{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE Safe #-}
module Cryptol.TypeCheck.Subst
( Subst
, emptySubst
, singleSubst
, (@@)
, defaultingSubst
, listSubst
, isEmptySubst
, FVS(..)
, apSubstMaybe
, TVars(..)
, apSubstTypeMapKeys
, substBinds
, applySubstToVar
, substToList
) where
import Data.Maybe
import Data.Either (partitionEithers)
import qualified Data.Map.Strict as Map
import qualified Data.IntMap as IntMap
import Data.Set (Set)
import qualified Data.Set as Set
import Cryptol.TypeCheck.AST
import Cryptol.TypeCheck.PP
import Cryptol.TypeCheck.TypeMap
import qualified Cryptol.TypeCheck.SimpType as Simp
import qualified Cryptol.TypeCheck.SimpleSolver as Simp
import Cryptol.Utils.Panic(panic)
import Cryptol.Utils.Misc(anyJust)
data Subst = S { suMap :: !(Map.Map TVar Type)
, suDefaulting :: !Bool
}
deriving Show
emptySubst :: Subst
emptySubst = S { suMap = Map.empty, suDefaulting = False }
singleSubst :: TVar -> Type -> Subst
singleSubst x t = S { suMap = Map.singleton x t, suDefaulting = False }
(@@) :: Subst -> Subst -> Subst
s2 @@ s1
| Map.null (suMap s2) =
if suDefaulting s1 || not (suDefaulting s2) then
s1
else
s1{ suDefaulting = True }
s2 @@ s1 = S { suMap = Map.map (apSubst s2) (suMap s1) `Map.union` suMap s2
, suDefaulting = suDefaulting s1 || suDefaulting s2
}
defaultingSubst :: Subst -> Subst
defaultingSubst s = s { suDefaulting = True }
listSubst :: [(TVar,Type)] -> Subst
listSubst xs
| null xs = emptySubst
| otherwise = S { suMap = Map.fromList xs, suDefaulting = False }
isEmptySubst :: Subst -> Bool
isEmptySubst su = Map.null $ suMap su
substBinds :: Subst -> Set TVar
substBinds su
| suDefaulting su = Set.empty
| otherwise = Map.keysSet $ suMap su
substToList :: Subst -> [(TVar,Type)]
substToList s
| suDefaulting s = panic "substToList" ["Defaulting substitution."]
| otherwise = Map.toList (suMap s)
instance PP (WithNames Subst) where
ppPrec _ (WithNames s mp)
| null els = text "(empty substitution)"
| otherwise = text "Substitution:" $$ nest 2 (vcat (map pp1 els))
where pp1 (x,t) = ppWithNames mp x <+> text "=" <+> ppWithNames mp t
els = Map.toList (suMap s)
instance PP Subst where
ppPrec n = ppWithNamesPrec IntMap.empty n
apSubstMaybe :: Subst -> Type -> Maybe Type
apSubstMaybe su ty =
case ty of
TCon t ts ->
do ss <- anyJust (apSubstMaybe su) ts
case t of
TF f ->
Just $!
case (f,ss) of
(TCAdd,[t1,t2]) -> Simp.tAdd t1 t2
(TCSub,[t1,t2]) -> Simp.tSub t1 t2
(TCMul,[t1,t2]) -> Simp.tMul t1 t2
(TCDiv,[t1,t2]) -> Simp.tDiv t1 t2
(TCMod,[t1,t2]) -> Simp.tMod t1 t2
(TCExp,[t1,t2]) -> Simp.tExp t1 t2
(TCMin,[t1,t2]) -> Simp.tMin t1 t2
(TCMax,[t1,t2]) -> Simp.tMax t1 t2
(TCWidth,[t1]) -> Simp.tWidth t1
(TCCeilDiv,[t1,t2]) -> Simp.tCeilDiv t1 t2
(TCCeilMod,[t1,t2]) -> Simp.tCeilMod t1 t2
(TCLenFromThen,[t1,t2,t3]) -> Simp.tLenFromThen t1 t2 t3
(TCLenFromThenTo,[t1,t2,t3]) -> Simp.tLenFromThenTo t1 t2 t3
_ -> panic "apSubstMaybe" ["Unexpected type function", show t]
PC _ ->Just $! Simp.simplify Map.empty (TCon t ss)
_ -> return (TCon t ss)
TUser f ts t -> do t1 <- apSubstMaybe su t
return (TUser f (map (apSubst su) ts) t1)
TRec fs -> TRec `fmap` anyJust fld fs
where fld (x,t) = do t1 <- apSubstMaybe su t
return (x,t1)
TVar x -> applySubstToVar su x
applySubstToVar :: Subst -> TVar -> Maybe Type
applySubstToVar su x =
case Map.lookup x (suMap su) of
Just t -> Just (if suDefaulting su then apSubst su t else t)
Nothing
| suDefaulting su -> Just $! defaultFreeVar x
| otherwise -> Nothing
class TVars t where
apSubst :: Subst -> t -> t
instance TVars t => TVars (Maybe t) where
apSubst s = fmap (apSubst s)
instance TVars t => TVars [t] where
apSubst s = map (apSubst s)
instance (TVars s, TVars t) => TVars (s,t) where
apSubst s (x,y) = (apSubst s x, apSubst s y)
instance TVars Type where
apSubst su ty = fromMaybe ty (apSubstMaybe su ty)
defaultFreeVar :: TVar -> Type
defaultFreeVar x@(TVBound {}) = TVar x
defaultFreeVar (TVFree _ k _ d) =
case k of
KType -> tBit
KNum -> tNum (0 :: Int)
_ -> panic "Cryptol.TypeCheck.Subst.defaultFreeVar"
[ "Free variable of unexpected kind."
, "Source: " ++ show d
, "Kind: " ++ show (pp k) ]
instance (Functor m, TVars a) => TVars (List m a) where
apSubst su = fmap (apSubst su)
instance TVars a => TVars (TypeMap a) where
apSubst su = fmap (apSubst su)
apSubstTypeMapKeys :: Subst -> TypeMap a -> TypeMap a
apSubstTypeMapKeys su = go (\_ x -> x) id
where
go :: (a -> a -> a) -> (a -> a) -> TypeMap a -> TypeMap a
go merge atNode TM { .. } = foldl addKey tm' tys
where
addKey tm (ty,a) = insertWithTM merge ty a tm
tm' = TM { tvar = Map.fromList vars
, tcon = fmap (lgo merge atNode) tcon
, trec = fmap (lgo merge atNode) trec
}
(vars,tys) = partitionEithers
[ case applySubstToVar su v of
Just ty -> Right (ty,a')
Nothing -> Left (v, a')
| (v,a) <- Map.toList tvar
, let a' = atNode a
]
lgo :: (a -> a -> a) -> (a -> a) -> List TypeMap a -> List TypeMap a
lgo merge atNode k = k { nil = fmap atNode (nil k)
, cons = go (unionTM merge)
(lgo merge atNode)
(cons k)
}
instance TVars Schema where
apSubst su (Forall xs ps t) = Forall xs (concatMap pSplitAnd (apSubst su ps))
(apSubst su t)
instance TVars Expr where
apSubst su = go
where
go expr =
case expr of
EApp e1 e2 -> EApp (go e1) (go e2)
EAbs x t e1 -> EAbs x (apSubst su t) (go e1)
ETAbs a e -> ETAbs a (go e)
ETApp e t -> ETApp (go e) (apSubst su t)
EProofAbs p e -> EProofAbs hmm (go e)
where hmm = case pSplitAnd (apSubst su p) of
[p1] -> p1
res -> panic "apSubst@EProofAbs"
[ "Predicate split or disappeared after"
, "we applied a substitution."
, "Predicate:"
, show (pp p)
, "Became:"
, show (map pp res)
, "subst:"
, show (pp su)
]
EProofApp e -> EProofApp (go e)
EVar {} -> expr
ETuple es -> ETuple (map go es)
ERec fs -> ERec [ (f, go e) | (f,e) <- fs ]
EList es t -> EList (map go es) (apSubst su t)
ESel e s -> ESel (go e) s
EComp len t e mss -> EComp (apSubst su len) (apSubst su t) (go e) (apSubst su mss)
EIf e1 e2 e3 -> EIf (go e1) (go e2) (go e3)
EWhere e ds -> EWhere (go e) (apSubst su ds)
instance TVars Match where
apSubst su (From x len t e) = From x (apSubst su len) (apSubst su t) (apSubst su e)
apSubst su (Let b) = Let (apSubst su b)
instance TVars DeclGroup where
apSubst su (NonRecursive d) = NonRecursive (apSubst su d)
apSubst su (Recursive ds) = Recursive (apSubst su ds)
instance TVars Decl where
apSubst su d = d { dSignature = apSubst su (dSignature d)
, dDefinition = apSubst su (dDefinition d)
}
instance TVars DeclDef where
apSubst su (DExpr e) = DExpr (apSubst su e)
apSubst _ DPrim = DPrim
instance TVars Module where
apSubst su m = m { mDecls = apSubst su (mDecls m) }