{-# LANGUAGE TemplateHaskell, ScopedTypeVariables, ConstraintKinds,
GADTs, TypeApplications, TypeFamilies, UndecidableInstances,
DataKinds, PolyKinds #-}
{-# OPTIONS_GHC -Wno-orphans #-}
module Data.Singletons.TypeLits (
Nat, Symbol,
Sing, SNat(..), SSymbol(..), withKnownNat, withKnownSymbol,
Error, sError,
ErrorWithoutStackTrace, sErrorWithoutStackTrace,
Undefined, sUndefined,
KnownNat, natVal,
KnownSymbol, symbolVal,
type (^), (%^),
type (<=?), (%<=?),
TN.Log2, sLog2,
Div, sDiv, Mod, sMod, DivMod, sDivMod,
Quot, sQuot, Rem, sRem, QuotRem, sQuotRem,
ErrorSym0, ErrorSym1,
ErrorWithoutStackTraceSym0, ErrorWithoutStackTraceSym1,
UndefinedSym0,
KnownNatSym0, KnownNatSym1,
KnownSymbolSym0, KnownSymbolSym1,
type (^@#@$), type (^@#@$$), type (^@#@$$$),
type (<=?@#@$), type (<=?@#@$$), type (<=?@#@$$$),
Log2Sym0, Log2Sym1,
DivSym0, DivSym1, DivSym2,
ModSym0, ModSym1, ModSym2,
DivModSym0, DivModSym1, DivModSym2,
QuotSym0, QuotSym1, QuotSym2,
RemSym0, RemSym1, RemSym2,
QuotRemSym0, QuotRemSym1, QuotRemSym2
) where
import Data.Singletons.Internal
import Data.Singletons.Prelude.Tuple
import Data.Singletons.Promote
import Data.Singletons.ShowSing ()
import Data.Singletons.TypeLits.Internal
import Data.String (IsString(..))
import qualified GHC.TypeNats as TN
import GHC.TypeNats (Div, Mod, SomeNat(..))
import Numeric.Natural (Natural)
import Unsafe.Coerce
instance Num Nat where
+ :: Nat -> Nat -> Nat
(+) = Nat -> Nat -> Nat
forall a. a
no_term_level_nats
(-) = Nat -> Nat -> Nat
forall a. a
no_term_level_nats
* :: Nat -> Nat -> Nat
(*) = Nat -> Nat -> Nat
forall a. a
no_term_level_nats
negate :: Nat -> Nat
negate = Nat -> Nat
forall a. a
no_term_level_nats
abs :: Nat -> Nat
abs = Nat -> Nat
forall a. a
no_term_level_nats
signum :: Nat -> Nat
signum = Nat -> Nat
forall a. a
no_term_level_nats
fromInteger :: Integer -> Nat
fromInteger = Integer -> Nat
forall a. a
no_term_level_nats
instance Eq Nat where
== :: Nat -> Nat -> Bool
(==) = Nat -> Nat -> Bool
forall a. a
no_term_level_nats
instance Ord Nat where
compare :: Nat -> Nat -> Ordering
compare = Nat -> Nat -> Ordering
forall a. a
no_term_level_nats
instance Enum Nat where
toEnum :: Int -> Nat
toEnum = Int -> Nat
forall a. a
no_term_level_nats
fromEnum :: Nat -> Int
fromEnum = Nat -> Int
forall a. a
no_term_level_nats
enumFromTo :: Nat -> Nat -> [Nat]
enumFromTo = Nat -> Nat -> [Nat]
forall a. a
no_term_level_nats
enumFromThenTo :: Nat -> Nat -> Nat -> [Nat]
enumFromThenTo = Nat -> Nat -> Nat -> [Nat]
forall a. a
no_term_level_nats
instance Show Nat where
showsPrec :: Int -> Nat -> ShowS
showsPrec = Int -> Nat -> ShowS
forall a. a
no_term_level_nats
instance Eq Symbol where
== :: Symbol -> Symbol -> Bool
(==) = Symbol -> Symbol -> Bool
forall a. a
no_term_level_syms
instance Ord Symbol where
compare :: Symbol -> Symbol -> Ordering
compare = Symbol -> Symbol -> Ordering
forall a. a
no_term_level_syms
instance IsString Symbol where
fromString :: String -> Symbol
fromString = String -> Symbol
forall a. a
no_term_level_syms
instance Semigroup Symbol where
<> :: Symbol -> Symbol -> Symbol
(<>) = Symbol -> Symbol -> Symbol
forall a. a
no_term_level_syms
instance Monoid Symbol where
mempty :: Symbol
mempty = Symbol
forall a. a
no_term_level_syms
instance Show Symbol where
showsPrec :: Int -> Symbol -> ShowS
showsPrec = Int -> Symbol -> ShowS
forall a. a
no_term_level_syms
no_term_level_nats :: a
no_term_level_nats :: a
no_term_level_nats = String -> a
forall a. HasCallStack => String -> a
error "The kind `Nat` may not be used at the term level."
no_term_level_syms :: a
no_term_level_syms :: a
no_term_level_syms = String -> a
forall a. HasCallStack => String -> a
error "The kind `Symbol` may not be used at the term level."
$(genDefunSymbols [''KnownNat, ''KnownSymbol])
genLog2 :: Natural -> Natural
genLog2 :: Natural -> Natural
genLog2 x :: Natural
x = Natural -> Natural -> Natural
forall t t. (Num t, Integral t) => t -> t -> t
exactLoop 0 Natural
x
where
exactLoop :: t -> t -> t
exactLoop s :: t
s i :: t
i
| t
i t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== 1 = t
s
| t
i t -> t -> Bool
forall a. Ord a => a -> a -> Bool
< 2 = t
s
| Bool
otherwise =
let s1 :: t
s1 = t
s t -> t -> t
forall a. Num a => a -> a -> a
+ 1
in t
s1 t -> t -> t
forall a b. a -> b -> b
`seq` case t -> t -> (t, t)
forall a. Integral a => a -> a -> (a, a)
divMod t
i 2 of
(j :: t
j,r :: t
r)
| t
r t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== 0 -> t -> t -> t
exactLoop t
s1 t
j
| Bool
otherwise -> t -> t -> t
forall t t. (Num t, Integral t) => t -> t -> t
underLoop t
s1 t
j
underLoop :: t -> t -> t
underLoop s :: t
s i :: t
i
| t
i t -> t -> Bool
forall a. Ord a => a -> a -> Bool
< 2 = t
s
| Bool
otherwise = let s1 :: t
s1 = t
s t -> t -> t
forall a. Num a => a -> a -> a
+ 1 in t
s1 t -> t -> t
forall a b. a -> b -> b
`seq` t -> t -> t
underLoop t
s1 (t -> t -> t
forall a. Integral a => a -> a -> a
div t
i 2)
sLog2 :: Sing x -> Sing (TN.Log2 x)
sLog2 :: Sing x -> Sing (Log2 x)
sLog2 sx :: Sing x
sx =
let x :: Demote Nat
x = Sing x -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing x
sx
in case Demote Nat
x of
0 -> String -> SNat (Log2 x)
forall a. HasCallStack => String -> a
error "log2 of 0"
_ -> case Natural -> SomeNat
TN.someNatVal (Natural -> Natural
genLog2 Natural
Demote Nat
x) of
SomeNat (Proxy n
_ :: Proxy res) -> SNat n -> SNat (Log2 x)
forall a b. a -> b
unsafeCoerce (Sing n
forall (n :: Nat). KnownNat n => SNat n
SNat :: Sing res)
$(genDefunSymbols [''TN.Log2])
instance SingI Log2Sym0 where
sing :: Sing Log2Sym0
sing = SingFunction1 Log2Sym0 -> Sing Log2Sym0
forall k1 k (f :: k1 ~> k). SingFunction1 f -> Sing f
singFun1 forall (x :: Nat). Sing x -> Sing (Log2 x)
SingFunction1 Log2Sym0
sLog2
sDiv :: Sing x -> Sing y -> Sing (Div x y)
sDiv :: Sing x -> Sing y -> Sing (Div x y)
sDiv sx :: Sing x
sx sy :: Sing y
sy =
let x :: Demote Nat
x = Sing x -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing x
sx
y :: Demote Nat
y = Sing y -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing y
sy
res :: SomeNat
res = Natural -> SomeNat
TN.someNatVal (Natural
Demote Nat
x Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`div` Natural
Demote Nat
y)
in case SomeNat
res of
SomeNat (Proxy n
_ :: Proxy res) -> SNat n -> SNat (Div x y)
forall a b. a -> b
unsafeCoerce (Sing n
forall (n :: Nat). KnownNat n => SNat n
SNat :: Sing res)
infixl 7 `sDiv`
$(genDefunSymbols [''Div])
instance SingI DivSym0 where
sing :: Sing DivSym0
sing = SingFunction2 DivSym0 -> Sing DivSym0
forall k2 k3 k (f :: k2 ~> (k3 ~> k)). SingFunction2 f -> Sing f
singFun2 SingFunction2 DivSym0
forall (x :: Nat) (y :: Nat). Sing x -> Sing y -> Sing (Div x y)
sDiv
instance SingI x => SingI (DivSym1 x) where
sing :: Sing (DivSym1 x)
sing = SingFunction1 (DivSym1 x) -> Sing (DivSym1 x)
forall k1 k (f :: k1 ~> k). SingFunction1 f -> Sing f
singFun1 (SingFunction1 (DivSym1 x) -> Sing (DivSym1 x))
-> SingFunction1 (DivSym1 x) -> Sing (DivSym1 x)
forall a b. (a -> b) -> a -> b
$ Sing x -> Sing t -> Sing (Div x t)
forall (x :: Nat) (y :: Nat). Sing x -> Sing y -> Sing (Div x y)
sDiv (SingI x => Sing x
forall k (a :: k). SingI a => Sing a
sing @x)
sMod :: Sing x -> Sing y -> Sing (Mod x y)
sMod :: Sing x -> Sing y -> Sing (Mod x y)
sMod sx :: Sing x
sx sy :: Sing y
sy =
let x :: Demote Nat
x = Sing x -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing x
sx
y :: Demote Nat
y = Sing y -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing y
sy
res :: SomeNat
res = Natural -> SomeNat
TN.someNatVal (Natural
Demote Nat
x Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`mod` Natural
Demote Nat
y)
in case SomeNat
res of
SomeNat (Proxy n
_ :: Proxy res) -> SNat n -> SNat (Mod x y)
forall a b. a -> b
unsafeCoerce (Sing n
forall (n :: Nat). KnownNat n => SNat n
SNat :: Sing res)
infixl 7 `sMod`
$(genDefunSymbols [''Mod])
instance SingI ModSym0 where
sing :: Sing ModSym0
sing = SingFunction2 ModSym0 -> Sing ModSym0
forall k2 k3 k (f :: k2 ~> (k3 ~> k)). SingFunction2 f -> Sing f
singFun2 SingFunction2 ModSym0
forall (x :: Nat) (y :: Nat). Sing x -> Sing y -> Sing (Mod x y)
sMod
instance SingI x => SingI (ModSym1 x) where
sing :: Sing (ModSym1 x)
sing = SingFunction1 (ModSym1 x) -> Sing (ModSym1 x)
forall k1 k (f :: k1 ~> k). SingFunction1 f -> Sing f
singFun1 (SingFunction1 (ModSym1 x) -> Sing (ModSym1 x))
-> SingFunction1 (ModSym1 x) -> Sing (ModSym1 x)
forall a b. (a -> b) -> a -> b
$ Sing x -> Sing t -> Sing (Apply (ModSym1 x) t)
forall (x :: Nat) (y :: Nat). Sing x -> Sing y -> Sing (Mod x y)
sMod (Sing x -> Sing t -> Sing (Apply (ModSym1 x) t))
-> Sing x -> Sing t -> Sing (Apply (ModSym1 x) t)
forall a b. (a -> b) -> a -> b
$ SingI x => Sing x
forall k (a :: k). SingI a => Sing a
sing @x
$(promoteOnly [d|
divMod :: Nat -> Nat -> (Nat, Nat)
divMod x y = (div x y, mod x y)
quotRem :: Nat -> Nat -> (Nat, Nat)
quotRem = divMod
quot :: Nat -> Nat -> Nat
quot = div
infixl 7 `quot`
rem :: Nat -> Nat -> Nat
rem = mod
infixl 7 `rem`
|])
sDivMod :: Sing x -> Sing y -> Sing (DivMod x y)
sDivMod :: Sing x -> Sing y -> Sing (DivMod x y)
sDivMod sx :: Sing x
sx sy :: Sing y
sy =
let x :: Demote Nat
x = Sing x -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing x
sx
y :: Demote Nat
y = Sing y -> Demote Nat
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing y
sy
(q :: Natural
q,r :: Natural
r) = Natural
Demote Nat
x Natural -> Natural -> (Natural, Natural)
forall a. Integral a => a -> a -> (a, a)
`divMod` Natural
Demote Nat
y
qRes :: SomeNat
qRes = Natural -> SomeNat
TN.someNatVal Natural
q
rRes :: SomeNat
rRes = Natural -> SomeNat
TN.someNatVal Natural
r
in case (SomeNat
qRes, SomeNat
rRes) of
(SomeNat (Proxy n
_ :: Proxy q), SomeNat (Proxy n
_ :: Proxy r))
-> STuple2 '(n, n) -> STuple2 '(Div x y, Mod x y)
forall a b. a -> b
unsafeCoerce (Sing n -> Sing n -> STuple2 '(n, n)
forall a b (n :: a) (n :: b). Sing n -> Sing n -> STuple2 '(n, n)
STuple2 (Sing n
forall (n :: Nat). KnownNat n => SNat n
SNat :: Sing q) (Sing n
forall (n :: Nat). KnownNat n => SNat n
SNat :: Sing r))
sQuotRem :: Sing x -> Sing y -> Sing (QuotRem x y)
sQuotRem :: Sing x -> Sing y -> Sing (QuotRem x y)
sQuotRem = Sing x -> Sing y -> Sing (QuotRem x y)
forall (x :: Nat) (y :: Nat). Sing x -> Sing y -> Sing (DivMod x y)
sDivMod
sQuot :: Sing x -> Sing y -> Sing (Quot x y)
sQuot :: Sing x -> Sing y -> Sing (Quot x y)
sQuot = Sing x -> Sing y -> Sing (Quot x y)
forall (x :: Nat) (y :: Nat). Sing x -> Sing y -> Sing (Div x y)
sDiv
infixl 7 `sQuot`
sRem :: Sing x -> Sing y -> Sing (Rem x y)
sRem :: Sing x -> Sing y -> Sing (Rem x y)
sRem = Sing x -> Sing y -> Sing (Rem x y)
forall (x :: Nat) (y :: Nat). Sing x -> Sing y -> Sing (Mod x y)
sMod
infixl 7 `sRem`