{-# LANGUAGE PatternGuards, BangPatterns, RecordWildCards #-}
{-# LANGUAGE Safe #-}
module Cryptol.TypeCheck.Solve
( simplifyAllConstraints
, proveImplication
, proveModuleTopLevel
, wfType
, wfTypeFunction
, wfTC
, defaultAndSimplify
, defaultReplExpr
) where
import Cryptol.Parser.Position(thing,emptyRange)
import Cryptol.TypeCheck.PP
import Cryptol.TypeCheck.AST
import Cryptol.TypeCheck.Monad
import Cryptol.TypeCheck.Default
import Cryptol.TypeCheck.SimpType(tWidth)
import Cryptol.TypeCheck.Error(Error(..),Warning(..))
import Cryptol.TypeCheck.Subst
(apSubst, isEmptySubst, substToList,
emptySubst,Subst,(@@), Subst, listSubst)
import qualified Cryptol.TypeCheck.SimpleSolver as Simplify
import Cryptol.TypeCheck.Solver.Types
import Cryptol.TypeCheck.Solver.Selector(tryHasGoal)
import Cryptol.TypeCheck.Solver.SMT(Solver,proveImp,isNumeric)
import Cryptol.TypeCheck.Solver.Improve(improveProp,improveProps)
import Cryptol.TypeCheck.Solver.Numeric.Interval
import Cryptol.Utils.PP (text,vcat,(<+>))
import Cryptol.Utils.Patterns(matchMaybe)
import Control.Applicative ((<|>))
import Control.Monad(mzero)
import qualified Data.Map as Map
import Data.Set ( Set )
import qualified Data.Set as Set
import Data.List(partition)
import Data.Maybe(listToMaybe)
wfTypeFunction :: TFun -> [Type] -> [Prop]
wfTypeFunction TCSub [a,b] = [ a >== b, pFin b]
wfTypeFunction TCDiv [a,b] = [ b >== tOne, pFin a ]
wfTypeFunction TCMod [a,b] = [ b >== tOne, pFin a ]
wfTypeFunction TCLenFromThen [a,b,w] =
[ pFin a, pFin b, pFin w, a =/= b, w >== tWidth a ]
wfTypeFunction TCLenFromThenTo [a,b,c] = [ pFin a, pFin b, pFin c, a =/= b ]
wfTypeFunction _ _ = []
wfTC :: TC -> [Type] -> [Prop]
wfTC TCIntMod [n] = [ pFin n, n >== tOne ]
wfTC _ _ = []
wfType :: Type -> [Prop]
wfType t =
case t of
TCon c ts ->
let ps = concatMap wfType ts
in case c of
TF f -> wfTypeFunction f ts ++ ps
TC f -> wfTC f ts ++ ps
_ -> ps
TVar _ -> []
TUser _ _ s -> wfType s
TRec fs -> concatMap (wfType . snd) fs
quickSolverIO :: Ctxt -> [Goal] -> IO (Either Goal (Subst,[Goal]))
quickSolverIO _ [] = return (Right (emptySubst, []))
quickSolverIO ctxt gs =
case quickSolver ctxt gs of
Left err ->
do msg (text "Contradiction:" <+> pp (goal err))
return (Left err)
Right (su,gs') ->
do msg (vcat (map (pp . goal) gs' ++ [pp su]))
return (Right (su,gs'))
where
msg _ = return ()
quickSolver :: Ctxt
-> [Goal]
-> Either Goal (Subst,[Goal])
quickSolver ctxt gs0 = go emptySubst [] gs0
where
go su [] [] = Right (su,[])
go su unsolved [] =
case matchMaybe (findImprovement unsolved) of
Nothing -> Right (su,unsolved)
Just (newSu, subs) -> go (newSu @@ su) [] (subs ++ apSubst newSu unsolved)
go su unsolved (g : gs) =
case Simplify.simplifyStep ctxt (goal g) of
Unsolvable _ -> Left g
Unsolved -> go su (g : unsolved) gs
SolvedIf subs ->
let cvt x = g { goal = x }
in go su unsolved (map cvt subs ++ gs)
findImprovement [] = mzero
findImprovement (g : gs) =
do (su,ps) <- improveProp False ctxt (goal g)
return (su, [ g { goal = p } | p <- ps ])
<|> findImprovement gs
defaultReplExpr :: Solver -> Expr -> Schema ->
IO (Maybe ([(TParam,Type)], Expr))
defaultReplExpr sol expr sch =
do mb <- defaultReplExpr' sol numVs numPs
case mb of
Nothing -> return Nothing
Just numBinds -> return $
do optss <- mapM tryDefVar otherVs
su <- listToMaybe
[ binds | nonSu <- sequence optss
, let binds = nonSu ++ numBinds
, validate binds ]
tys <- sequence [ lookup v su | v <- sVars sch ]
return (su, appExpr tys)
where
validate binds =
let su = listSubst [ (tpVar x, t) | (x,t) <- binds ]
in null (concatMap pSplitAnd (apSubst su (sProps sch)))
(numVs,otherVs) = partition (kindIs KNum) (sVars sch)
(numPs,otherPs) = partition isNumeric (sProps sch)
kindIs k x = kindOf x == k
gSet = goalsFromList
[ Goal { goal = p
, goalRange = emptyRange
, goalSource = CtDefaulting } | p <- otherPs ]
tryDefVar a =
do let a' = TVBound a
gt <- Map.lookup a' (literalGoals gSet)
let ok p = not (Set.member a' (fvs p))
return [ (a,t) | t <- [ tInteger, tBit, tWord (tWidth (goal gt)) ]
, ok t ]
appExpr tys = foldl (\e1 _ -> EProofApp e1)
(foldl ETApp expr tys)
(sProps sch)
defaultAndSimplify :: [TVar] -> [Goal] -> ([TVar],[Goal],Subst,[Warning])
defaultAndSimplify as gs =
let (as1, gs1, su1, ws1) = defLit
(as2, gs2, su2, ws2) = improveByDefaultingWithPure as1 gs1
in (as2,gs2,su2 @@ su1, ws1 ++ ws2)
where
defLit
| isEmptySubst su = nope
| otherwise = case quickSolver Map.empty (apSubst su gs) of
Left _ -> nope
Right (su1,gs1) -> (as1,gs1,su1@@su,ws)
where (as1,su,ws) = defaultLiterals as gs
nope = (as,gs,emptySubst,[])
simplifyAllConstraints :: InferM ()
simplifyAllConstraints =
do simpHasGoals
gs <- getGoals
case gs of
[] -> return ()
_ ->
case quickSolver Map.empty gs of
Left badG -> recordError (UnsolvedGoals True [badG])
Right (su,gs1) ->
do extendSubst su
addGoals gs1
simpHasGoals :: InferM ()
simpHasGoals = go False [] =<< getHasGoals
where
go _ [] [] = return ()
go True unsolved [] = go False [] unsolved
go False unsolved [] = mapM_ addHasGoal unsolved
go changes unsolved (g : todo) =
do (ch,solved) <- tryHasGoal g
let changes' = ch || changes
unsolved' = if solved then unsolved else g : unsolved
changes' `seq` unsolved `seq` go changes' unsolved' todo
proveModuleTopLevel :: InferM ()
proveModuleTopLevel =
do simplifyAllConstraints
gs <- getGoals
let vs = Set.toList (Set.filter isFreeTV (fvs gs))
(_,gs1,su1,ws) = defaultAndSimplify vs gs
extendSubst su1
mapM_ recordWarning ws
cs <- getParamConstraints
case cs of
[] -> addGoals gs1
_ -> do su2 <- proveImplication Nothing [] [] gs1
extendSubst su2
proveImplication :: Maybe Name -> [TParam] -> [Prop] -> [Goal] -> InferM Subst
proveImplication lnam as ps gs =
do evars <- varsWithAsmps
solver <- getSolver
extraAs <- (map mtpParam . Map.elems) <$> getParamTypes
extra <- map thing <$> getParamConstraints
(mbErr,su) <- io (proveImplicationIO solver lnam evars
(extraAs ++ as) (extra ++ ps) gs)
case mbErr of
Right ws -> mapM_ recordWarning ws
Left err -> recordError err
return su
proveImplicationIO :: Solver
-> Maybe Name
-> Set TVar
-> [TParam]
-> [Prop]
-> [Goal]
-> IO (Either Error [Warning], Subst)
proveImplicationIO _ _ _ _ [] [] = return (Right [], emptySubst)
proveImplicationIO s f varsInEnv ps asmps0 gs0 =
do let ctxt = assumptionIntervals Map.empty asmps
res <- quickSolverIO ctxt gs
case res of
Left bad -> return (Left (UnsolvedGoals True [bad]), emptySubst)
Right (su,[]) -> return (Right [], su)
Right (su,gs1) ->
do gs2 <- proveImp s asmps gs1
case gs2 of
[] -> return (Right [], su)
gs3 ->
do let free = filter isFreeTV
$ Set.toList
$ Set.difference (fvs (map goal gs3)) varsInEnv
case defaultAndSimplify free gs3 of
(_,_,newSu,_)
| isEmptySubst newSu ->
return (err gs3, su)
(_,newGs,newSu,ws) ->
do let su1 = newSu @@ su
(res1,su2) <- proveImplicationIO s f varsInEnv ps
(apSubst su1 asmps0) newGs
let su3 = su2 @@ su1
case res1 of
Left bad -> return (Left bad, su3)
Right ws1 -> return (Right (ws++ws1),su3)
where
err us = Left $ cleanupError
$ UnsolvedDelayedCt
$ DelayedCt { dctSource = f
, dctForall = ps
, dctAsmps = asmps0
, dctGoals = us
}
asmps1 = concatMap pSplitAnd asmps0
(asmps,gs) =
let gs1 = [ g { goal = p } | g <- gs0, p <- pSplitAnd (goal g)
, notElem p asmps1 ]
in case matchMaybe (improveProps True Map.empty asmps1) of
Nothing -> (asmps1,gs1)
Just (newSu,newAsmps) ->
( [ TVar x =#= t | (x,t) <- substToList newSu ]
++ newAsmps
, [ g { goal = apSubst newSu (goal g) } | g <- gs1 ]
)
cleanupError :: Error -> Error
cleanupError err =
case err of
UnsolvedDelayedCt d ->
let noInferVars = Set.null . Set.filter isFreeTV . fvs . goal
without = filter noInferVars (dctGoals d)
in UnsolvedDelayedCt $
if not (null without) then d { dctGoals = without } else d
_ -> err
assumptionIntervals :: Ctxt -> [Prop] -> Ctxt
assumptionIntervals as ps =
case computePropIntervals as ps of
NoChange -> as
InvalidInterval {} -> as
NewIntervals bs -> Map.union bs as