (a6989586621680491099 :: (~>) a6989586621680490463 ((~>) b6989586621680490464 (m6989586621680490462 b6989586621680490464))) :: forall t6989586621680490461. (~>) b6989586621680490464 ((~>) (t6989586621680490461 a6989586621680490463) (m6989586621680490462 b6989586621680490464))
  • data FoldrMSym2 (a6989586621680491099 :: (~>) a6989586621680490463 ((~>) b6989586621680490464 (m6989586621680490462 b6989586621680490464))) (a6989586621680491100 :: b6989586621680490464) :: forall t6989586621680490461. (~>) (t6989586621680490461 a6989586621680490463) (m6989586621680490462 b6989586621680490464)
  • type FoldrMSym3 (a6989586621680491099 :: (~>) a6989586621680490463 ((~>) b6989586621680490464 (m6989586621680490462 b6989586621680490464))) (a6989586621680491100 :: b6989586621680490464) (a6989586621680491101 :: t6989586621680490461 a6989586621680490463) = FoldrM a6989586621680491099 a6989586621680491100 a6989586621680491101
  • data FoldlMSym0 :: forall b6989586621680490459 a6989586621680490460 m6989586621680490458 t6989586621680490457. (~>) ((~>) b6989586621680490459 ((~>) a6989586621680490460 (m6989586621680490458 b6989586621680490459))) ((~>) b6989586621680490459 ((~>) (t6989586621680490457 a6989586621680490460) (m6989586621680490458 b6989586621680490459)))
  • data FoldlMSym1 (a6989586621680491077 :: (~>) b6989586621680490459 ((~>) a6989586621680490460 (m6989586621680490458 b6989586621680490459))) :: forall t6989586621680490457. (~>) b6989586621680490459 ((~>) (t6989586621680490457 a6989586621680490460) (m6989586621680490458 b6989586621680490459))
  • data FoldlMSym2 (a6989586621680491077 :: (~>) b6989586621680490459 ((~>) a6989586621680490460 (m6989586621680490458 b6989586621680490459))) (a6989586621680491078 :: b6989586621680490459) :: forall t6989586621680490457. (~>) (t6989586621680490457 a6989586621680490460) (m6989586621680490458 b6989586621680490459)
  • type FoldlMSym3 (a6989586621680491077 :: (~>) b6989586621680490459 ((~>) a6989586621680490460 (m6989586621680490458 b6989586621680490459))) (a6989586621680491078 :: b6989586621680490459) (a6989586621680491079 :: t6989586621680490457 a6989586621680490460) = FoldlM a6989586621680491077 a6989586621680491078 a6989586621680491079
  • data Traverse_Sym0 :: forall a6989586621680490455 f6989586621680490454 b6989586621680490456 t6989586621680490453. (~>) ((~>) a6989586621680490455 (f6989586621680490454 b6989586621680490456)) ((~>) (t6989586621680490453 a6989586621680490455) (f6989586621680490454 ()))
  • data Traverse_Sym1 (a6989586621680491069 :: (~>) a6989586621680490455 (f6989586621680490454 b6989586621680490456)) :: forall t6989586621680490453. (~>) (t6989586621680490453 a6989586621680490455) (f6989586621680490454 ())
  • type Traverse_Sym2 (a6989586621680491069 :: (~>) a6989586621680490455 (f6989586621680490454 b6989586621680490456)) (a6989586621680491070 :: t6989586621680490453 a6989586621680490455) = Traverse_ a6989586621680491069 a6989586621680491070
  • data For_Sym0 :: forall t6989586621680490449 a6989586621680490451 f6989586621680490450 b6989586621680490452. (~>) (t6989586621680490449 a6989586621680490451) ((~>) ((~>) a6989586621680490451 (f6989586621680490450 b6989586621680490452)) (f6989586621680490450 ()))
  • data For_Sym1 (a6989586621680491063 :: t6989586621680490449 a6989586621680490451) :: forall f6989586621680490450 b6989586621680490452. (~>) ((~>) a6989586621680490451 (f6989586621680490450 b6989586621680490452)) (f6989586621680490450 ())
  • type For_Sym2 (a6989586621680491063 :: t6989586621680490449 a6989586621680490451) (a6989586621680491064 :: (~>) a6989586621680490451 (f6989586621680490450 b6989586621680490452)) = For_ a6989586621680491063 a6989586621680491064
  • data SequenceA_Sym0 :: forall t6989586621680490438 f6989586621680490439 a6989586621680490440. (~>) (t6989586621680490438 (f6989586621680490439 a6989586621680490440)) (f6989586621680490439 ())
  • type SequenceA_Sym1 (a6989586621680491038 :: t6989586621680490438 (f6989586621680490439 a6989586621680490440)) = SequenceA_ a6989586621680491038
  • data AsumSym0 :: forall t6989586621680490432 f6989586621680490433 a6989586621680490434. (~>) (t6989586621680490432 (f6989586621680490433 a6989586621680490434)) (f6989586621680490433 a6989586621680490434)
  • type AsumSym1 (a6989586621680491028 :: t6989586621680490432 (f6989586621680490433 a6989586621680490434)) = Asum a6989586621680491028
  • data MapM_Sym0 :: forall a6989586621680490447 m6989586621680490446 b6989586621680490448 t6989586621680490445. (~>) ((~>) a6989586621680490447 (m6989586621680490446 b6989586621680490448)) ((~>) (t6989586621680490445 a6989586621680490447) (m6989586621680490446 ()))
  • data MapM_Sym1 (a6989586621680491051 :: (~>) a6989586621680490447 (m6989586621680490446 b6989586621680490448)) :: forall t6989586621680490445. (~>) (t6989586621680490445 a6989586621680490447) (m6989586621680490446 ())
  • type MapM_Sym2 (a6989586621680491051 :: (~>) a6989586621680490447 (m6989586621680490446 b6989586621680490448)) (a6989586621680491052 :: t6989586621680490445 a6989586621680490447) = MapM_ a6989586621680491051 a6989586621680491052
  • data ForM_Sym0 :: forall t6989586621680490441 a6989586621680490443 m6989586621680490442 b6989586621680490444. (~>) (t6989586621680490441 a6989586621680490443) ((~>) ((~>) a6989586621680490443 (m6989586621680490442 b6989586621680490444)) (m6989586621680490442 ()))
  • data ForM_Sym1 (a6989586621680491045 :: t6989586621680490441 a6989586621680490443) :: forall m6989586621680490442 b6989586621680490444. (~>) ((~>) a6989586621680490443 (m6989586621680490442 b6989586621680490444)) (m6989586621680490442 ())
  • type ForM_Sym2 (a6989586621680491045 :: t6989586621680490441 a6989586621680490443) (a6989586621680491046 :: (~>) a6989586621680490443 (m6989586621680490442 b6989586621680490444)) = ForM_ a6989586621680491045 a6989586621680491046
  • data Sequence_Sym0 :: forall t6989586621680490435 m6989586621680490436 a6989586621680490437. (~>) (t6989586621680490435 (m6989586621680490436 a6989586621680490437)) (m6989586621680490436 ())
  • type Sequence_Sym1 (a6989586621680491033 :: t6989586621680490435 (m6989586621680490436 a6989586621680490437)) = Sequence_ a6989586621680491033
  • data MsumSym0 :: forall t6989586621680490429 m6989586621680490430 a6989586621680490431. (~>) (t6989586621680490429 (m6989586621680490430 a6989586621680490431)) (m6989586621680490430 a6989586621680490431)
  • type MsumSym1 (a6989586621680491023 :: t6989586621680490429 (m6989586621680490430 a6989586621680490431)) = Msum a6989586621680491023
  • data ConcatSym0 :: forall t6989586621680490427 a6989586621680490428. (~>) (t6989586621680490427 [a6989586621680490428]) [a6989586621680490428]
  • type ConcatSym1 (a6989586621680491009 :: t6989586621680490427 [a6989586621680490428]) = Concat a6989586621680491009
  • data ConcatMapSym0 :: forall a6989586621680490425 b6989586621680490426 t6989586621680490424. (~>) ((~>) a6989586621680490425 [b6989586621680490426]) ((~>) (t6989586621680490424 a6989586621680490425) [b6989586621680490426])
  • data ConcatMapSym1 (a6989586621680490993 :: (~>) a6989586621680490425 [b6989586621680490426]) :: forall t6989586621680490424. (~>) (t6989586621680490424 a6989586621680490425) [b6989586621680490426]
  • type ConcatMapSym2 (a6989586621680490993 :: (~>) a6989586621680490425 [b6989586621680490426]) (a6989586621680490994 :: t6989586621680490424 a6989586621680490425) = ConcatMap a6989586621680490993 a6989586621680490994
  • data AndSym0 :: forall t6989586621680490423. (~>) (t6989586621680490423 Bool) Bool
  • type AndSym1 (a6989586621680490984 :: t6989586621680490423 Bool) = And a6989586621680490984
  • data OrSym0 :: forall t6989586621680490422. (~>) (t6989586621680490422 Bool) Bool
  • type OrSym1 (a6989586621680490975 :: t6989586621680490422 Bool) = Or a6989586621680490975
  • data AnySym0 :: forall a6989586621680490421 t6989586621680490420. (~>) ((~>) a6989586621680490421 Bool) ((~>) (t6989586621680490420 a6989586621680490421) Bool)
  • data AnySym1 (a6989586621680490962 :: (~>) a6989586621680490421 Bool) :: forall t6989586621680490420. (~>) (t6989586621680490420 a6989586621680490421) Bool
  • type AnySym2 (a6989586621680490962 :: (~>) a6989586621680490421 Bool) (a6989586621680490963 :: t6989586621680490420 a6989586621680490421) = Any a6989586621680490962 a6989586621680490963
  • data AllSym0 :: forall a6989586621680490419 t6989586621680490418. (~>) ((~>) a6989586621680490419 Bool) ((~>) (t6989586621680490418 a6989586621680490419) Bool)
  • data AllSym1 (a6989586621680490949 :: (~>) a6989586621680490419 Bool) :: forall t6989586621680490418. (~>) (t6989586621680490418 a6989586621680490419) Bool
  • type AllSym2 (a6989586621680490949 :: (~>) a6989586621680490419 Bool) (a6989586621680490950 :: t6989586621680490418 a6989586621680490419) = All a6989586621680490949 a6989586621680490950
  • data MaximumBySym0 :: forall a6989586621680490417 t6989586621680490416. (~>) ((~>) a6989586621680490417 ((~>) a6989586621680490417 Ordering)) ((~>) (t6989586621680490416 a6989586621680490417) a6989586621680490417)
  • data MaximumBySym1 (a6989586621680490924 :: (~>) a6989586621680490417 ((~>) a6989586621680490417 Ordering)) :: forall t6989586621680490416. (~>) (t6989586621680490416 a6989586621680490417) a6989586621680490417
  • type MaximumBySym2 (a6989586621680490924 :: (~>) a6989586621680490417 ((~>) a6989586621680490417 Ordering)) (a6989586621680490925 :: t6989586621680490416 a6989586621680490417) = MaximumBy a6989586621680490924 a6989586621680490925
  • data MinimumBySym0 :: forall a6989586621680490415 t6989586621680490414. (~>) ((~>) a6989586621680490415 ((~>) a6989586621680490415 Ordering)) ((~>) (t6989586621680490414 a6989586621680490415) a6989586621680490415)
  • data MinimumBySym1 (a6989586621680490899 :: (~>) a6989586621680490415 ((~>) a6989586621680490415 Ordering)) :: forall t6989586621680490414. (~>) (t6989586621680490414 a6989586621680490415) a6989586621680490415
  • type MinimumBySym2 (a6989586621680490899 :: (~>) a6989586621680490415 ((~>) a6989586621680490415 Ordering)) (a6989586621680490900 :: t6989586621680490414 a6989586621680490415) = MinimumBy a6989586621680490899 a6989586621680490900
  • data NotElemSym0 :: forall a6989586621680490413 t6989586621680490412. (~>) a6989586621680490413 ((~>) (t6989586621680490412 a6989586621680490413) Bool)
  • data NotElemSym1 (a6989586621680490891 :: a6989586621680490413) :: forall t6989586621680490412. (~>) (t6989586621680490412 a6989586621680490413) Bool
  • type NotElemSym2 (a6989586621680490891 :: a6989586621680490413) (a6989586621680490892 :: t6989586621680490412 a6989586621680490413) = NotElem a6989586621680490891 a6989586621680490892
  • data FindSym0 :: forall a6989586621680490411 t6989586621680490410. (~>) ((~>) a6989586621680490411 Bool) ((~>) (t6989586621680490410 a6989586621680490411) (Maybe a6989586621680490411))
  • data FindSym1 (a6989586621680490864 :: (~>) a6989586621680490411 Bool) :: forall t6989586621680490410. (~>) (t6989586621680490410 a6989586621680490411) (Maybe a6989586621680490411)
  • type FindSym2 (a6989586621680490864 :: (~>) a6989586621680490411 Bool) (a6989586621680490865 :: t6989586621680490410 a6989586621680490411) = Find a6989586621680490864 a6989586621680490865

Documentation

class PFoldable (t :: Type -> Type) Source #

Associated Types

type Fold (arg :: t m) :: m Source #

type Fold a = Apply Fold_6989586621680491178Sym0 a Source #

type FoldMap (arg :: (~>) a m) (arg :: t a) :: m Source #

type FoldMap a a = Apply (Apply FoldMap_6989586621680491188Sym0 a) a Source #

type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #

type Foldr a a a = Apply (Apply (Apply Foldr_6989586621680491203Sym0 a) a) a Source #

type Foldr' (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #

type Foldr' a a a = Apply (Apply (Apply Foldr'_6989586621680491228Sym0 a) a) a Source #

type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

type Foldl a a a = Apply (Apply (Apply Foldl_6989586621680491258Sym0 a) a) a Source #

type Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

type Foldl' a a a = Apply (Apply (Apply Foldl'_6989586621680491283Sym0 a) a) a Source #

type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

type Foldr1 a a = Apply (Apply Foldr1_6989586621680491312Sym0 a) a Source #

type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

type Foldl1 a a = Apply (Apply Foldl1_6989586621680491337Sym0 a) a Source #

type ToList (arg :: t a) :: [a] Source #

type ToList a = Apply ToList_6989586621680491361Sym0 a Source #

type Null (arg :: t a) :: Bool Source #

type Null a = Apply Null_6989586621680491370Sym0 a Source #

type Length (arg :: t a) :: Nat Source #

type Length a = Apply Length_6989586621680491391Sym0 a Source #

type Elem (arg :: a) (arg :: t a) :: Bool Source #

type Elem a a = Apply (Apply Elem_6989586621680491414Sym0 a) a Source #

type Maximum (arg :: t a) :: a Source #

type Maximum a = Apply Maximum_6989586621680491429Sym0 a Source #

type Minimum (arg :: t a) :: a Source #

type Minimum a = Apply Minimum_6989586621680491442Sym0 a Source #

type Sum (arg :: t a) :: a Source #

type Sum a = Apply Sum_6989586621680491455Sym0 a Source #

type Product (arg :: t a) :: a Source #

type Product a = Apply Product_6989586621680491468Sym0 a Source #

Instances

Instances details
PFoldable [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Either a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Arg a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

class SFoldable (t :: Type -> Type) where Source #

Minimal complete definition

Nothing

Methods

sFold :: forall m (t :: t m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t :: m) Source #

default sFold :: forall m (t :: t m). ((Apply FoldSym0 t :: m) ~ Apply Fold_6989586621680491178Sym0 t, SMonoid m) => Sing t -> Sing (Apply FoldSym0 t :: m) Source #

sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #

default sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). ((Apply (Apply FoldMapSym0 t) t :: m) ~ Apply (Apply FoldMap_6989586621680491188Sym0 t) t, SMonoid m) => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #

sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

default sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldrSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr_6989586621680491203Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #

default sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr'_6989586621680491228Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #

sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

default sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldlSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl_6989586621680491258Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #

default sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl'_6989586621680491283Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #

sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

default sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldr1Sym0 t) t :: a) ~ Apply (Apply Foldr1_6989586621680491312Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

default sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldl1Sym0 t) t :: a) ~ Apply (Apply Foldl1_6989586621680491337Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

sToList :: forall a (t :: t a). Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #

default sToList :: forall a (t :: t a). (Apply ToListSym0 t :: [a]) ~ Apply ToList_6989586621680491361Sym0 t => Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #

sNull :: forall a (t :: t a). Sing t -> Sing (Apply NullSym0 t :: Bool) Source #

default sNull :: forall a (t :: t a). (Apply NullSym0 t :: Bool) ~ Apply Null_6989586621680491370Sym0 t => Sing t -> Sing (Apply NullSym0 t :: Bool) Source #

sLength :: forall a (t :: t a). Sing t -> Sing (Apply LengthSym0 t :: Nat) Source #

default sLength :: forall a (t :: t a). (Apply LengthSym0 t :: Nat) ~ Apply Length_6989586621680491391Sym0 t => Sing t -> Sing (Apply LengthSym0 t :: Nat) Source #

sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

default sElem :: forall a (t :: a) (t :: t a). ((Apply (Apply ElemSym0 t) t :: Bool) ~ Apply (Apply Elem_6989586621680491414Sym0 t) t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

default sMaximum :: forall a (t :: t a). ((Apply MaximumSym0 t :: a) ~ Apply Maximum_6989586621680491429Sym0 t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

default sMinimum :: forall a (t :: t a). ((Apply MinimumSym0 t :: a) ~ Apply Minimum_6989586621680491442Sym0 t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a) Source #

default sSum :: forall a (t :: t a). ((Apply SumSym0 t :: a) ~ Apply Sum_6989586621680491455Sym0 t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a) Source #

sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

default sProduct :: forall a (t :: t a). ((Apply ProductSym0 t :: a) ~ Apply Product_6989586621680491468Sym0 t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

Instances

Instances details
SFoldable [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: [m]). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: [a]). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: [a]). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: [a]). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: [a]). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Maybe m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Maybe a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Maybe a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Maybe a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Maybe a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Maybe a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Min m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Min a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Min a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Min a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Min a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Min a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Max m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Max a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Max a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Max a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Max a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Max a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Option m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Option a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Option a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Option a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Option a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Option a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Option a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Option a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Option a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Option a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Methods

sFold :: forall m (t :: Identity m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Identity a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Identity a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Identity a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Identity a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Identity a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Dual m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Dual a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Dual a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Dual a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Dual a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Dual a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Sum m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Sum a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Sum a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Sum a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Sum a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Sum a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Product m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Product a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Product a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Product a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Product a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Product a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: NonEmpty m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: NonEmpty a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: NonEmpty a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Either a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Either a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Either a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: Either a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: (a, m)). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: (a, a0)). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: (a, a0)). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Arg a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Arg a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Arg a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: Arg a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sFold :: forall m0 (t :: Const m m0). SMonoid m0 => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m0 (t :: a ~> m0) (t :: Const m a). SMonoid m0 => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Const m a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Const m a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Const m a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Const m a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

type family FoldrM (a :: (~>) a ((~>) b (m b))) (a :: b) (a :: t a) :: m b where ... Source #

Equations

FoldrM f z0 xs = Apply (Apply (Apply (Apply FoldlSym0 (Let6989586621680491108F'Sym3 f z0 xs)) ReturnSym0) xs) z0 

sFoldrM :: forall a b m t (t :: (~>) a ((~>) b (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrMSym0 t) t) t :: m b) Source #

type family FoldlM (a :: (~>) b ((~>) a (m b))) (a :: b) (a :: t a) :: m b where ... Source #

Equations

FoldlM f z0 xs = Apply (Apply (Apply (Apply FoldrSym0 (Let6989586621680491086F'Sym3 f z0 xs)) ReturnSym0) xs) z0 

sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b) Source #

type family Traverse_ (a :: (~>) a (f b)) (a :: t a) :: f () where ... Source #

Equations

Traverse_ f a_6989586621680491073 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (*>@#@$)) f)) (Apply PureSym0 Tuple0Sym0)) a_6989586621680491073 

sTraverse_ :: forall a f b t (t :: (~>) a (f b)) (t :: t a). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply Traverse_Sym0 t) t :: f ()) Source #

type family For_ (a :: t a) (a :: (~>) a (f b)) :: f () where ... Source #

Equations

For_ a_6989586621680491059 a_6989586621680491061 = Apply (Apply (Apply FlipSym0 Traverse_Sym0) a_6989586621680491059) a_6989586621680491061 

sFor_ :: forall t a f b (t :: t a) (t :: (~>) a (f b)). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply For_Sym0 t) t :: f ()) Source #

type family SequenceA_ (a :: t (f a)) :: f () where ... Source #

Equations

SequenceA_ a_6989586621680491036 = Apply (Apply (Apply FoldrSym0 (*>@#@$)) (Apply PureSym0 Tuple0Sym0)) a_6989586621680491036 

sSequenceA_ :: forall t f a (t :: t (f a)). (SFoldable t, SApplicative f) => Sing t -> Sing (Apply SequenceA_Sym0 t :: f ()) Source #

type family Asum (a :: t (f a)) :: f a where ... Source #

Equations

Asum a_6989586621680491026 = Apply (Apply (Apply FoldrSym0 (<|>@#@$)) EmptySym0) a_6989586621680491026 

sAsum :: forall t f a (t :: t (f a)). (SFoldable t, SAlternative f) => Sing t -> Sing (Apply AsumSym0 t :: f a) Source #

type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ... Source #

Equations

MapM_ f a_6989586621680491055 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (>>@#@$)) f)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680491055 

sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ()) Source #

type family ForM_ (a :: t a) (a :: (~>) a (m b)) :: m () where ... Source #

Equations

ForM_ a_6989586621680491041 a_6989586621680491043 = Apply (Apply (Apply FlipSym0 MapM_Sym0) a_6989586621680491041) a_6989586621680491043 

sForM_ :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForM_Sym0 t) t :: m ()) Source #

type family Sequence_ (a :: t (m a)) :: m () where ... Source #

Equations

Sequence_ a_6989586621680491031 = Apply (Apply (Apply FoldrSym0 (>>@#@$)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680491031 

sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ()) Source #

type family Msum (a :: t (m a)) :: m a where ... Source #

Equations

Msum a_6989586621680491021 = Apply AsumSym0 a_6989586621680491021 

sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a) Source #

type family Concat (a :: t [a]) :: [a] where ... Source #

Equations

Concat xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621680491012Sym0 xs)) '[]) xs 

sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a]) Source #

type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ... Source #

Equations

ConcatMap f xs = Apply (Apply (Apply FoldrSym0 (Apply (Apply Lambda_6989586621680490999Sym0 f) xs)) '[]) xs 

sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b]) Source #

type family And (a :: t Bool) :: Bool where ... Source #

Equations

And x = Case_6989586621680490989 x (Let6989586621680490987Scrutinee_6989586621680490749Sym1 x) 

sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool) Source #

type family Or (a :: t Bool) :: Bool where ... Source #

Equations

Or x = Case_6989586621680490980 x (Let6989586621680490978Scrutinee_6989586621680490751Sym1 x) 

sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool) Source #

type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

Any p x = Case_6989586621680490971 p x (Let6989586621680490968Scrutinee_6989586621680490753Sym2 p x) 

sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool) Source #

type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

All p x = Case_6989586621680490958 p x (Let6989586621680490955Scrutinee_6989586621680490755Sym2 p x) 

sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool) Source #

type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #

Equations

MaximumBy cmp a_6989586621680490928 = Apply (Apply Foldl1Sym0 (Let6989586621680490932Max'Sym2 cmp a_6989586621680490928)) a_6989586621680490928 

sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a) Source #

type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #

Equations

MinimumBy cmp a_6989586621680490903 = Apply (Apply Foldl1Sym0 (Let6989586621680490907Min'Sym2 cmp a_6989586621680490903)) a_6989586621680490903 

sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a) Source #

type family NotElem (a :: a) (a :: t a) :: Bool where ... Source #

Equations

NotElem x a_6989586621680490895 = Apply (Apply (Apply (.@#@$) NotSym0) (Apply ElemSym0 x)) a_6989586621680490895 

sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool) Source #

type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ... Source #

Equations

Find p y = Case_6989586621680490887 p y (Let6989586621680490870Scrutinee_6989586621680490761Sym2 p y) 

sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a) Source #

Defunctionalization symbols

data FoldSym0 :: forall t6989586621680490502 m6989586621680490503. (~>) (t6989586621680490502 m6989586621680490503) m6989586621680490503 Source #

Instances

Instances details
(SFoldable t, SMonoid m) => SingI (FoldSym0 :: TyFun (t m) m -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldSym0 :: TyFun (t6989586621680490502 m6989586621680490503) m6989586621680490503 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldSym0 :: TyFun (t m) m -> Type) (arg6989586621680491121 :: t m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldSym0 :: TyFun (t m) m -> Type) (arg6989586621680491121 :: t m) = Fold arg6989586621680491121

type FoldSym1 (arg6989586621680491121 :: t6989586621680490502 m6989586621680490503) = Fold arg6989586621680491121 Source #

data FoldMapSym0 :: forall a6989586621680490505 m6989586621680490504 t6989586621680490502. (~>) ((~>) a6989586621680490505 m6989586621680490504) ((~>) (t6989586621680490502 a6989586621680490505) m6989586621680490504) Source #

Instances

Instances details
(SFoldable t, SMonoid m) => SingI (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldMapSym0 :: TyFun (a6989586621680490505 ~> m6989586621680490504) (t6989586621680490502 a6989586621680490505 ~> m6989586621680490504) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym0 :: TyFun (a6989586621680490505 ~> m6989586621680490504) (t6989586621680490502 a6989586621680490505 ~> m6989586621680490504) -> Type) (arg6989586621680491123 :: a6989586621680490505 ~> m6989586621680490504) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym0 :: TyFun (a6989586621680490505 ~> m6989586621680490504) (t6989586621680490502 a6989586621680490505 ~> m6989586621680490504) -> Type) (arg6989586621680491123 :: a6989586621680490505 ~> m6989586621680490504) = FoldMapSym1 arg6989586621680491123 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490505) m6989586621680490504 -> Type

data FoldMapSym1 (arg6989586621680491123 :: (~>) a6989586621680490505 m6989586621680490504) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490505) m6989586621680490504 Source #

Instances

Instances details
(SFoldable t, SMonoid m, SingI d) => SingI (FoldMapSym1 d t :: TyFun (t a) m -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldMapSym1 d t) Source #

SuppressUnusedWarnings (FoldMapSym1 arg6989586621680491123 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490505) m6989586621680490504 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym1 arg6989586621680491123 t :: TyFun (t a) m -> Type) (arg6989586621680491124 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym1 arg6989586621680491123 t :: TyFun (t a) m -> Type) (arg6989586621680491124 :: t a) = FoldMap arg6989586621680491123 arg6989586621680491124

type FoldMapSym2 (arg6989586621680491123 :: (~>) a6989586621680490505 m6989586621680490504) (arg6989586621680491124 :: t6989586621680490502 a6989586621680490505) = FoldMap arg6989586621680491123 arg6989586621680491124 Source #

data FoldrSym0 :: forall a6989586621680490506 b6989586621680490507 t6989586621680490502. (~>) ((~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) ((~>) b6989586621680490507 ((~>) (t6989586621680490502 a6989586621680490506) b6989586621680490507)) Source #

Instances

Instances details
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldrSym0 :: TyFun (a6989586621680490506 ~> (b6989586621680490507 ~> b6989586621680490507)) (b6989586621680490507 ~> (t6989586621680490502 a6989586621680490506 ~> b6989586621680490507)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym0 :: TyFun (a6989586621680490506 ~> (b6989586621680490507 ~> b6989586621680490507)) (b6989586621680490507 ~> (t6989586621680490502 a6989586621680490506 ~> b6989586621680490507)) -> Type) (arg6989586621680491127 :: a6989586621680490506 ~> (b6989586621680490507 ~> b6989586621680490507)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym0 :: TyFun (a6989586621680490506 ~> (b6989586621680490507 ~> b6989586621680490507)) (b6989586621680490507 ~> (t6989586621680490502 a6989586621680490506 ~> b6989586621680490507)) -> Type) (arg6989586621680491127 :: a6989586621680490506 ~> (b6989586621680490507 ~> b6989586621680490507)) = FoldrSym1 arg6989586621680491127 t6989586621680490502 :: TyFun b6989586621680490507 (t6989586621680490502 a6989586621680490506 ~> b6989586621680490507) -> Type

data FoldrSym1 (arg6989586621680491127 :: (~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) :: forall t6989586621680490502. (~>) b6989586621680490507 ((~>) (t6989586621680490502 a6989586621680490506) b6989586621680490507) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FoldrSym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrSym1 d t) Source #

SuppressUnusedWarnings (FoldrSym1 arg6989586621680491127 t6989586621680490502 :: TyFun b6989586621680490507 (t6989586621680490502 a6989586621680490506 ~> b6989586621680490507) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym1 arg6989586621680491127 t6989586621680490502 :: TyFun b6989586621680490507 (t6989586621680490502 a6989586621680490506 ~> b6989586621680490507) -> Type) (arg6989586621680491128 :: b6989586621680490507) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym1 arg6989586621680491127 t6989586621680490502 :: TyFun b6989586621680490507 (t6989586621680490502 a6989586621680490506 ~> b6989586621680490507) -> Type) (arg6989586621680491128 :: b6989586621680490507) = FoldrSym2 arg6989586621680491127 arg6989586621680491128 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490506) b6989586621680490507 -> Type

data FoldrSym2 (arg6989586621680491127 :: (~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) (arg6989586621680491128 :: b6989586621680490507) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490506) b6989586621680490507 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldrSym2 arg6989586621680491128 arg6989586621680491127 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490506) b6989586621680490507 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym2 arg6989586621680491128 arg6989586621680491127 t :: TyFun (t a) b -> Type) (arg6989586621680491129 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym2 arg6989586621680491128 arg6989586621680491127 t :: TyFun (t a) b -> Type) (arg6989586621680491129 :: t a) = Foldr arg6989586621680491128 arg6989586621680491127 arg6989586621680491129

type FoldrSym3 (arg6989586621680491127 :: (~>) a6989586621680490506 ((~>) b6989586621680490507 b6989586621680490507)) (arg6989586621680491128 :: b6989586621680490507) (arg6989586621680491129 :: t6989586621680490502 a6989586621680490506) = Foldr arg6989586621680491127 arg6989586621680491128 arg6989586621680491129 Source #

data Foldr'Sym0 :: forall a6989586621680490508 b6989586621680490509 t6989586621680490502. (~>) ((~>) a6989586621680490508 ((~>) b6989586621680490509 b6989586621680490509)) ((~>) b6989586621680490509 ((~>) (t6989586621680490502 a6989586621680490508) b6989586621680490509)) Source #

Instances

Instances details
SFoldable t => SingI (Foldr'Sym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldr'Sym0 :: TyFun (a6989586621680490508 ~> (b6989586621680490509 ~> b6989586621680490509)) (b6989586621680490509 ~> (t6989586621680490502 a6989586621680490508 ~> b6989586621680490509)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym0 :: TyFun (a6989586621680490508 ~> (b6989586621680490509 ~> b6989586621680490509)) (b6989586621680490509 ~> (t6989586621680490502 a6989586621680490508 ~> b6989586621680490509)) -> Type) (arg6989586621680491133 :: a6989586621680490508 ~> (b6989586621680490509 ~> b6989586621680490509)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym0 :: TyFun (a6989586621680490508 ~> (b6989586621680490509 ~> b6989586621680490509)) (b6989586621680490509 ~> (t6989586621680490502 a6989586621680490508 ~> b6989586621680490509)) -> Type) (arg6989586621680491133 :: a6989586621680490508 ~> (b6989586621680490509 ~> b6989586621680490509)) = Foldr'Sym1 arg6989586621680491133 t6989586621680490502 :: TyFun b6989586621680490509 (t6989586621680490502 a6989586621680490508 ~> b6989586621680490509) -> Type

data Foldr'Sym1 (arg6989586621680491133 :: (~>) a6989586621680490508 ((~>) b6989586621680490509 b6989586621680490509)) :: forall t6989586621680490502. (~>) b6989586621680490509 ((~>) (t6989586621680490502 a6989586621680490508) b6989586621680490509) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldr'Sym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr'Sym1 d t) Source #

SuppressUnusedWarnings (Foldr'Sym1 arg6989586621680491133 t6989586621680490502 :: TyFun b6989586621680490509 (t6989586621680490502 a6989586621680490508 ~> b6989586621680490509) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym1 arg6989586621680491133 t6989586621680490502 :: TyFun b6989586621680490509 (t6989586621680490502 a6989586621680490508 ~> b6989586621680490509) -> Type) (arg6989586621680491134 :: b6989586621680490509) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym1 arg6989586621680491133 t6989586621680490502 :: TyFun b6989586621680490509 (t6989586621680490502 a6989586621680490508 ~> b6989586621680490509) -> Type) (arg6989586621680491134 :: b6989586621680490509) = Foldr'Sym2 arg6989586621680491133 arg6989586621680491134 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490508) b6989586621680490509 -> Type

data Foldr'Sym2 (arg6989586621680491133 :: (~>) a6989586621680490508 ((~>) b6989586621680490509 b6989586621680490509)) (arg6989586621680491134 :: b6989586621680490509) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490508) b6989586621680490509 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (Foldr'Sym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr'Sym2 d1 d2 t) Source #

SuppressUnusedWarnings (Foldr'Sym2 arg6989586621680491134 arg6989586621680491133 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490508) b6989586621680490509 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym2 arg6989586621680491134 arg6989586621680491133 t :: TyFun (t a) b -> Type) (arg6989586621680491135 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym2 arg6989586621680491134 arg6989586621680491133 t :: TyFun (t a) b -> Type) (arg6989586621680491135 :: t a) = Foldr' arg6989586621680491134 arg6989586621680491133 arg6989586621680491135

type Foldr'Sym3 (arg6989586621680491133 :: (~>) a6989586621680490508 ((~>) b6989586621680490509 b6989586621680490509)) (arg6989586621680491134 :: b6989586621680490509) (arg6989586621680491135 :: t6989586621680490502 a6989586621680490508) = Foldr' arg6989586621680491133 arg6989586621680491134 arg6989586621680491135 Source #

data FoldlSym0 :: forall b6989586621680490510 a6989586621680490511 t6989586621680490502. (~>) ((~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) ((~>) b6989586621680490510 ((~>) (t6989586621680490502 a6989586621680490511) b6989586621680490510)) Source #

Instances

Instances details
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldlSym0 :: TyFun (b6989586621680490510 ~> (a6989586621680490511 ~> b6989586621680490510)) (b6989586621680490510 ~> (t6989586621680490502 a6989586621680490511 ~> b6989586621680490510)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym0 :: TyFun (b6989586621680490510 ~> (a6989586621680490511 ~> b6989586621680490510)) (b6989586621680490510 ~> (t6989586621680490502 a6989586621680490511 ~> b6989586621680490510)) -> Type) (arg6989586621680491139 :: b6989586621680490510 ~> (a6989586621680490511 ~> b6989586621680490510)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym0 :: TyFun (b6989586621680490510 ~> (a6989586621680490511 ~> b6989586621680490510)) (b6989586621680490510 ~> (t6989586621680490502 a6989586621680490511 ~> b6989586621680490510)) -> Type) (arg6989586621680491139 :: b6989586621680490510 ~> (a6989586621680490511 ~> b6989586621680490510)) = FoldlSym1 arg6989586621680491139 t6989586621680490502 :: TyFun b6989586621680490510 (t6989586621680490502 a6989586621680490511 ~> b6989586621680490510) -> Type

data FoldlSym1 (arg6989586621680491139 :: (~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) :: forall t6989586621680490502. (~>) b6989586621680490510 ((~>) (t6989586621680490502 a6989586621680490511) b6989586621680490510) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FoldlSym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlSym1 d t) Source #

SuppressUnusedWarnings (FoldlSym1 arg6989586621680491139 t6989586621680490502 :: TyFun b6989586621680490510 (t6989586621680490502 a6989586621680490511 ~> b6989586621680490510) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym1 arg6989586621680491139 t6989586621680490502 :: TyFun b6989586621680490510 (t6989586621680490502 a6989586621680490511 ~> b6989586621680490510) -> Type) (arg6989586621680491140 :: b6989586621680490510) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym1 arg6989586621680491139 t6989586621680490502 :: TyFun b6989586621680490510 (t6989586621680490502 a6989586621680490511 ~> b6989586621680490510) -> Type) (arg6989586621680491140 :: b6989586621680490510) = FoldlSym2 arg6989586621680491139 arg6989586621680491140 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490511) b6989586621680490510 -> Type

data FoldlSym2 (arg6989586621680491139 :: (~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) (arg6989586621680491140 :: b6989586621680490510) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490511) b6989586621680490510 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldlSym2 arg6989586621680491140 arg6989586621680491139 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490511) b6989586621680490510 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym2 arg6989586621680491140 arg6989586621680491139 t :: TyFun (t a) b -> Type) (arg6989586621680491141 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym2 arg6989586621680491140 arg6989586621680491139 t :: TyFun (t a) b -> Type) (arg6989586621680491141 :: t a) = Foldl arg6989586621680491140 arg6989586621680491139 arg6989586621680491141

type FoldlSym3 (arg6989586621680491139 :: (~>) b6989586621680490510 ((~>) a6989586621680490511 b6989586621680490510)) (arg6989586621680491140 :: b6989586621680490510) (arg6989586621680491141 :: t6989586621680490502 a6989586621680490511) = Foldl arg6989586621680491139 arg6989586621680491140 arg6989586621680491141 Source #

data Foldl'Sym0 :: forall b6989586621680490512 a6989586621680490513 t6989586621680490502. (~>) ((~>) b6989586621680490512 ((~>) a6989586621680490513 b6989586621680490512)) ((~>) b6989586621680490512 ((~>) (t6989586621680490502 a6989586621680490513) b6989586621680490512)) Source #

Instances

Instances details
SFoldable t => SingI (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldl'Sym0 :: TyFun (b6989586621680490512 ~> (a6989586621680490513 ~> b6989586621680490512)) (b6989586621680490512 ~> (t6989586621680490502 a6989586621680490513 ~> b6989586621680490512)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym0 :: TyFun (b6989586621680490512 ~> (a6989586621680490513 ~> b6989586621680490512)) (b6989586621680490512 ~> (t6989586621680490502 a6989586621680490513 ~> b6989586621680490512)) -> Type) (arg6989586621680491145 :: b6989586621680490512 ~> (a6989586621680490513 ~> b6989586621680490512)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym0 :: TyFun (b6989586621680490512 ~> (a6989586621680490513 ~> b6989586621680490512)) (b6989586621680490512 ~> (t6989586621680490502 a6989586621680490513 ~> b6989586621680490512)) -> Type) (arg6989586621680491145 :: b6989586621680490512 ~> (a6989586621680490513 ~> b6989586621680490512)) = Foldl'Sym1 arg6989586621680491145 t6989586621680490502 :: TyFun b6989586621680490512 (t6989586621680490502 a6989586621680490513 ~> b6989586621680490512) -> Type

data Foldl'Sym1 (arg6989586621680491145 :: (~>) b6989586621680490512 ((~>) a6989586621680490513 b6989586621680490512)) :: forall t6989586621680490502. (~>) b6989586621680490512 ((~>) (t6989586621680490502 a6989586621680490513) b6989586621680490512) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldl'Sym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl'Sym1 d t) Source #

SuppressUnusedWarnings (Foldl'Sym1 arg6989586621680491145 t6989586621680490502 :: TyFun b6989586621680490512 (t6989586621680490502 a6989586621680490513 ~> b6989586621680490512) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym1 arg6989586621680491145 t6989586621680490502 :: TyFun b6989586621680490512 (t6989586621680490502 a6989586621680490513 ~> b6989586621680490512) -> Type) (arg6989586621680491146 :: b6989586621680490512) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym1 arg6989586621680491145 t6989586621680490502 :: TyFun b6989586621680490512 (t6989586621680490502 a6989586621680490513 ~> b6989586621680490512) -> Type) (arg6989586621680491146 :: b6989586621680490512) = Foldl'Sym2 arg6989586621680491145 arg6989586621680491146 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490513) b6989586621680490512 -> Type

data Foldl'Sym2 (arg6989586621680491145 :: (~>) b6989586621680490512 ((~>) a6989586621680490513 b6989586621680490512)) (arg6989586621680491146 :: b6989586621680490512) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490513) b6989586621680490512 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (Foldl'Sym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl'Sym2 d1 d2 t) Source #

SuppressUnusedWarnings (Foldl'Sym2 arg6989586621680491146 arg6989586621680491145 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490513) b6989586621680490512 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym2 arg6989586621680491146 arg6989586621680491145 t :: TyFun (t a) b -> Type) (arg6989586621680491147 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym2 arg6989586621680491146 arg6989586621680491145 t :: TyFun (t a) b -> Type) (arg6989586621680491147 :: t a) = Foldl' arg6989586621680491146 arg6989586621680491145 arg6989586621680491147

type Foldl'Sym3 (arg6989586621680491145 :: (~>) b6989586621680490512 ((~>) a6989586621680490513 b6989586621680490512)) (arg6989586621680491146 :: b6989586621680490512) (arg6989586621680491147 :: t6989586621680490502 a6989586621680490513) = Foldl' arg6989586621680491145 arg6989586621680491146 arg6989586621680491147 Source #

data Foldr1Sym0 :: forall a6989586621680490514 t6989586621680490502. (~>) ((~>) a6989586621680490514 ((~>) a6989586621680490514 a6989586621680490514)) ((~>) (t6989586621680490502 a6989586621680490514) a6989586621680490514) Source #

Instances

Instances details
SFoldable t => SingI (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldr1Sym0 :: TyFun (a6989586621680490514 ~> (a6989586621680490514 ~> a6989586621680490514)) (t6989586621680490502 a6989586621680490514 ~> a6989586621680490514) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym0 :: TyFun (a6989586621680490514 ~> (a6989586621680490514 ~> a6989586621680490514)) (t6989586621680490502 a6989586621680490514 ~> a6989586621680490514) -> Type) (arg6989586621680491151 :: a6989586621680490514 ~> (a6989586621680490514 ~> a6989586621680490514)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym0 :: TyFun (a6989586621680490514 ~> (a6989586621680490514 ~> a6989586621680490514)) (t6989586621680490502 a6989586621680490514 ~> a6989586621680490514) -> Type) (arg6989586621680491151 :: a6989586621680490514 ~> (a6989586621680490514 ~> a6989586621680490514)) = Foldr1Sym1 arg6989586621680491151 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490514) a6989586621680490514 -> Type

data Foldr1Sym1 (arg6989586621680491151 :: (~>) a6989586621680490514 ((~>) a6989586621680490514 a6989586621680490514)) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490514) a6989586621680490514 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldr1Sym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr1Sym1 d t) Source #

SuppressUnusedWarnings (Foldr1Sym1 arg6989586621680491151 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490514) a6989586621680490514 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym1 arg6989586621680491151 t :: TyFun (t a) a -> Type) (arg6989586621680491152 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym1 arg6989586621680491151 t :: TyFun (t a) a -> Type) (arg6989586621680491152 :: t a) = Foldr1 arg6989586621680491151 arg6989586621680491152

type Foldr1Sym2 (arg6989586621680491151 :: (~>) a6989586621680490514 ((~>) a6989586621680490514 a6989586621680490514)) (arg6989586621680491152 :: t6989586621680490502 a6989586621680490514) = Foldr1 arg6989586621680491151 arg6989586621680491152 Source #

data Foldl1Sym0 :: forall a6989586621680490515 t6989586621680490502. (~>) ((~>) a6989586621680490515 ((~>) a6989586621680490515 a6989586621680490515)) ((~>) (t6989586621680490502 a6989586621680490515) a6989586621680490515) Source #

Instances

Instances details
SFoldable t => SingI (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldl1Sym0 :: TyFun (a6989586621680490515 ~> (a6989586621680490515 ~> a6989586621680490515)) (t6989586621680490502 a6989586621680490515 ~> a6989586621680490515) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym0 :: TyFun (a6989586621680490515 ~> (a6989586621680490515 ~> a6989586621680490515)) (t6989586621680490502 a6989586621680490515 ~> a6989586621680490515) -> Type) (arg6989586621680491155 :: a6989586621680490515 ~> (a6989586621680490515 ~> a6989586621680490515)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym0 :: TyFun (a6989586621680490515 ~> (a6989586621680490515 ~> a6989586621680490515)) (t6989586621680490502 a6989586621680490515 ~> a6989586621680490515) -> Type) (arg6989586621680491155 :: a6989586621680490515 ~> (a6989586621680490515 ~> a6989586621680490515)) = Foldl1Sym1 arg6989586621680491155 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490515) a6989586621680490515 -> Type

data Foldl1Sym1 (arg6989586621680491155 :: (~>) a6989586621680490515 ((~>) a6989586621680490515 a6989586621680490515)) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490515) a6989586621680490515 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldl1Sym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl1Sym1 d t) Source #

SuppressUnusedWarnings (Foldl1Sym1 arg6989586621680491155 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490515) a6989586621680490515 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym1 arg6989586621680491155 t :: TyFun (t a) a -> Type) (arg6989586621680491156 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym1 arg6989586621680491155 t :: TyFun (t a) a -> Type) (arg6989586621680491156 :: t a) = Foldl1 arg6989586621680491155 arg6989586621680491156

type Foldl1Sym2 (arg6989586621680491155 :: (~>) a6989586621680490515 ((~>) a6989586621680490515 a6989586621680490515)) (arg6989586621680491156 :: t6989586621680490502 a6989586621680490515) = Foldl1 arg6989586621680491155 arg6989586621680491156 Source #

data ToListSym0 :: forall t6989586621680490502 a6989586621680490516. (~>) (t6989586621680490502 a6989586621680490516) [a6989586621680490516] Source #

Instances

Instances details
SFoldable t => SingI (ToListSym0 :: TyFun (t a) [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ToListSym0 :: TyFun (t6989586621680490502 a6989586621680490516) [a6989586621680490516] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ToListSym0 :: TyFun (t a) [a] -> Type) (arg6989586621680491159 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ToListSym0 :: TyFun (t a) [a] -> Type) (arg6989586621680491159 :: t a) = ToList arg6989586621680491159

type ToListSym1 (arg6989586621680491159 :: t6989586621680490502 a6989586621680490516) = ToList arg6989586621680491159 Source #

data NullSym0 :: forall t6989586621680490502 a6989586621680490517. (~>) (t6989586621680490502 a6989586621680490517) Bool Source #

Instances

Instances details
SFoldable t => SingI (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (NullSym0 :: TyFun (t6989586621680490502 a6989586621680490517) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (arg6989586621680491161 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (arg6989586621680491161 :: t a) = Null arg6989586621680491161

type NullSym1 (arg6989586621680491161 :: t6989586621680490502 a6989586621680490517) = Null arg6989586621680491161 Source #

data LengthSym0 :: forall t6989586621680490502 a6989586621680490518. (~>) (t6989586621680490502 a6989586621680490518) Nat Source #

Instances

Instances details
SFoldable t => SingI (LengthSym0 :: TyFun (t a) Nat -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (LengthSym0 :: TyFun (t6989586621680490502 a6989586621680490518) Nat -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (LengthSym0 :: TyFun (t a) Nat -> Type) (arg6989586621680491163 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (LengthSym0 :: TyFun (t a) Nat -> Type) (arg6989586621680491163 :: t a) = Length arg6989586621680491163

type LengthSym1 (arg6989586621680491163 :: t6989586621680490502 a6989586621680490518) = Length arg6989586621680491163 Source #

data ElemSym0 :: forall a6989586621680490519 t6989586621680490502. (~>) a6989586621680490519 ((~>) (t6989586621680490502 a6989586621680490519) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ElemSym0 :: TyFun a6989586621680490519 (t6989586621680490502 a6989586621680490519 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym0 :: TyFun a6989586621680490519 (t6989586621680490502 a6989586621680490519 ~> Bool) -> Type) (arg6989586621680491165 :: a6989586621680490519) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym0 :: TyFun a6989586621680490519 (t6989586621680490502 a6989586621680490519 ~> Bool) -> Type) (arg6989586621680491165 :: a6989586621680490519) = ElemSym1 arg6989586621680491165 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490519) Bool -> Type

data ElemSym1 (arg6989586621680491165 :: a6989586621680490519) :: forall t6989586621680490502. (~>) (t6989586621680490502 a6989586621680490519) Bool Source #

Instances

Instances details
(SFoldable t, SEq a, SingI d) => SingI (ElemSym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (ElemSym1 d t) Source #

SuppressUnusedWarnings (ElemSym1 arg6989586621680491165 t6989586621680490502 :: TyFun (t6989586621680490502 a6989586621680490519) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym1 arg6989586621680491165 t :: TyFun (t a) Bool -> Type) (arg6989586621680491166 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym1 arg6989586621680491165 t :: TyFun (t a) Bool -> Type) (arg6989586621680491166 :: t a) = Elem arg6989586621680491165 arg6989586621680491166

type ElemSym2 (arg6989586621680491165 :: a6989586621680490519) (arg6989586621680491166 :: t6989586621680490502 a6989586621680490519) = Elem arg6989586621680491165 arg6989586621680491166 Source #

data MaximumSym0 :: forall t6989586621680490502 a6989586621680490520. (~>) (t6989586621680490502 a6989586621680490520) a6989586621680490520 Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MaximumSym0 :: TyFun (t6989586621680490502 a6989586621680490520) a6989586621680490520 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (arg6989586621680491169 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (arg6989586621680491169 :: t a) = Maximum arg6989586621680491169

type MaximumSym1 (arg6989586621680491169 :: t6989586621680490502 a6989586621680490520) = Maximum arg6989586621680491169 Source #

data MinimumSym0 :: forall t6989586621680490502 a6989586621680490521. (~>) (t6989586621680490502 a6989586621680490521) a6989586621680490521 Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MinimumSym0 :: TyFun (t6989586621680490502 a6989586621680490521) a6989586621680490521 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (arg6989586621680491171 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (arg6989586621680491171 :: t a) = Minimum arg6989586621680491171

type MinimumSym1 (arg6989586621680491171 :: t6989586621680490502 a6989586621680490521) = Minimum arg6989586621680491171 Source #

data SumSym0 :: forall t6989586621680490502 a6989586621680490522. (~>) (t6989586621680490502 a6989586621680490522) a6989586621680490522 Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (SumSym0 :: TyFun (t6989586621680490502 a6989586621680490522) a6989586621680490522 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SumSym0 :: TyFun (t a) a -> Type) (arg6989586621680491173 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SumSym0 :: TyFun (t a) a -> Type) (arg6989586621680491173 :: t a) = Sum arg6989586621680491173

type SumSym1 (arg6989586621680491173 :: t6989586621680490502 a6989586621680490522) = Sum arg6989586621680491173 Source #

data ProductSym0 :: forall t6989586621680490502 a6989586621680490523. (~>) (t6989586621680490502 a6989586621680490523) a6989586621680490523 Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ProductSym0 :: TyFun (t6989586621680490502 a6989586621680490523) a6989586621680490523 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (arg6989586621680491175 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (arg6989586621680491175 :: t a) = Product arg6989586621680491175

type ProductSym1 (arg6989586621680491175 :: t6989586621680490502 a6989586621680490523) = Product arg6989586621680491175 Source #

data FoldrMSym0 :: forall a6989586621680490463 b6989586621680490464 m6989586621680490462 t6989586621680490461. (~>) ((~>) a6989586621680490463 ((~>) b6989586621680490464 (m6989586621680490462 b6989586621680490464))) ((~>) b6989586621680490464 ((~>) (t6989586621680490461 a6989586621680490463) (m6989586621680490462 b6989586621680490464))) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (FoldrMSym0 :: TyFun (a ~> (b ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldrMSym0 :: TyFun (a6989586621680490463 ~> (b6989586621680490464 ~> m6989586621680490462 b6989586621680490464)) (b6989586621680490464 ~> (t6989586621680490461 a6989586621680490463 ~> m6989586621680490462 b6989586621680490464)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym0 :: TyFun (a6989586621680490463 ~> (b6989586621680490464 ~> m6989586621680490462 b6989586621680490464)) (b6989586621680490464 ~> (t6989586621680490461 a6989586621680490463 ~> m6989586621680490462 b6989586621680490464)) -> Type) (a6989586621680491099 :: a6989586621680490463 ~> (b6989586621680490464 ~> m6989586621680490462 b6989586621680490464)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym0 :: TyFun (a6989586621680490463 ~> (b6989586621680490464 ~> m6989586621680490462 b6989586621680490464)) (b6989586621680490464 ~> (t6989586621680490461 a6989586621680490463 ~> m6989586621680490462 b6989586621680490464)) -> Type) (a6989586621680491099 :: a6989586621680490463 ~> (b6989586621680490464 ~> m6989586621680490462 b6989586621680490464)) = FoldrMSym1 a6989586621680491099 t6989586621680490461 :: TyFun b6989586621680490464 (t6989586621680490461 a6989586621680490463 ~> m6989586621680490462 b6989586621680490464) -> Type

data FoldrMSym1 (a6989586621680491099 :: (~>) a6989586621680490463 ((~>) b6989586621680490464 (m6989586621680490462 b6989586621680490464))) :: forall t6989586621680490461. (~>) b6989586621680490464 ((~>) (t6989586621680490461 a6989586621680490463) (m6989586621680490462 b6989586621680490464)) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (FoldrMSym1 d t :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrMSym1 d t) Source #

SuppressUnusedWarnings (FoldrMSym1 a6989586621680491099 t6989586621680490461 :: TyFun b6989586621680490464 (t6989586621680490461 a6989586621680490463 ~> m6989586621680490462 b6989586621680490464) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym1 a6989586621680491099 t6989586621680490461 :: TyFun b6989586621680490464 (t6989586621680490461 a6989586621680490463 ~> m6989586621680490462 b6989586621680490464) -> Type) (a6989586621680491100 :: b6989586621680490464) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym1 a6989586621680491099 t6989586621680490461 :: TyFun b6989586621680490464 (t6989586621680490461 a6989586621680490463 ~> m6989586621680490462 b6989586621680490464) -> Type) (a6989586621680491100 :: b6989586621680490464) = FoldrMSym2 a6989586621680491099 a6989586621680491100 t6989586621680490461 :: TyFun (t6989586621680490461 a6989586621680490463) (m6989586621680490462 b6989586621680490464) -> Type

data FoldrMSym2 (a6989586621680491099 :: (~>) a6989586621680490463 ((~>) b6989586621680490464 (m6989586621680490462 b6989586621680490464))) (a6989586621680491100 :: b6989586621680490464) :: forall t6989586621680490461. (~>) (t6989586621680490461 a6989586621680490463) (m6989586621680490462 b6989586621680490464) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldrMSym2 d1 d2 t :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrMSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldrMSym2 a6989586621680491100 a6989586621680491099 t6989586621680490461 :: TyFun (t6989586621680490461 a6989586621680490463) (m6989586621680490462 b6989586621680490464) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym2 a6989586621680491100 a6989586621680491099 t :: TyFun (t a) (m b) -> Type) (a6989586621680491101 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym2 a6989586621680491100 a6989586621680491099 t :: TyFun (t a) (m b) -> Type) (a6989586621680491101 :: t a) = FoldrM a6989586621680491100 a6989586621680491099 a6989586621680491101

type FoldrMSym3 (a6989586621680491099 :: (~>) a6989586621680490463 ((~>) b6989586621680490464 (m6989586621680490462 b6989586621680490464))) (a6989586621680491100 :: b6989586621680490464) (a6989586621680491101 :: t6989586621680490461 a6989586621680490463) = FoldrM a6989586621680491099 a6989586621680491100 a6989586621680491101 Source #

data FoldlMSym0 :: forall b6989586621680490459 a6989586621680490460 m6989586621680490458 t6989586621680490457. (~>) ((~>) b6989586621680490459 ((~>) a6989586621680490460 (m6989586621680490458 b6989586621680490459))) ((~>) b6989586621680490459 ((~>) (t6989586621680490457 a6989586621680490460) (m6989586621680490458 b6989586621680490459))) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldlMSym0 :: TyFun (b6989586621680490459 ~> (a6989586621680490460 ~> m6989586621680490458 b6989586621680490459)) (b6989586621680490459 ~> (t6989586621680490457 a6989586621680490460 ~> m6989586621680490458 b6989586621680490459)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym0 :: TyFun (b6989586621680490459 ~> (a6989586621680490460 ~> m6989586621680490458 b6989586621680490459)) (b6989586621680490459 ~> (t6989586621680490457 a6989586621680490460 ~> m6989586621680490458 b6989586621680490459)) -> Type) (a6989586621680491077 :: b6989586621680490459 ~> (a6989586621680490460 ~> m6989586621680490458 b6989586621680490459)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym0 :: TyFun (b6989586621680490459 ~> (a6989586621680490460 ~> m6989586621680490458 b6989586621680490459)) (b6989586621680490459 ~> (t6989586621680490457 a6989586621680490460 ~> m6989586621680490458 b6989586621680490459)) -> Type) (a6989586621680491077 :: b6989586621680490459 ~> (a6989586621680490460 ~> m6989586621680490458 b6989586621680490459)) = FoldlMSym1 a6989586621680491077 t6989586621680490457 :: TyFun b6989586621680490459 (t6989586621680490457 a6989586621680490460 ~> m6989586621680490458 b6989586621680490459) -> Type

data FoldlMSym1 (a6989586621680491077 :: (~>) b6989586621680490459 ((~>) a6989586621680490460 (m6989586621680490458 b6989586621680490459))) :: forall t6989586621680490457. (~>) b6989586621680490459 ((~>) (t6989586621680490457 a6989586621680490460) (m6989586621680490458 b6989586621680490459)) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (FoldlMSym1 d t :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlMSym1 d t) Source #

SuppressUnusedWarnings (FoldlMSym1 a6989586621680491077 t6989586621680490457 :: TyFun b6989586621680490459 (t6989586621680490457 a6989586621680490460 ~> m6989586621680490458 b6989586621680490459) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym1 a6989586621680491077 t6989586621680490457 :: TyFun b6989586621680490459 (t6989586621680490457 a6989586621680490460 ~> m6989586621680490458 b6989586621680490459) -> Type) (a6989586621680491078 :: b6989586621680490459) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym1 a6989586621680491077 t6989586621680490457 :: TyFun b6989586621680490459 (t6989586621680490457 a6989586621680490460 ~> m6989586621680490458 b6989586621680490459) -> Type) (a6989586621680491078 :: b6989586621680490459) = FoldlMSym2 a6989586621680491077 a6989586621680491078 t6989586621680490457 :: TyFun (t6989586621680490457 a6989586621680490460) (m6989586621680490458 b6989586621680490459) -> Type

data FoldlMSym2 (a6989586621680491077 :: (~>) b6989586621680490459 ((~>) a6989586621680490460 (m6989586621680490458 b6989586621680490459))) (a6989586621680491078 :: b6989586621680490459) :: forall t6989586621680490457. (~>) (t6989586621680490457 a6989586621680490460) (m6989586621680490458 b6989586621680490459) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldlMSym2 d1 d2 t :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlMSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldlMSym2 a6989586621680491078 a6989586621680491077 t6989586621680490457 :: TyFun (t6989586621680490457 a6989586621680490460) (m6989586621680490458 b6989586621680490459) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym2 a6989586621680491078 a6989586621680491077 t :: TyFun (t a) (m b) -> Type) (a6989586621680491079 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym2 a6989586621680491078 a6989586621680491077 t :: TyFun (t a) (m b) -> Type) (a6989586621680491079 :: t a) = FoldlM a6989586621680491078 a6989586621680491077 a6989586621680491079

type FoldlMSym3 (a6989586621680491077 :: (~>) b6989586621680490459 ((~>) a6989586621680490460 (m6989586621680490458 b6989586621680490459))) (a6989586621680491078 :: b6989586621680490459) (a6989586621680491079 :: t6989586621680490457 a6989586621680490460) = FoldlM a6989586621680491077 a6989586621680491078 a6989586621680491079 Source #

data Traverse_Sym0 :: forall a6989586621680490455 f6989586621680490454 b6989586621680490456 t6989586621680490453. (~>) ((~>) a6989586621680490455 (f6989586621680490454 b6989586621680490456)) ((~>) (t6989586621680490453 a6989586621680490455) (f6989586621680490454 ())) Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (Traverse_Sym0 :: TyFun (a ~> f b) (t a ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Traverse_Sym0 :: TyFun (a6989586621680490455 ~> f6989586621680490454 b6989586621680490456) (t6989586621680490453 a6989586621680490455 ~> f6989586621680490454 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym0 :: TyFun (a6989586621680490455 ~> f6989586621680490454 b6989586621680490456) (t6989586621680490453 a6989586621680490455 ~> f6989586621680490454 ()) -> Type) (a6989586621680491069 :: a6989586621680490455 ~> f6989586621680490454 b6989586621680490456) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym0 :: TyFun (a6989586621680490455 ~> f6989586621680490454 b6989586621680490456) (t6989586621680490453 a6989586621680490455 ~> f6989586621680490454 ()) -> Type) (a6989586621680491069 :: a6989586621680490455 ~> f6989586621680490454 b6989586621680490456) = Traverse_Sym1 a6989586621680491069 t6989586621680490453 :: TyFun (t6989586621680490453 a6989586621680490455) (f6989586621680490454 ()) -> Type

data Traverse_Sym1 (a6989586621680491069 :: (~>) a6989586621680490455 (f6989586621680490454 b6989586621680490456)) :: forall t6989586621680490453. (~>) (t6989586621680490453 a6989586621680490455) (f6989586621680490454 ()) Source #

Instances

Instances details
(SFoldable t, SApplicative f, SingI d) => SingI (Traverse_Sym1 d t :: TyFun (t a) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Traverse_Sym1 d t) Source #

SuppressUnusedWarnings (Traverse_Sym1 a6989586621680491069 t6989586621680490453 :: TyFun (t6989586621680490453 a6989586621680490455) (f6989586621680490454 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym1 a6989586621680491069 t :: TyFun (t a) (f ()) -> Type) (a6989586621680491070 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym1 a6989586621680491069 t :: TyFun (t a) (f ()) -> Type) (a6989586621680491070 :: t a) = Traverse_ a6989586621680491069 a6989586621680491070

type Traverse_Sym2 (a6989586621680491069 :: (~>) a6989586621680490455 (f6989586621680490454 b6989586621680490456)) (a6989586621680491070 :: t6989586621680490453 a6989586621680490455) = Traverse_ a6989586621680491069 a6989586621680491070 Source #

data For_Sym0 :: forall t6989586621680490449 a6989586621680490451 f6989586621680490450 b6989586621680490452. (~>) (t6989586621680490449 a6989586621680490451) ((~>) ((~>) a6989586621680490451 (f6989586621680490450 b6989586621680490452)) (f6989586621680490450 ())) Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (For_Sym0 :: TyFun (t a) ((a ~> f b) ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (For_Sym0 :: TyFun (t6989586621680490449 a6989586621680490451) ((a6989586621680490451 ~> f6989586621680490450 b6989586621680490452) ~> f6989586621680490450 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym0 :: TyFun (t6989586621680490449 a6989586621680490451) ((a6989586621680490451 ~> f6989586621680490450 b6989586621680490452) ~> f6989586621680490450 ()) -> Type) (a6989586621680491063 :: t6989586621680490449 a6989586621680490451) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym0 :: TyFun (t6989586621680490449 a6989586621680490451) ((a6989586621680490451 ~> f6989586621680490450 b6989586621680490452) ~> f6989586621680490450 ()) -> Type) (a6989586621680491063 :: t6989586621680490449 a6989586621680490451) = For_Sym1 a6989586621680491063 f6989586621680490450 b6989586621680490452 :: TyFun (a6989586621680490451 ~> f6989586621680490450 b6989586621680490452) (f6989586621680490450 ()) -> Type

data For_Sym1 (a6989586621680491063 :: t6989586621680490449 a6989586621680490451) :: forall f6989586621680490450 b6989586621680490452. (~>) ((~>) a6989586621680490451 (f6989586621680490450 b6989586621680490452)) (f6989586621680490450 ()) Source #

Instances

Instances details
(SFoldable t, SApplicative f, SingI d) => SingI (For_Sym1 d f b :: TyFun (a ~> f b) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (For_Sym1 d f b) Source #

SuppressUnusedWarnings (For_Sym1 a6989586621680491063 f6989586621680490450 b6989586621680490452 :: TyFun (a6989586621680490451 ~> f6989586621680490450 b6989586621680490452) (f6989586621680490450 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym1 a6989586621680491063 f b :: TyFun (a ~> f b) (f ()) -> Type) (a6989586621680491064 :: a ~> f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym1 a6989586621680491063 f b :: TyFun (a ~> f b) (f ()) -> Type) (a6989586621680491064 :: a ~> f b) = For_ a6989586621680491063 a6989586621680491064

type For_Sym2 (a6989586621680491063 :: t6989586621680490449 a6989586621680490451) (a6989586621680491064 :: (~>) a6989586621680490451 (f6989586621680490450 b6989586621680490452)) = For_ a6989586621680491063 a6989586621680491064 Source #

data SequenceA_Sym0 :: forall t6989586621680490438 f6989586621680490439 a6989586621680490440. (~>) (t6989586621680490438 (f6989586621680490439 a6989586621680490440)) (f6989586621680490439 ()) Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (SequenceA_Sym0 :: TyFun (t6989586621680490438 (f6989586621680490439 a6989586621680490440)) (f6989586621680490439 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) (a6989586621680491038 :: t (f a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) (a6989586621680491038 :: t (f a)) = SequenceA_ a6989586621680491038

type SequenceA_Sym1 (a6989586621680491038 :: t6989586621680490438 (f6989586621680490439 a6989586621680490440)) = SequenceA_ a6989586621680491038 Source #

data AsumSym0 :: forall t6989586621680490432 f6989586621680490433 a6989586621680490434. (~>) (t6989586621680490432 (f6989586621680490433 a6989586621680490434)) (f6989586621680490433 a6989586621680490434) Source #

Instances

Instances details
(SFoldable t, SAlternative f) => SingI (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AsumSym0 :: TyFun (t6989586621680490432 (f6989586621680490433 a6989586621680490434)) (f6989586621680490433 a6989586621680490434) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) (a6989586621680491028 :: t (f a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) (a6989586621680491028 :: t (f a)) = Asum a6989586621680491028

type AsumSym1 (a6989586621680491028 :: t6989586621680490432 (f6989586621680490433 a6989586621680490434)) = Asum a6989586621680491028 Source #

data MapM_Sym0 :: forall a6989586621680490447 m6989586621680490446 b6989586621680490448 t6989586621680490445. (~>) ((~>) a6989586621680490447 (m6989586621680490446 b6989586621680490448)) ((~>) (t6989586621680490445 a6989586621680490447) (m6989586621680490446 ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MapM_Sym0 :: TyFun (a6989586621680490447 ~> m6989586621680490446 b6989586621680490448) (t6989586621680490445 a6989586621680490447 ~> m6989586621680490446 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym0 :: TyFun (a6989586621680490447 ~> m6989586621680490446 b6989586621680490448) (t6989586621680490445 a6989586621680490447 ~> m6989586621680490446 ()) -> Type) (a6989586621680491051 :: a6989586621680490447 ~> m6989586621680490446 b6989586621680490448) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym0 :: TyFun (a6989586621680490447 ~> m6989586621680490446 b6989586621680490448) (t6989586621680490445 a6989586621680490447 ~> m6989586621680490446 ()) -> Type) (a6989586621680491051 :: a6989586621680490447 ~> m6989586621680490446 b6989586621680490448) = MapM_Sym1 a6989586621680491051 t6989586621680490445 :: TyFun (t6989586621680490445 a6989586621680490447) (m6989586621680490446 ()) -> Type

data MapM_Sym1 (a6989586621680491051 :: (~>) a6989586621680490447 (m6989586621680490446 b6989586621680490448)) :: forall t6989586621680490445. (~>) (t6989586621680490445 a6989586621680490447) (m6989586621680490446 ()) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (MapM_Sym1 d t :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (MapM_Sym1 d t) Source #

SuppressUnusedWarnings (MapM_Sym1 a6989586621680491051 t6989586621680490445 :: TyFun (t6989586621680490445 a6989586621680490447) (m6989586621680490446 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym1 a6989586621680491051 t :: TyFun (t a) (m ()) -> Type) (a6989586621680491052 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym1 a6989586621680491051 t :: TyFun (t a) (m ()) -> Type) (a6989586621680491052 :: t a) = MapM_ a6989586621680491051 a6989586621680491052

type MapM_Sym2 (a6989586621680491051 :: (~>) a6989586621680490447 (m6989586621680490446 b6989586621680490448)) (a6989586621680491052 :: t6989586621680490445 a6989586621680490447) = MapM_ a6989586621680491051 a6989586621680491052 Source #

data ForM_Sym0 :: forall t6989586621680490441 a6989586621680490443 m6989586621680490442 b6989586621680490444. (~>) (t6989586621680490441 a6989586621680490443) ((~>) ((~>) a6989586621680490443 (m6989586621680490442 b6989586621680490444)) (m6989586621680490442 ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (ForM_Sym0 :: TyFun (t a) ((a ~> m b) ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ForM_Sym0 :: TyFun (t6989586621680490441 a6989586621680490443) ((a6989586621680490443 ~> m6989586621680490442 b6989586621680490444) ~> m6989586621680490442 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym0 :: TyFun (t6989586621680490441 a6989586621680490443) ((a6989586621680490443 ~> m6989586621680490442 b6989586621680490444) ~> m6989586621680490442 ()) -> Type) (a6989586621680491045 :: t6989586621680490441 a6989586621680490443) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym0 :: TyFun (t6989586621680490441 a6989586621680490443) ((a6989586621680490443 ~> m6989586621680490442 b6989586621680490444) ~> m6989586621680490442 ()) -> Type) (a6989586621680491045 :: t6989586621680490441 a6989586621680490443) = ForM_Sym1 a6989586621680491045 m6989586621680490442 b6989586621680490444 :: TyFun (a6989586621680490443 ~> m6989586621680490442 b6989586621680490444) (m6989586621680490442 ()) -> Type

data ForM_Sym1 (a6989586621680491045 :: t6989586621680490441 a6989586621680490443) :: forall m6989586621680490442 b6989586621680490444. (~>) ((~>) a6989586621680490443 (m6989586621680490442 b6989586621680490444)) (m6989586621680490442 ()) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (ForM_Sym1 d m b :: TyFun (a ~> m b) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (ForM_Sym1 d m b) Source #

SuppressUnusedWarnings (ForM_Sym1 a6989586621680491045 m6989586621680490442 b6989586621680490444 :: TyFun (a6989586621680490443 ~> m6989586621680490442 b6989586621680490444) (m6989586621680490442 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym1 a6989586621680491045 m b :: TyFun (a ~> m b) (m ()) -> Type) (a6989586621680491046 :: a ~> m b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym1 a6989586621680491045 m b :: TyFun (a ~> m b) (m ()) -> Type) (a6989586621680491046 :: a ~> m b) = ForM_ a6989586621680491045 a6989586621680491046

type ForM_Sym2 (a6989586621680491045 :: t6989586621680490441 a6989586621680490443) (a6989586621680491046 :: (~>) a6989586621680490443 (m6989586621680490442 b6989586621680490444)) = ForM_ a6989586621680491045 a6989586621680491046 Source #

data Sequence_Sym0 :: forall t6989586621680490435 m6989586621680490436 a6989586621680490437. (~>) (t6989586621680490435 (m6989586621680490436 a6989586621680490437)) (m6989586621680490436 ()) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Sequence_Sym0 :: TyFun (t6989586621680490435 (m6989586621680490436 a6989586621680490437)) (m6989586621680490436 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680491033 :: t (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680491033 :: t (m a)) = Sequence_ a6989586621680491033

type Sequence_Sym1 (a6989586621680491033 :: t6989586621680490435 (m6989586621680490436 a6989586621680490437)) = Sequence_ a6989586621680491033 Source #

data MsumSym0 :: forall t6989586621680490429 m6989586621680490430 a6989586621680490431. (~>) (t6989586621680490429 (m6989586621680490430 a6989586621680490431)) (m6989586621680490430 a6989586621680490431) Source #

Instances

Instances details
(SFoldable t, SMonadPlus m) => SingI (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MsumSym0 :: TyFun (t6989586621680490429 (m6989586621680490430 a6989586621680490431)) (m6989586621680490430 a6989586621680490431) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680491023 :: t (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680491023 :: t (m a)) = Msum a6989586621680491023

type MsumSym1 (a6989586621680491023 :: t6989586621680490429 (m6989586621680490430 a6989586621680490431)) = Msum a6989586621680491023 Source #

data ConcatSym0 :: forall t6989586621680490427 a6989586621680490428. (~>) (t6989586621680490427 [a6989586621680490428]) [a6989586621680490428] Source #

Instances

Instances details
SFoldable t => SingI (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ConcatSym0 :: TyFun (t6989586621680490427 [a6989586621680490428]) [a6989586621680490428] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680491009 :: t [a]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680491009 :: t [a]) = Concat a6989586621680491009

type ConcatSym1 (a6989586621680491009 :: t6989586621680490427 [a6989586621680490428]) = Concat a6989586621680491009 Source #

data ConcatMapSym0 :: forall a6989586621680490425 b6989586621680490426 t6989586621680490424. (~>) ((~>) a6989586621680490425 [b6989586621680490426]) ((~>) (t6989586621680490424 a6989586621680490425) [b6989586621680490426]) Source #

Instances

Instances details
SFoldable t => SingI (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ConcatMapSym0 :: TyFun (a6989586621680490425 ~> [b6989586621680490426]) (t6989586621680490424 a6989586621680490425 ~> [b6989586621680490426]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym0 :: TyFun (a6989586621680490425 ~> [b6989586621680490426]) (t6989586621680490424 a6989586621680490425 ~> [b6989586621680490426]) -> Type) (a6989586621680490993 :: a6989586621680490425 ~> [b6989586621680490426]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym0 :: TyFun (a6989586621680490425 ~> [b6989586621680490426]) (t6989586621680490424 a6989586621680490425 ~> [b6989586621680490426]) -> Type) (a6989586621680490993 :: a6989586621680490425 ~> [b6989586621680490426]) = ConcatMapSym1 a6989586621680490993 t6989586621680490424 :: TyFun (t6989586621680490424 a6989586621680490425) [b6989586621680490426] -> Type

data ConcatMapSym1 (a6989586621680490993 :: (~>) a6989586621680490425 [b6989586621680490426]) :: forall t6989586621680490424. (~>) (t6989586621680490424 a6989586621680490425) [b6989586621680490426] Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (ConcatMapSym1 d t :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (ConcatMapSym1 d t) Source #

SuppressUnusedWarnings (ConcatMapSym1 a6989586621680490993 t6989586621680490424 :: TyFun (t6989586621680490424 a6989586621680490425) [b6989586621680490426] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym1 a6989586621680490993 t :: TyFun (t a) [b] -> Type) (a6989586621680490994 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym1 a6989586621680490993 t :: TyFun (t a) [b] -> Type) (a6989586621680490994 :: t a) = ConcatMap a6989586621680490993 a6989586621680490994

type ConcatMapSym2 (a6989586621680490993 :: (~>) a6989586621680490425 [b6989586621680490426]) (a6989586621680490994 :: t6989586621680490424 a6989586621680490425) = ConcatMap a6989586621680490993 a6989586621680490994 Source #

data AndSym0 :: forall t6989586621680490423. (~>) (t6989586621680490423 Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AndSym0 :: TyFun (t6989586621680490423 Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680490984 :: t Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680490984 :: t Bool) = And a6989586621680490984

type AndSym1 (a6989586621680490984 :: t6989586621680490423 Bool) = And a6989586621680490984 Source #

data OrSym0 :: forall t6989586621680490422. (~>) (t6989586621680490422 Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing OrSym0 Source #

SuppressUnusedWarnings (OrSym0 :: TyFun (t6989586621680490422 Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680490975 :: t Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680490975 :: t Bool) = Or a6989586621680490975

type OrSym1 (a6989586621680490975 :: t6989586621680490422 Bool) = Or a6989586621680490975 Source #

data AnySym0 :: forall a6989586621680490421 t6989586621680490420. (~>) ((~>) a6989586621680490421 Bool) ((~>) (t6989586621680490420 a6989586621680490421) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AnySym0 :: TyFun (a6989586621680490421 ~> Bool) (t6989586621680490420 a6989586621680490421 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym0 :: TyFun (a6989586621680490421 ~> Bool) (t6989586621680490420 a6989586621680490421 ~> Bool) -> Type) (a6989586621680490962 :: a6989586621680490421 ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym0 :: TyFun (a6989586621680490421 ~> Bool) (t6989586621680490420 a6989586621680490421 ~> Bool) -> Type) (a6989586621680490962 :: a6989586621680490421 ~> Bool) = AnySym1 a6989586621680490962 t6989586621680490420 :: TyFun (t6989586621680490420 a6989586621680490421) Bool -> Type

data AnySym1 (a6989586621680490962 :: (~>) a6989586621680490421 Bool) :: forall t6989586621680490420. (~>) (t6989586621680490420 a6989586621680490421) Bool Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (AnySym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (AnySym1 d t) Source #

SuppressUnusedWarnings (AnySym1 a6989586621680490962 t6989586621680490420 :: TyFun (t6989586621680490420 a6989586621680490421) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym1 a6989586621680490962 t :: TyFun (t a) Bool -> Type) (a6989586621680490963 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym1 a6989586621680490962 t :: TyFun (t a) Bool -> Type) (a6989586621680490963 :: t a) = Any a6989586621680490962 a6989586621680490963

type AnySym2 (a6989586621680490962 :: (~>) a6989586621680490421 Bool) (a6989586621680490963 :: t6989586621680490420 a6989586621680490421) = Any a6989586621680490962 a6989586621680490963 Source #

data AllSym0 :: forall a6989586621680490419 t6989586621680490418. (~>) ((~>) a6989586621680490419 Bool) ((~>) (t6989586621680490418 a6989586621680490419) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AllSym0 :: TyFun (a6989586621680490419 ~> Bool) (t6989586621680490418 a6989586621680490419 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym0 :: TyFun (a6989586621680490419 ~> Bool) (t6989586621680490418 a6989586621680490419 ~> Bool) -> Type) (a6989586621680490949 :: a6989586621680490419 ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym0 :: TyFun (a6989586621680490419 ~> Bool) (t6989586621680490418 a6989586621680490419 ~> Bool) -> Type) (a6989586621680490949 :: a6989586621680490419 ~> Bool) = AllSym1 a6989586621680490949 t6989586621680490418 :: TyFun (t6989586621680490418 a6989586621680490419) Bool -> Type

data AllSym1 (a6989586621680490949 :: (~>) a6989586621680490419 Bool) :: forall t6989586621680490418. (~>) (t6989586621680490418 a6989586621680490419) Bool Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (AllSym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (AllSym1 d t) Source #

SuppressUnusedWarnings (AllSym1 a6989586621680490949 t6989586621680490418 :: TyFun (t6989586621680490418 a6989586621680490419) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym1 a6989586621680490949 t :: TyFun (t a) Bool -> Type) (a6989586621680490950 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym1 a6989586621680490949 t :: TyFun (t a) Bool -> Type) (a6989586621680490950 :: t a) = All a6989586621680490949 a6989586621680490950

type AllSym2 (a6989586621680490949 :: (~>) a6989586621680490419 Bool) (a6989586621680490950 :: t6989586621680490418 a6989586621680490419) = All a6989586621680490949 a6989586621680490950 Source #

data MaximumBySym0 :: forall a6989586621680490417 t6989586621680490416. (~>) ((~>) a6989586621680490417 ((~>) a6989586621680490417 Ordering)) ((~>) (t6989586621680490416 a6989586621680490417) a6989586621680490417) Source #

Instances

Instances details
SFoldable t => SingI (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MaximumBySym0 :: TyFun (a6989586621680490417 ~> (a6989586621680490417 ~> Ordering)) (t6989586621680490416 a6989586621680490417 ~> a6989586621680490417) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym0 :: TyFun (a6989586621680490417 ~> (a6989586621680490417 ~> Ordering)) (t6989586621680490416 a6989586621680490417 ~> a6989586621680490417) -> Type) (a6989586621680490924 :: a6989586621680490417 ~> (a6989586621680490417 ~> Ordering)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym0 :: TyFun (a6989586621680490417 ~> (a6989586621680490417 ~> Ordering)) (t6989586621680490416 a6989586621680490417 ~> a6989586621680490417) -> Type) (a6989586621680490924 :: a6989586621680490417 ~> (a6989586621680490417 ~> Ordering)) = MaximumBySym1 a6989586621680490924 t6989586621680490416 :: TyFun (t6989586621680490416 a6989586621680490417) a6989586621680490417 -> Type

data MaximumBySym1 (a6989586621680490924 :: (~>) a6989586621680490417 ((~>) a6989586621680490417 Ordering)) :: forall t6989586621680490416. (~>) (t6989586621680490416 a6989586621680490417) a6989586621680490417 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (MaximumBySym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (MaximumBySym1 d t) Source #

SuppressUnusedWarnings (MaximumBySym1 a6989586621680490924 t6989586621680490416 :: TyFun (t6989586621680490416 a6989586621680490417) a6989586621680490417 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym1 a6989586621680490924 t :: TyFun (t a) a -> Type) (a6989586621680490925 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym1 a6989586621680490924 t :: TyFun (t a) a -> Type) (a6989586621680490925 :: t a) = MaximumBy a6989586621680490924 a6989586621680490925

type MaximumBySym2 (a6989586621680490924 :: (~>) a6989586621680490417 ((~>) a6989586621680490417 Ordering)) (a6989586621680490925 :: t6989586621680490416 a6989586621680490417) = MaximumBy a6989586621680490924 a6989586621680490925 Source #

data MinimumBySym0 :: forall a6989586621680490415 t6989586621680490414. (~>) ((~>) a6989586621680490415 ((~>) a6989586621680490415 Ordering)) ((~>) (t6989586621680490414 a6989586621680490415) a6989586621680490415) Source #

Instances

Instances details
SFoldable t => SingI (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MinimumBySym0 :: TyFun (a6989586621680490415 ~> (a6989586621680490415 ~> Ordering)) (t6989586621680490414 a6989586621680490415 ~> a6989586621680490415) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym0 :: TyFun (a6989586621680490415 ~> (a6989586621680490415 ~> Ordering)) (t6989586621680490414 a6989586621680490415 ~> a6989586621680490415) -> Type) (a6989586621680490899 :: a6989586621680490415 ~> (a6989586621680490415 ~> Ordering)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym0 :: TyFun (a6989586621680490415 ~> (a6989586621680490415 ~> Ordering)) (t6989586621680490414 a6989586621680490415 ~> a6989586621680490415) -> Type) (a6989586621680490899 :: a6989586621680490415 ~> (a6989586621680490415 ~> Ordering)) = MinimumBySym1 a6989586621680490899 t6989586621680490414 :: TyFun (t6989586621680490414 a6989586621680490415) a6989586621680490415 -> Type

data MinimumBySym1 (a6989586621680490899 :: (~>) a6989586621680490415 ((~>) a6989586621680490415 Ordering)) :: forall t6989586621680490414. (~>) (t6989586621680490414 a6989586621680490415) a6989586621680490415 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (MinimumBySym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (MinimumBySym1 d t) Source #

SuppressUnusedWarnings (MinimumBySym1 a6989586621680490899 t6989586621680490414 :: TyFun (t6989586621680490414 a6989586621680490415) a6989586621680490415 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym1 a6989586621680490899 t :: TyFun (t a) a -> Type) (a6989586621680490900 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym1 a6989586621680490899 t :: TyFun (t a) a -> Type) (a6989586621680490900 :: t a) = MinimumBy a6989586621680490899 a6989586621680490900

type MinimumBySym2 (a6989586621680490899 :: (~>) a6989586621680490415 ((~>) a6989586621680490415 Ordering)) (a6989586621680490900 :: t6989586621680490414 a6989586621680490415) = MinimumBy a6989586621680490899 a6989586621680490900 Source #

data NotElemSym0 :: forall a6989586621680490413 t6989586621680490412. (~>) a6989586621680490413 ((~>) (t6989586621680490412 a6989586621680490413) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (NotElemSym0 :: TyFun a6989586621680490413 (t6989586621680490412 a6989586621680490413 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym0 :: TyFun a6989586621680490413 (t6989586621680490412 a6989586621680490413 ~> Bool) -> Type) (a6989586621680490891 :: a6989586621680490413) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym0 :: TyFun a6989586621680490413 (t6989586621680490412 a6989586621680490413 ~> Bool) -> Type) (a6989586621680490891 :: a6989586621680490413) = NotElemSym1 a6989586621680490891 t6989586621680490412 :: TyFun (t6989586621680490412 a6989586621680490413) Bool -> Type

data NotElemSym1 (a6989586621680490891 :: a6989586621680490413) :: forall t6989586621680490412. (~>) (t6989586621680490412 a6989586621680490413) Bool Source #

Instances

Instances details
(SFoldable t, SEq a, SingI d) => SingI (NotElemSym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (NotElemSym1 d t) Source #

SuppressUnusedWarnings (NotElemSym1 a6989586621680490891 t6989586621680490412 :: TyFun (t6989586621680490412 a6989586621680490413) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym1 a6989586621680490891 t :: TyFun (t a) Bool -> Type) (a6989586621680490892 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym1 a6989586621680490891 t :: TyFun (t a) Bool -> Type) (a6989586621680490892 :: t a) = NotElem a6989586621680490891 a6989586621680490892

type NotElemSym2 (a6989586621680490891 :: a6989586621680490413) (a6989586621680490892 :: t6989586621680490412 a6989586621680490413) = NotElem a6989586621680490891 a6989586621680490892 Source #

data FindSym0 :: forall a6989586621680490411 t6989586621680490410. (~>) ((~>) a6989586621680490411 Bool) ((~>) (t6989586621680490410 a6989586621680490411) (Maybe a6989586621680490411)) Source #

Instances

Instances details
SFoldable t => SingI (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FindSym0 :: TyFun (a6989586621680490411 ~> Bool) (t6989586621680490410 a6989586621680490411 ~> Maybe a6989586621680490411) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym0 :: TyFun (a6989586621680490411 ~> Bool) (t6989586621680490410 a6989586621680490411 ~> Maybe a6989586621680490411) -> Type) (a6989586621680490864 :: a6989586621680490411 ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym0 :: TyFun (a6989586621680490411 ~> Bool) (t6989586621680490410 a6989586621680490411 ~> Maybe a6989586621680490411) -> Type) (a6989586621680490864 :: a6989586621680490411 ~> Bool) = FindSym1 a6989586621680490864 t6989586621680490410 :: TyFun (t6989586621680490410 a6989586621680490411) (Maybe a6989586621680490411) -> Type

data FindSym1 (a6989586621680490864 :: (~>) a6989586621680490411 Bool) :: forall t6989586621680490410. (~>) (t6989586621680490410 a6989586621680490411) (Maybe a6989586621680490411) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FindSym1 d t :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FindSym1 d t) Source #

SuppressUnusedWarnings (FindSym1 a6989586621680490864 t6989586621680490410 :: TyFun (t6989586621680490410 a6989586621680490411) (Maybe a6989586621680490411) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym1 a6989586621680490864 t :: TyFun (t a) (Maybe a) -> Type) (a6989586621680490865 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym1 a6989586621680490864 t :: TyFun (t a) (Maybe a) -> Type) (a6989586621680490865 :: t a) = Find a6989586621680490864 a6989586621680490865

type FindSym2 (a6989586621680490864 :: (~>) a6989586621680490411 Bool) (a6989586621680490865 :: t6989586621680490410 a6989586621680490411) = Find a6989586621680490864 a6989586621680490865 Source #