clash-prelude-0.99.1: CAES Language for Synchronous Hardware - Prelude library

Copyright(C) 2013-2016 University of Twente
2017 Myrtle Software Ltd Google Inc.
LicenseBSD2 (see the file LICENSE)
MaintainerChristiaan Baaij <christiaan.baaij@gmail.com>
Safe HaskellUnsafe
LanguageHaskell2010
Extensions
  • Cpp
  • DataKinds
  • FlexibleContexts
  • TypeOperators
  • ExplicitNamespaces

Clash.Prelude

Contents

Description

CλaSH (pronounced ‘clash’) is a functional hardware description language that borrows both its syntax and semantics from the functional programming language Haskell. The merits of using a functional language to describe hardware comes from the fact that combinational circuits can be directly modeled as mathematical functions and that functional languages lend themselves very well at describing and (de-)composing mathematical functions.

This package provides:

  • Prelude library containing datatypes and functions for circuit design

To use the library:

  • Import Clash.Prelude; by default clock and reset lines are implicitly routed for all the components found in Clash.Prelude. You can read more about implicit clock and reset lines in Clash.Signal
  • Alternatively, if you want to explicitly route clock and reset ports, for more straightforward multi-clock designs, you can import the Clash.Explicit.Prelude module. Note that you should not import Clash.Prelude and Clash.Explicit.Prelude at the same time as they have overlapping definitions.

For now, Clash.Prelude is also the best starting point for exploring the library. A preliminary version of a tutorial can be found in Clash.Tutorial. Some circuit examples can be found in Clash.Examples.

Synopsis

Creating synchronous sequential circuits

mealy Source #

Arguments

:: HiddenClockReset domain gated synchronous 
=> (s -> i -> (s, o))

Transfer function in mealy machine form: state -> input -> (newstate,output)

-> s

Initial state

-> Signal domain i -> Signal domain o

Synchronous sequential function with input and output matching that of the mealy machine

Create a synchronous function from a combinational function describing a mealy machine

macT
  :: Int        -- Current state
  -> (Int,Int)  -- Input
  -> (Int,Int)  -- (Updated state, output)
macT s (x,y) = (s',s)
  where
    s' = x * y + s

mac :: HiddenClockReset domain gated synchronous => Signal domain (Int, Int) -> Signal domain Int
mac = mealy macT 0
>>> simulate mac [(1,1),(2,2),(3,3),(4,4)]
[0,1,5,14...
...

Synchronous sequential functions can be composed just like their combinational counterpart:

dualMac
  :: HiddenClockReset domain gated synchronous
  => (Signal domain Int, Signal domain Int)
  -> (Signal domain Int, Signal domain Int)
  -> Signal domain Int
dualMac (a,b) (x,y) = s1 + s2
  where
    s1 = mealy mac 0 (bundle (a,x))
    s2 = mealy mac 0 (bundle (b,y))

mealyB Source #

Arguments

:: (Bundle i, Bundle o, HiddenClockReset domain gated synchronous) 
=> (s -> i -> (s, o))

Transfer function in mealy machine form: state -> input -> (newstate,output)

-> s

Initial state

-> Unbundled domain i -> Unbundled domain o

Synchronous sequential function with input and output matching that of the mealy machine

A version of mealy that does automatic Bundleing

Given a function f of type:

f :: Int -> (Bool, Int) -> (Int, (Int, Bool))

When we want to make compositions of f in g using mealy, we have to write:

g a b c = (b1,b2,i2)
  where
    (i1,b1) = unbundle (mealy f 0 (bundle (a,b)))
    (i2,b2) = unbundle (mealy f 3 (bundle (i1,c)))

Using mealyB however we can write:

g a b c = (b1,b2,i2)
  where
    (i1,b1) = mealyB f 0 (a,b)
    (i2,b2) = mealyB f 3 (i1,c)

(<^>) Source #

Arguments

:: (Bundle i, Bundle o, HiddenClockReset domain gated synchronous) 
=> (s -> i -> (s, o))

Transfer function in mealy machine form: state -> input -> (newstate,output)

-> s

Initial state

-> Unbundled domain i -> Unbundled domain o

Synchronous sequential function with input and output matching that of the mealy machine

Infix version of mealyB

moore Source #

Arguments

:: HiddenClockReset domain gated synchronous 
=> (s -> i -> s)

Transfer function in moore machine form: state -> input -> newstate

-> (s -> o)

Output function in moore machine form: state -> output

-> s

Initial state

-> Signal domain i -> Signal domain o

Synchronous sequential function with input and output matching that of the moore machine

Create a synchronous function from a combinational function describing a moore machine

macT :: Int        -- Current state
     -> (Int,Int)  -- Input
     -> Int        -- Updated state
macT s (x,y) = x * y + s

mac :: HiddenClockReset domain gated synchronous => Signal domain (Int, Int) -> Signal domain Int
mac = moore mac id 0
>>> simulate mac [(1,1),(2,2),(3,3),(4,4)]
[0,1,5,14...
...

Synchronous sequential functions can be composed just like their combinational counterpart:

dualMac
  :: HiddenClockReset domain gated synchronous
  => (Signal domain Int, Signal domain Int)
  -> (Signal domain Int, Signal domain Int)
  -> Signal domain Int
dualMac (a,b) (x,y) = s1 + s2
  where
    s1 = moore mac id 0 (bundle (a,x))
    s2 = moore mac id 0 (bundle (b,y))

mooreB Source #

Arguments

:: (Bundle i, Bundle o, HiddenClockReset domain gated synchronous) 
=> (s -> i -> s)

Transfer function in moore machine form: state -> input -> newstate

-> (s -> o)

Output function in moore machine form: state -> output

-> s

Initial state

-> Unbundled domain i -> Unbundled domain o

Synchronous sequential function with input and output matching that of the moore machine

A version of moore that does automatic Bundleing

Given a functions t and o of types:

t :: Int -> (Bool, Int) -> Int
o :: Int -> (Int, Bool)

When we want to make compositions of t and o in g using moore, we have to write:

g a b c = (b1,b2,i2)
  where
    (i1,b1) = unbundle (moore t o 0 (bundle (a,b)))
    (i2,b2) = unbundle (moore t o 3 (bundle (i1,c)))

Using mooreB however we can write:

g a b c = (b1,b2,i2)
  where
    (i1,b1) = mooreB t o 0 (a,b)
    (i2,b2) = mooreB t o 3 (i1,c)

registerB :: (HiddenClockReset domain gated synchronous, Bundle a) => a -> Unbundled domain a -> Unbundled domain a infixr 3 Source #

Create a register function for product-type like signals (e.g. '(Signal a, Signal b)')

rP :: HiddenClockReset domain gated synchronous
   => (Signal domain Int, Signal domain Int)
   -> (Signal domain Int, Signal domain Int)
rP = registerB (8,8)
>>> simulateB rP [(1,1),(2,2),(3,3)] :: [(Int,Int)]
[(8,8),(1,1),(2,2),(3,3)...
...

ROMs

asyncRom Source #

Arguments

:: (KnownNat n, Enum addr) 
=> Vec n a

ROM content

NB: must be a constant

-> addr

Read address rd

-> a

The value of the ROM at address rd

An asynchronous/combinational ROM with space for n elements

Additional helpful information:

asyncRomPow2 Source #

Arguments

:: KnownNat n 
=> Vec (2 ^ n) a

ROM content

NB: must be a constant

-> Unsigned n

Read address rd

-> a

The value of the ROM at address rd

An asynchronous/combinational ROM with space for 2^n elements

Additional helpful information:

rom Source #

Arguments

:: (KnownNat n, KnownNat m, HiddenClock domain gated) 
=> Vec n a

ROM content

NB: must be a constant

-> Signal domain (Unsigned m)

Read address rd

-> Signal domain a

The value of the ROM at address rd

A ROM with a synchronous read port, with space for n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined

Additional helpful information:

romPow2 Source #

Arguments

:: (KnownNat n, HiddenClock domain gated) 
=> Vec (2 ^ n) a

ROM content

NB: must be a constant

-> Signal domain (Unsigned n)

Read address rd

-> Signal domain a

The value of the ROM at address rd

A ROM with a synchronous read port, with space for 2^n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined

Additional helpful information:

ROMs initialised with a data file

asyncRomFile Source #

Arguments

:: (KnownNat m, Enum addr) 
=> SNat n

Size of the ROM

-> FilePath

File describing the content of the ROM

-> addr

Read address rd

-> BitVector m

The value of the ROM at address rd

An asynchronous/combinational ROM with space for n elements

  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:

                   | VHDL     | Verilog  | SystemVerilog |
    ===============+==========+==========+===============+
    Altera/Quartus | Broken   | Works    | Works         |
    Xilinx/ISE     | Works    | Works    | Works         |
    ASIC           | Untested | Untested | Untested      |
    ===============+==========+==========+===============+
    

Additional helpful information:

  • See Clash.Prelude.ROM.File for more information on how to instantiate a ROM with the contents of a data file.
  • See Clash.Sized.Fixed for ideas on how to create your own data files.
  • When you notice that asyncRomFile is significantly slowing down your simulation, give it a monomorphic type signature. So instead of leaving the type to be inferred:

    myRomData = asyncRomFile d512 "memory.bin"
    

    or giving it a polymorphic type signature:

    myRomData :: Enum addr => addr -> BitVector 16
    myRomData = asyncRomFile d512 "memory.bin"
    

    you should give it a monomorphic type signature:

    myRomData :: Unsigned 9 -> BitVector 16
    myRomData = asyncRomFile d512 "memory.bin"
    

asyncRomFilePow2 Source #

Arguments

:: (KnownNat m, KnownNat n) 
=> FilePath

File describing the content of the ROM

-> Unsigned n

Read address rd

-> BitVector m

The value of the ROM at address rd

An asynchronous/combinational ROM with space for 2^n elements

  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:

                   | VHDL     | Verilog  | SystemVerilog |
    ===============+==========+==========+===============+
    Altera/Quartus | Broken   | Works    | Works         |
    Xilinx/ISE     | Works    | Works    | Works         |
    ASIC           | Untested | Untested | Untested      |
    ===============+==========+==========+===============+
    

Additional helpful information:

  • See Clash.Prelude.ROM.File for more information on how to instantiate a ROM with the contents of a data file.
  • See Clash.Sized.Fixed for ideas on how to create your own data files.
  • When you notice that asyncRomFilePow2 is significantly slowing down your simulation, give it a monomorphic type signature. So instead of leaving the type to be inferred:

    myRomData = asyncRomFilePow2 "memory.bin"
    

    you should give it a monomorphic type signature:

    myRomData :: Unsigned 9 -> BitVector 16
    myRomData = asyncRomFilePow2 "memory.bin"
    

romFile Source #

Arguments

:: (KnownNat m, KnownNat n, HiddenClock domain gated) 
=> SNat n

Size of the ROM

-> FilePath

File describing the content of the ROM

-> Signal domain (Unsigned n)

Read address rd

-> Signal domain (BitVector m)

The value of the ROM at address rd from the previous clock cycle

A ROM with a synchronous read port, with space for n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined
  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:

                   | VHDL     | Verilog  | SystemVerilog |
    ===============+==========+==========+===============+
    Altera/Quartus | Broken   | Works    | Works         |
    Xilinx/ISE     | Works    | Works    | Works         |
    ASIC           | Untested | Untested | Untested      |
    ===============+==========+==========+===============+
    

Additional helpful information:

romFilePow2 Source #

Arguments

:: (KnownNat m, KnownNat n, HiddenClock domain gated) 
=> FilePath

File describing the content of the ROM

-> Signal domain (Unsigned n)

Read address rd

-> Signal domain (BitVector m)

The value of the ROM at address rd from the previous clock cycle

A ROM with a synchronous read port, with space for 2^n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined
  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:

                   | VHDL     | Verilog  | SystemVerilog |
    ===============+==========+==========+===============+
    Altera/Quartus | Broken   | Works    | Works         |
    Xilinx/ISE     | Works    | Works    | Works         |
    ASIC           | Untested | Untested | Untested      |
    ===============+==========+==========+===============+
    

Additional helpful information:

RAM primitives with a combinational read port

asyncRam Source #

Arguments

:: (Enum addr, HiddenClock domain gated, HasCallStack) 
=> SNat n

Size n of the RAM

-> Signal domain addr

Read address r

-> Signal domain (Maybe (addr, a))

(write address w, value to write)

-> Signal domain a

Value of the RAM at address r

Create a RAM with space for n elements.

Additional helpful information:

asyncRamPow2 Source #

Arguments

:: (KnownNat n, HiddenClock domain gated, HasCallStack) 
=> Signal domain (Unsigned n)

Read address r

-> Signal domain (Maybe (Unsigned n, a))

(write address w, value to write)

-> Signal domain a

Value of the RAM at address r

Create a RAM with space for 2^n elements

Additional helpful information:

BlockRAM primitives

blockRam Source #

Arguments

:: (Enum addr, HiddenClock domain gated, HasCallStack) 
=> Vec n a

Initial content of the BRAM, also determines the size, n, of the BRAM.

NB: MUST be a constant.

-> Signal domain addr

Read address r

-> Signal domain (Maybe (addr, a))

(write address w, value to write)

-> Signal domain a

Value of the blockRAM at address r from the previous clock cycle

Create a blockRAM with space for n elements.

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined
bram40
  :: HiddenClock domain
  => Signal domain (Unsigned 6)
  -> Signal domain (Maybe (Unsigned 6, Bit))
  -> Signal domain Bit
bram40 = blockRam (replicate d40 1)

Additional helpful information:

  • See Clash.Prelude.BlockRam for more information on how to use a Block RAM.
  • Use the adapter readNew for obtaining write-before-read semantics like this: readNew (blockRam inits) rd wrM.

blockRamPow2 Source #

Arguments

:: (KnownNat n, HiddenClock domain gated, HasCallStack) 
=> Vec (2 ^ n) a

Initial content of the BRAM, also determines the size, 2^n, of the BRAM.

NB: MUST be a constant.

-> Signal domain (Unsigned n)

Read address r

-> Signal domain (Maybe (Unsigned n, a))

(write address w, value to write)

-> Signal domain a

Value of the blockRAM at address r from the previous clock cycle

Create a blockRAM with space for 2^n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined
bram32
  :: HiddenClock domain
  => Signal domain (Unsigned 5)
  -> Signal domain (Maybe (Unsigned 5, Bit))
  -> Signal domain Bit
bram32 = blockRamPow2 (replicate d32 1)

Additional helpful information:

  • See Clash.Prelude.BlockRam for more information on how to use a Block RAM.
  • Use the adapter readNew for obtaining write-before-read semantics like this: readNew (blockRamPow2 inits) rd wrM.

BlockRAM primitives initialised with a data file

blockRamFile Source #

Arguments

:: (KnownNat m, Enum addr, HiddenClock domain gated, HasCallStack) 
=> SNat n

Size of the blockRAM

-> FilePath

File describing the initial content of the blockRAM

-> Signal domain addr

Read address r

-> Signal domain (Maybe (addr, BitVector m))

(write address w, value to write)

-> Signal domain (BitVector m)

Value of the blockRAM at address r from the previous clock cycle

Create a blockRAM with space for n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined
  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:

                   | VHDL     | Verilog  | SystemVerilog |
    ===============+==========+==========+===============+
    Altera/Quartus | Broken   | Works    | Works         |
    Xilinx/ISE     | Works    | Works    | Works         |
    ASIC           | Untested | Untested | Untested      |
    ===============+==========+==========+===============+
    

Additional helpful information:

  • See Clash.Prelude.BlockRam for more information on how to use a Block RAM.
  • Use the adapter readNew' for obtaining write-before-read semantics like this: readNew' clk (blockRamFile' clk size file) rd wrM.
  • See Clash.Prelude.BlockRam.File for more information on how to instantiate a Block RAM with the contents of a data file.
  • See Clash.Sized.Fixed for ideas on how to create your own data files.

blockRamFilePow2 Source #

Arguments

:: (KnownNat m, KnownNat n, HiddenClock domain gated, HasCallStack) 
=> FilePath

File describing the initial content of the blockRAM

-> Signal domain (Unsigned n)

Read address r

-> Signal domain (Maybe (Unsigned n, BitVector m))

(write address w, value to write)

-> Signal domain (BitVector m)

Value of the blockRAM at address r from the previous clock cycle

Create a blockRAM with space for 2^n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined
  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:

                   | VHDL     | Verilog  | SystemVerilog |
    ===============+==========+==========+===============+
    Altera/Quartus | Broken   | Works    | Works         |
    Xilinx/ISE     | Works    | Works    | Works         |
    ASIC           | Untested | Untested | Untested      |
    ===============+==========+==========+===============+
    

Additional helpful information:

  • See Clash.Prelude.BlockRam for more information on how to use a Block RAM.
  • Use the adapter readNew' for obtaining write-before-read semantics like this: readNew' clk (blockRamFilePow2' clk file) rd wrM.
  • See Clash.Prelude.BlockRam.File for more information on how to instantiate a Block RAM with the contents of a data file.
  • See Clash.Sized.Fixed for ideas on how to create your own data files.

BlockRAM read/write conflict resolution

readNew Source #

Arguments

:: (Eq addr, HiddenClockReset domain gated synchronous) 
=> (Signal domain addr -> Signal domain (Maybe (addr, a)) -> Signal domain a)

The ram component

-> Signal domain addr

Read address r

-> Signal domain (Maybe (addr, a))

(Write address w, value to write)

-> Signal domain a

Value of the ram at address r from the previous clock cycle

Create read-after-write blockRAM from a read-before-write one (synchronised to system clock)

>>> import Clash.Prelude
>>> :t readNew (blockRam (0 :> 1 :> Nil))
readNew (blockRam (0 :> 1 :> Nil))
  :: ...
     ... =>
     Signal domain addr
     -> Signal domain (Maybe (addr, a)) -> Signal domain a

Utility functions

window Source #

Arguments

:: (KnownNat n, Default a, HiddenClockReset domain gated synchronous) 
=> Signal domain a

Signal to create a window over

-> Vec (n + 1) (Signal domain a)

Window of at least size 1

Give a window over a Signal

window4 :: HiddenClockReset domain gated synchronous
        => Signal domain Int -> Vec 4 (Signal domain Int)
window4 = window
>>> simulateB window4 [1::Int,2,3,4,5] :: [Vec 4 Int]
[<1,0,0,0>,<2,1,0,0>,<3,2,1,0>,<4,3,2,1>,<5,4,3,2>...
...

windowD Source #

Arguments

:: (KnownNat n, Default a, HiddenClockReset domain gated synchronous) 
=> Signal domain a

Signal to create a window over

-> Vec (n + 1) (Signal domain a)

Window of at least size 1

Give a delayed window over a Signal

windowD3 :: HiddenClockReset domain gated synchronous
         => Signal domain Int -> Vec 3 (Signal domain Int)
windowD3 = windowD
>>> simulateB windowD3 [1::Int,2,3,4] :: [Vec 3 Int]
[<0,0,0>,<1,0,0>,<2,1,0>,<3,2,1>,<4,3,2>...
...

isRising Source #

Arguments

:: (HiddenClockReset domain gated synchronous, Bounded a, Eq a) 
=> a

Starting value

-> Signal domain a 
-> Signal domain Bool 

Give a pulse when the Signal goes from minBound to maxBound

isFalling Source #

Arguments

:: (HiddenClockReset domain gated synchronous, Bounded a, Eq a) 
=> a

Starting value

-> Signal domain a 
-> Signal domain Bool 

Give a pulse when the Signal goes from maxBound to minBound

riseEvery :: HiddenClockReset domain gated synchronous => SNat n -> Signal domain Bool Source #

Give a pulse every n clock cycles. This is a useful helper function when combined with functions like regEn or mux, in order to delay a register by a known amount.

To be precise: the given signal will be False for the next n-1 cycles, followed by a single True value:

>>> Prelude.last (sampleN 1024 (riseEvery d1024)) == True
True
>>> Prelude.or (sampleN 1023 (riseEvery d1024)) == False
True

For example, to update a counter once every 10 million cycles:

counter = regEn 0 (riseEvery (SNat :: SNat 10000000)) (counter + 1)

oscillate :: HiddenClockReset domain gated synchronous => Bool -> SNat n -> Signal domain Bool Source #

Oscillate a Bool for a given number of cycles. This is a convenient function when combined with something like regEn, as it allows you to easily hold a register value for a given number of cycles. The input Bool determines what the initial value is.

To oscillate on an interval of 5 cycles:

>>> sampleN 10 (oscillate False d5)
[False,False,False,False,False,True,True,True,True,True]

To oscillate between True and False:

>>> sampleN 10 (oscillate False d1)
[False,True,False,True,False,True,False,True,False,True]

An alternative definition for the above could be:

>>> let osc' = register False (not <$> osc')
>>> let sample' = sampleN 200
>>> sample' (oscillate False d1) == sample' osc'
True

Exported modules

Synchronous signals

DataFlow interface

Datatypes

Bit vectors

Arbitrary-width numbers

Fixed point numbers

Fixed size vectors

Perfect depth trees

Annotations

Type-level natural numbers

Type-level strings

Template Haskell

class Lift t where #

A Lift instance can have any of its values turned into a Template Haskell expression. This is needed when a value used within a Template Haskell quotation is bound outside the Oxford brackets ([| ... |]) but not at the top level. As an example:

add1 :: Int -> Q Exp
add1 x = [| x + 1 |]

Template Haskell has no way of knowing what value x will take on at splice-time, so it requires the type of x to be an instance of Lift.

A Lift instance must satisfy $(lift x) ≡ x for all x, where $(...) is a Template Haskell splice.

Lift instances can be derived automatically by use of the -XDeriveLift GHC language extension:

{-# LANGUAGE DeriveLift #-}
module Foo where

import Language.Haskell.TH.Syntax

data Bar a = Bar1 a (Bar a) | Bar2 String
  deriving Lift

Methods

lift :: t -> Q Exp #

Turn a value into a Template Haskell expression, suitable for use in a splice.

Instances
Lift Bool 
Instance details

Methods

lift :: Bool -> Q Exp #

Lift Char 
Instance details

Methods

lift :: Char -> Q Exp #

Lift Double 
Instance details

Methods

lift :: Double -> Q Exp #

Lift Float 
Instance details

Methods

lift :: Float -> Q Exp #

Lift Int 
Instance details

Methods

lift :: Int -> Q Exp #

Lift Int8 
Instance details

Methods

lift :: Int8 -> Q Exp #

Lift Int16 
Instance details

Methods

lift :: Int16 -> Q Exp #

Lift Int32 
Instance details

Methods

lift :: Int32 -> Q Exp #

Lift Int64 
Instance details

Methods

lift :: Int64 -> Q Exp #

Lift Integer 
Instance details

Methods

lift :: Integer -> Q Exp #

Lift Natural 
Instance details

Methods

lift :: Natural -> Q Exp #

Lift Word 
Instance details

Methods

lift :: Word -> Q Exp #

Lift Word8 
Instance details

Methods

lift :: Word8 -> Q Exp #

Lift Word16 
Instance details

Methods

lift :: Word16 -> Q Exp #

Lift Word32 
Instance details

Methods

lift :: Word32 -> Q Exp #

Lift Word64 
Instance details

Methods

lift :: Word64 -> Q Exp #

Lift () 
Instance details

Methods

lift :: () -> Q Exp #

Lift PortName # 
Instance details

Methods

lift :: PortName -> Q Exp #

Lift TopEntity # 
Instance details

Methods

lift :: TopEntity -> Q Exp #

Lift Bit # 
Instance details

Methods

lift :: Bit -> Q Exp #

Lift Half 
Instance details

Methods

lift :: Half -> Q Exp #

Lift a => Lift [a] 
Instance details

Methods

lift :: [a] -> Q Exp #

Lift a => Lift (Maybe a) 
Instance details

Methods

lift :: Maybe a -> Q Exp #

Integral a => Lift (Ratio a) 
Instance details

Methods

lift :: Ratio a -> Q Exp #

KnownNat n => Lift (BitVector n) # 
Instance details

Methods

lift :: BitVector n -> Q Exp #

KnownNat n => Lift (Index n) # 
Instance details

Methods

lift :: Index n -> Q Exp #

Lift (SNat n) # 
Instance details

Methods

lift :: SNat n -> Q Exp #

KnownNat n => Lift (Unsigned n) # 
Instance details

Methods

lift :: Unsigned n -> Q Exp #

KnownNat n => Lift (Signed n) # 
Instance details

Methods

lift :: Signed n -> Q Exp #

(Lift a, Lift b) => Lift (Either a b) 
Instance details

Methods

lift :: Either a b -> Q Exp #

(Lift a, Lift b) => Lift (a, b) 
Instance details

Methods

lift :: (a, b) -> Q Exp #

Lift a => Lift (Vec n a) # 
Instance details

Methods

lift :: Vec n a -> Q Exp #

Lift a => Lift (Signal domain a) # 
Instance details

Methods

lift :: Signal domain a -> Q Exp #

Lift a => Lift (RTree d a) # 
Instance details

Methods

lift :: RTree d a -> Q Exp #

(Lift a, Lift b, Lift c) => Lift (a, b, c) 
Instance details

Methods

lift :: (a, b, c) -> Q Exp #

(Lift (rep (int + frac)), KnownNat frac, KnownNat int, Typeable rep) => Lift (Fixed rep int frac) # 
Instance details

Methods

lift :: Fixed rep int frac -> Q Exp #

Lift a => Lift (DSignal domain delay a) # 
Instance details

Methods

lift :: DSignal domain delay a -> Q Exp #

(Lift a, Lift b, Lift c, Lift d) => Lift (a, b, c, d) 
Instance details

Methods

lift :: (a, b, c, d) -> Q Exp #

(Lift a, Lift b, Lift c, Lift d, Lift e) => Lift (a, b, c, d, e) 
Instance details

Methods

lift :: (a, b, c, d, e) -> Q Exp #

(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f) => Lift (a, b, c, d, e, f) 
Instance details

Methods

lift :: (a, b, c, d, e, f) -> Q Exp #

(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g) => Lift (a, b, c, d, e, f, g) 
Instance details

Methods

lift :: (a, b, c, d, e, f, g) -> Q Exp #

Type classes

Clash

Other

module Data.Bits

Exceptions

Named types

Hidden arguments

Haskell Prelude

Clash.Prelude re-exports most of the Haskell Prelude with the exception of the following: (++), (!!), concat, drop, foldl, foldl1, foldr, foldr1, head, init, iterate, last, length, map, repeat, replicate, reverse, scanl, scanr, splitAt, tail, take, unzip, unzip3, zip, zip3, zipWith, zipWith3.

It instead exports the identically named functions defined in terms of Vec at Clash.Sized.Vector.

seq :: a -> b -> b #

The value of seq a b is bottom if a is bottom, and otherwise equal to b. In other words, it evaluates the first argument a to weak head normal form (WHNF). seq is usually introduced to improve performance by avoiding unneeded laziness.

A note on evaluation order: the expression seq a b does not guarantee that a will be evaluated before b. The only guarantee given by seq is that the both a and b will be evaluated before seq returns a value. In particular, this means that b may be evaluated before a. If you need to guarantee a specific order of evaluation, you must use the function pseq from the "parallel" package.

filter :: (a -> Bool) -> [a] -> [a] #

filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate; i.e.,

filter p xs = [ x | x <- xs, p x]

print :: Show a => a -> IO () #

The print function outputs a value of any printable type to the standard output device. Printable types are those that are instances of class Show; print converts values to strings for output using the show operation and adds a newline.

For example, a program to print the first 20 integers and their powers of 2 could be written as:

main = print ([(n, 2^n) | n <- [0..19]])

fst :: (a, b) -> a #

Extract the first component of a pair.

snd :: (a, b) -> b #

Extract the second component of a pair.

otherwise :: Bool #

otherwise is defined as the value True. It helps to make guards more readable. eg.

 f x | x < 0     = ...
     | otherwise = ...

($) :: (a -> b) -> a -> b infixr 0 #

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

f $ g $ h x  =  f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

fromIntegral :: (Integral a, Num b) => a -> b #

general coercion from integral types

realToFrac :: (Real a, Fractional b) => a -> b #

general coercion to fractional types

class Bounded a where #

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded.

Minimal complete definition

minBound, maxBound

Methods

minBound :: a #

maxBound :: a #

Instances
Bounded Bool

Since: 2.1

Instance details
Bounded Char

Since: 2.1

Instance details
Bounded Int

Since: 2.1

Instance details

Methods

minBound :: Int #

maxBound :: Int #

Bounded Int8

Since: 2.1

Instance details
Bounded Int16

Since: 2.1

Instance details
Bounded Int32

Since: 2.1

Instance details
Bounded Int64

Since: 2.1

Instance details
Bounded Ordering

Since: 2.1

Instance details
Bounded Word

Since: 2.1

Instance details
Bounded Word8

Since: 2.1

Instance details
Bounded Word16

Since: 2.1

Instance details
Bounded Word32

Since: 2.1

Instance details
Bounded Word64

Since: 2.1

Instance details
Bounded VecCount

Since: 4.10.0.0

Instance details
Bounded VecElem

Since: 4.10.0.0

Instance details
Bounded ()

Since: 2.1

Instance details

Methods

minBound :: () #

maxBound :: () #

Bounded All 
Instance details

Methods

minBound :: All #

maxBound :: All #

Bounded Any 
Instance details

Methods

minBound :: Any #

maxBound :: Any #

Bounded Associativity 
Instance details
Bounded SourceUnpackedness 
Instance details
Bounded SourceStrictness 
Instance details
Bounded DecidedStrictness 
Instance details
Bounded CChar 
Instance details
Bounded CSChar 
Instance details
Bounded CUChar 
Instance details
Bounded CShort 
Instance details
Bounded CUShort 
Instance details
Bounded CInt 
Instance details
Bounded CUInt 
Instance details
Bounded CLong 
Instance details
Bounded CULong 
Instance details
Bounded CLLong 
Instance details
Bounded CULLong 
Instance details
Bounded CBool 
Instance details
Bounded CPtrdiff 
Instance details
Bounded CSize 
Instance details
Bounded CWchar 
Instance details
Bounded CSigAtomic 
Instance details
Bounded CIntPtr 
Instance details
Bounded CUIntPtr 
Instance details
Bounded CIntMax 
Instance details
Bounded CUIntMax 
Instance details
Bounded GeneralCategory 
Instance details
Bounded Bit # 
Instance details

Methods

minBound :: Bit #

maxBound :: Bit #

a :=> (Bounded (Dict a)) 
Instance details

Methods

ins :: a :- Bounded (Dict a)

() :=> (Bounded Bool) 
Instance details

Methods

ins :: () :- Bounded Bool

() :=> (Bounded Char) 
Instance details

Methods

ins :: () :- Bounded Char

() :=> (Bounded Int) 
Instance details

Methods

ins :: () :- Bounded Int

() :=> (Bounded Ordering) 
Instance details

Methods

ins :: () :- Bounded Ordering

() :=> (Bounded Word) 
Instance details

Methods

ins :: () :- Bounded Word

() :=> (Bounded ()) 
Instance details

Methods

ins :: () :- Bounded ()

Class () (Bounded a) 
Instance details

Methods

cls :: Bounded a :- ()

Bounded a => Bounded (Min a) 
Instance details

Methods

minBound :: Min a #

maxBound :: Min a #

Bounded a => Bounded (Max a) 
Instance details

Methods

minBound :: Max a #

maxBound :: Max a #

Bounded a => Bounded (First a) 
Instance details

Methods

minBound :: First a #

maxBound :: First a #

Bounded a => Bounded (Last a) 
Instance details

Methods

minBound :: Last a #

maxBound :: Last a #

Bounded m => Bounded (WrappedMonoid m) 
Instance details
Bounded a => Bounded (Identity a) 
Instance details
Bounded a => Bounded (Dual a) 
Instance details

Methods

minBound :: Dual a #

maxBound :: Dual a #

Bounded a => Bounded (Sum a) 
Instance details

Methods

minBound :: Sum a #

maxBound :: Sum a #

Bounded a => Bounded (Product a) 
Instance details
KnownNat n => Bounded (BitVector n) # 
Instance details
KnownNat n => Bounded (Index n) # 
Instance details

Methods

minBound :: Index n #

maxBound :: Index n #

(Ord a, Num a) => Bounded (Bounds a) 
Instance details

Methods

minBound :: Bounds a #

maxBound :: Bounds a #

KnownNat n => Bounded (Unsigned n) # 
Instance details
KnownNat n => Bounded (Signed n) # 
Instance details

Methods

minBound :: Signed n #

maxBound :: Signed n #

a => Bounded (Dict a) 
Instance details

Methods

minBound :: Dict a #

maxBound :: Dict a #

(Bounded a) :=> (Bounded (Identity a)) 
Instance details

Methods

ins :: Bounded a :- Bounded (Identity a)

(Bounded a) :=> (Bounded (Const a b)) 
Instance details

Methods

ins :: Bounded a :- Bounded (Const a b)

(Bounded a, Bounded b) => Bounded (a, b)

Since: 2.1

Instance details

Methods

minBound :: (a, b) #

maxBound :: (a, b) #

Bounded (Proxy t) 
Instance details

Methods

minBound :: Proxy t #

maxBound :: Proxy t #

(Bounded a, Bounded b) :=> (Bounded (a, b)) 
Instance details

Methods

ins :: (Bounded a, Bounded b) :- Bounded (a, b)

(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c) #

maxBound :: (a, b, c) #

Bounded a => Bounded (Const a b) 
Instance details

Methods

minBound :: Const a b #

maxBound :: Const a b #

a ~ b => Bounded (a :~: b)

Since: 4.7.0.0

Instance details

Methods

minBound :: a :~: b #

maxBound :: a :~: b #

Bounded b => Bounded (Tagged s b) 
Instance details

Methods

minBound :: Tagged s b #

maxBound :: Tagged s b #

Bounded (rep (int + frac)) => Bounded (Fixed rep int frac) # 
Instance details

Methods

minBound :: Fixed rep int frac #

maxBound :: Fixed rep int frac #

(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d) #

maxBound :: (a, b, c, d) #

a ~~ b => Bounded (a :~~: b)

Since: 4.10.0.0

Instance details

Methods

minBound :: a :~~: b #

maxBound :: a :~~: b #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d, e) #

maxBound :: (a, b, c, d, e) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d, e, f) #

maxBound :: (a, b, c, d, e, f) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d, e, f, g) #

maxBound :: (a, b, c, d, e, f, g) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d, e, f, g, h) #

maxBound :: (a, b, c, d, e, f, g, h) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d, e, f, g, h, i) #

maxBound :: (a, b, c, d, e, f, g, h, i) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j) #

maxBound :: (a, b, c, d, e, f, g, h, i, j) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: 2.1

Instance details

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

class Enum a where #

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

   enumFrom     x   = enumFromTo     x maxBound
   enumFromThen x y = enumFromThenTo x y bound
     where
       bound | fromEnum y >= fromEnum x = maxBound
             | otherwise                = minBound

Minimal complete definition

toEnum, fromEnum

Methods

succ :: a -> a #

the successor of a value. For numeric types, succ adds 1.

pred :: a -> a #

the predecessor of a value. For numeric types, pred subtracts 1.

toEnum :: Int -> a #

Convert from an Int.

fromEnum :: a -> Int #

Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.

enumFrom :: a -> [a] #

Used in Haskell's translation of [n..].

enumFromThen :: a -> a -> [a] #

Used in Haskell's translation of [n,n'..].

enumFromTo :: a -> a -> [a] #

Used in Haskell's translation of [n..m].

enumFromThenTo :: a -> a -> a -> [a] #

Used in Haskell's translation of [n,n'..m].

Instances
Enum Bool

Since: 2.1

Instance details

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Enum Char

Since: 2.1

Instance details

Methods

succ :: Char -> Char #

pred :: Char -> Char #

toEnum :: Int -> Char #

fromEnum :: Char -> Int #

enumFrom :: Char -> [Char] #

enumFromThen :: Char -> Char -> [Char] #

enumFromTo :: Char -> Char -> [Char] #

enumFromThenTo :: Char -> Char -> Char -> [Char] #

Enum Int

Since: 2.1

Instance details

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Enum Int8

Since: 2.1

Instance details

Methods

succ :: Int8 -> Int8 #

pred :: Int8 -> Int8 #

toEnum :: Int -> Int8 #

fromEnum :: Int8 -> Int #

enumFrom :: Int8 -> [Int8] #

enumFromThen :: Int8 -> Int8 -> [Int8] #

enumFromTo :: Int8 -> Int8 -> [Int8] #

enumFromThenTo :: Int8 -> Int8 -> Int8 -> [Int8] #

Enum Int16

Since: 2.1

Instance details
Enum Int32

Since: 2.1

Instance details
Enum Int64

Since: 2.1

Instance details
Enum Integer

Since: 2.1

Instance details
Enum Natural

Since: 4.8.0.0

Instance details
Enum Ordering

Since: 2.1

Instance details
Enum Word

Since: 2.1

Instance details

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Enum Word8

Since: 2.1

Instance details
Enum Word16

Since: 2.1

Instance details
Enum Word32

Since: 2.1

Instance details
Enum Word64

Since: 2.1

Instance details
Enum VecCount

Since: 4.10.0.0

Instance details
Enum VecElem

Since: 4.10.0.0

Instance details
Enum ()

Since: 2.1

Instance details

Methods

succ :: () -> () #

pred :: () -> () #

toEnum :: Int -> () #

fromEnum :: () -> Int #

enumFrom :: () -> [()] #

enumFromThen :: () -> () -> [()] #

enumFromTo :: () -> () -> [()] #

enumFromThenTo :: () -> () -> () -> [()] #

Enum Associativity 
Instance details
Enum SourceUnpackedness 
Instance details
Enum SourceStrictness 
Instance details
Enum DecidedStrictness 
Instance details
Enum CChar 
Instance details
Enum CSChar 
Instance details
Enum CUChar 
Instance details
Enum CShort 
Instance details
Enum CUShort 
Instance details
Enum CInt 
Instance details

Methods

succ :: CInt -> CInt #

pred :: CInt -> CInt #

toEnum :: Int -> CInt #

fromEnum :: CInt -> Int #

enumFrom :: CInt -> [CInt] #

enumFromThen :: CInt -> CInt -> [CInt] #

enumFromTo :: CInt -> CInt -> [CInt] #

enumFromThenTo :: CInt -> CInt -> CInt -> [CInt] #

Enum CUInt 
Instance details
Enum CLong 
Instance details
Enum CULong 
Instance details
Enum CLLong 
Instance details
Enum CULLong 
Instance details
Enum CBool 
Instance details
Enum CFloat 
Instance details
Enum CDouble 
Instance details
Enum CPtrdiff 
Instance details
Enum CSize 
Instance details
Enum CWchar 
Instance details
Enum CSigAtomic 
Instance details
Enum CClock 
Instance details
Enum CTime 
Instance details
Enum CUSeconds 
Instance details
Enum CSUSeconds 
Instance details
Enum CIntPtr 
Instance details
Enum CUIntPtr 
Instance details
Enum CIntMax 
Instance details
Enum CUIntMax 
Instance details
Enum GeneralCategory 
Instance details
Enum Extension 
Instance details
Enum Day 
Instance details

Methods

succ :: Day -> Day #

pred :: Day -> Day #

toEnum :: Int -> Day #

fromEnum :: Day -> Int #

enumFrom :: Day -> [Day] #

enumFromThen :: Day -> Day -> [Day] #

enumFromTo :: Day -> Day -> [Day] #

enumFromThenTo :: Day -> Day -> Day -> [Day] #

Enum Bit # 
Instance details

Methods

succ :: Bit -> Bit #

pred :: Bit -> Bit #

toEnum :: Int -> Bit #

fromEnum :: Bit -> Int #

enumFrom :: Bit -> [Bit] #

enumFromThen :: Bit -> Bit -> [Bit] #

enumFromTo :: Bit -> Bit -> [Bit] #

enumFromThenTo :: Bit -> Bit -> Bit -> [Bit] #

a :=> (Enum (Dict a)) 
Instance details

Methods

ins :: a :- Enum (Dict a)

() :=> (Enum Bool) 
Instance details

Methods

ins :: () :- Enum Bool

() :=> (Enum Char) 
Instance details

Methods

ins :: () :- Enum Char

() :=> (Enum Double) 
Instance details

Methods

ins :: () :- Enum Double

() :=> (Enum Float) 
Instance details

Methods

ins :: () :- Enum Float

() :=> (Enum Int) 
Instance details

Methods

ins :: () :- Enum Int

() :=> (Enum Integer) 
Instance details

Methods

ins :: () :- Enum Integer

() :=> (Enum Natural) 
Instance details

Methods

ins :: () :- Enum Natural

() :=> (Enum Ordering) 
Instance details

Methods

ins :: () :- Enum Ordering

() :=> (Enum Word) 
Instance details

Methods

ins :: () :- Enum Word

() :=> (Enum ()) 
Instance details

Methods

ins :: () :- Enum ()

Class () (Enum a) 
Instance details

Methods

cls :: Enum a :- ()

Integral a => Enum (Ratio a)

Since: 2.0.1

Instance details

Methods

succ :: Ratio a -> Ratio a #

pred :: Ratio a -> Ratio a #

toEnum :: Int -> Ratio a #

fromEnum :: Ratio a -> Int #

enumFrom :: Ratio a -> [Ratio a] #

enumFromThen :: Ratio a -> Ratio a -> [Ratio a] #

enumFromTo :: Ratio a -> Ratio a -> [Ratio a] #

enumFromThenTo :: Ratio a -> Ratio a -> Ratio a -> [Ratio a] #

Enum (Fixed a)

Since: 2.1

Instance details

Methods

succ :: Fixed a -> Fixed a #

pred :: Fixed a -> Fixed a #

toEnum :: Int -> Fixed a #

fromEnum :: Fixed a -> Int #

enumFrom :: Fixed a -> [Fixed a] #

enumFromThen :: Fixed a -> Fixed a -> [Fixed a] #

enumFromTo :: Fixed a -> Fixed a -> [Fixed a] #

enumFromThenTo :: Fixed a -> Fixed a -> Fixed a -> [Fixed a] #

Enum a => Enum (Min a)

Since: 4.9.0.0

Instance details

Methods

succ :: Min a -> Min a #

pred :: Min a -> Min a #

toEnum :: Int -> Min a #

fromEnum :: Min a -> Int #

enumFrom :: Min a -> [Min a] #

enumFromThen :: Min a -> Min a -> [Min a] #

enumFromTo :: Min a -> Min a -> [Min a] #

enumFromThenTo :: Min a -> Min a -> Min a -> [Min a] #

Enum a => Enum (Max a)

Since: 4.9.0.0

Instance details

Methods

succ :: Max a -> Max a #

pred :: Max a -> Max a #

toEnum :: Int -> Max a #

fromEnum :: Max a -> Int #

enumFrom :: Max a -> [Max a] #

enumFromThen :: Max a -> Max a -> [Max a] #

enumFromTo :: Max a -> Max a -> [Max a] #

enumFromThenTo :: Max a -> Max a -> Max a -> [Max a] #

Enum a => Enum (First a)

Since: 4.9.0.0

Instance details

Methods

succ :: First a -> First a #

pred :: First a -> First a #

toEnum :: Int -> First a #

fromEnum :: First a -> Int #

enumFrom :: First a -> [First a] #

enumFromThen :: First a -> First a -> [First a] #

enumFromTo :: First a -> First a -> [First a] #

enumFromThenTo :: First a -> First a -> First a -> [First a] #

Enum a => Enum (Last a)

Since: 4.9.0.0

Instance details

Methods

succ :: Last a -> Last a #

pred :: Last a -> Last a #

toEnum :: Int -> Last a #

fromEnum :: Last a -> Int #

enumFrom :: Last a -> [Last a] #

enumFromThen :: Last a -> Last a -> [Last a] #

enumFromTo :: Last a -> Last a -> [Last a] #

enumFromThenTo :: Last a -> Last a -> Last a -> [Last a] #

Enum a => Enum (WrappedMonoid a)

Since: 4.9.0.0

Instance details
Enum a => Enum (Identity a) 
Instance details
KnownNat n => Enum (BitVector n) #

The functions: enumFrom, enumFromThen, enumFromTo, and enumFromThenTo, are not synthesisable.

Instance details
KnownNat n => Enum (Index n) #

The functions: enumFrom, enumFromThen, enumFromTo, and enumFromThenTo, are not synthesisable.

Instance details

Methods

succ :: Index n -> Index n #

pred :: Index n -> Index n #

toEnum :: Int -> Index n #

fromEnum :: Index n -> Int #

enumFrom :: Index n -> [Index n] #

enumFromThen :: Index n -> Index n -> [Index n] #

enumFromTo :: Index n -> Index n -> [Index n] #

enumFromThenTo :: Index n -> Index n -> Index n -> [Index n] #

Enum a => Enum (Bounds a) 
Instance details

Methods

succ :: Bounds a -> Bounds a #

pred :: Bounds a -> Bounds a #

toEnum :: Int -> Bounds a #

fromEnum :: Bounds a -> Int #

enumFrom :: Bounds a -> [Bounds a] #

enumFromThen :: Bounds a -> Bounds a -> [Bounds a] #

enumFromTo :: Bounds a -> Bounds a -> [Bounds a] #

enumFromThenTo :: Bounds a -> Bounds a -> Bounds a -> [Bounds a] #

KnownNat n => Enum (Unsigned n) #

The functions: enumFrom, enumFromThen, enumFromTo, and enumFromThenTo, are not synthesisable.

Instance details
KnownNat n => Enum (Signed n) #

The functions: enumFrom, enumFromThen, enumFromTo, and enumFromThenTo, are not synthesisable.

Instance details

Methods

succ :: Signed n -> Signed n #

pred :: Signed n -> Signed n #

toEnum :: Int -> Signed n #

fromEnum :: Signed n -> Int #

enumFrom :: Signed n -> [Signed n] #

enumFromThen :: Signed n -> Signed n -> [Signed n] #

enumFromTo :: Signed n -> Signed n -> [Signed n] #

enumFromThenTo :: Signed n -> Signed n -> Signed n -> [Signed n] #

a => Enum (Dict a) 
Instance details

Methods

succ :: Dict a -> Dict a #

pred :: Dict a -> Dict a #

toEnum :: Int -> Dict a #

fromEnum :: Dict a -> Int #

enumFrom :: Dict a -> [Dict a] #

enumFromThen :: Dict a -> Dict a -> [Dict a] #

enumFromTo :: Dict a -> Dict a -> [Dict a] #

enumFromThenTo :: Dict a -> Dict a -> Dict a -> [Dict a] #

(Enum a) :=> (Enum (Identity a)) 
Instance details

Methods

ins :: Enum a :- Enum (Identity a)

(Enum a) :=> (Enum (Const a b)) 
Instance details

Methods

ins :: Enum a :- Enum (Const a b)

(Integral a) :=> (Enum (Ratio a)) 
Instance details

Methods

ins :: Integral a :- Enum (Ratio a)

Enum (Proxy s)

Since: 4.7.0.0

Instance details

Methods

succ :: Proxy s -> Proxy s #

pred :: Proxy s -> Proxy s #

toEnum :: Int -> Proxy s #

fromEnum :: Proxy s -> Int #

enumFrom :: Proxy s -> [Proxy s] #

enumFromThen :: Proxy s -> Proxy s -> [Proxy s] #

enumFromTo :: Proxy s -> Proxy s -> [Proxy s] #

enumFromThenTo :: Proxy s -> Proxy s -> Proxy s -> [Proxy s] #

Class (Real a, Enum a) (Integral a) 
Instance details

Methods

cls :: Integral a :- (Real a, Enum a)

Enum a => Enum (Const a b) 
Instance details

Methods

succ :: Const a b -> Const a b #

pred :: Const a b -> Const a b #

toEnum :: Int -> Const a b #

fromEnum :: Const a b -> Int #

enumFrom :: Const a b -> [Const a b] #

enumFromThen :: Const a b -> Const a b -> [Const a b] #

enumFromTo :: Const a b -> Const a b -> [Const a b] #

enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] #

Enum (f a) => Enum (Alt f a) 
Instance details

Methods

succ :: Alt f a -> Alt f a #

pred :: Alt f a -> Alt f a #

toEnum :: Int -> Alt f a #

fromEnum :: Alt f a -> Int #

enumFrom :: Alt f a -> [Alt f a] #

enumFromThen :: Alt f a -> Alt f a -> [Alt f a] #

enumFromTo :: Alt f a -> Alt f a -> [Alt f a] #

enumFromThenTo :: Alt f a -> Alt f a -> Alt f a -> [Alt f a] #

a ~ b => Enum (a :~: b)

Since: 4.7.0.0

Instance details

Methods

succ :: (a :~: b) -> a :~: b #

pred :: (a :~: b) -> a :~: b #

toEnum :: Int -> a :~: b #

fromEnum :: (a :~: b) -> Int #

enumFrom :: (a :~: b) -> [a :~: b] #

enumFromThen :: (a :~: b) -> (a :~: b) -> [a :~: b] #

enumFromTo :: (a :~: b) -> (a :~: b) -> [a :~: b] #

enumFromThenTo :: (a :~: b) -> (a :~: b) -> (a :~: b) -> [a :~: b] #

Enum a => Enum (Tagged s a) 
Instance details

Methods

succ :: Tagged s a -> Tagged s a #

pred :: Tagged s a -> Tagged s a #

toEnum :: Int -> Tagged s a #

fromEnum :: Tagged s a -> Int #

enumFrom :: Tagged s a -> [Tagged s a] #

enumFromThen :: Tagged s a -> Tagged s a -> [Tagged s a] #

enumFromTo :: Tagged s a -> Tagged s a -> [Tagged s a] #

enumFromThenTo :: Tagged s a -> Tagged s a -> Tagged s a -> [Tagged s a] #

Enum (rep (int + frac)) => Enum (Fixed rep int frac) # 
Instance details

Methods

succ :: Fixed rep int frac -> Fixed rep int frac #

pred :: Fixed rep int frac -> Fixed rep int frac #

toEnum :: Int -> Fixed rep int frac #

fromEnum :: Fixed rep int frac -> Int #

enumFrom :: Fixed rep int frac -> [Fixed rep int frac] #

enumFromThen :: Fixed rep int frac -> Fixed rep int frac -> [Fixed rep int frac] #

enumFromTo :: Fixed rep int frac -> Fixed rep int frac -> [Fixed rep int frac] #

enumFromThenTo :: Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac -> [Fixed rep int frac] #

a ~~ b => Enum (a :~~: b)

Since: 4.10.0.0

Instance details

Methods

succ :: (a :~~: b) -> a :~~: b #

pred :: (a :~~: b) -> a :~~: b #

toEnum :: Int -> a :~~: b #

fromEnum :: (a :~~: b) -> Int #

enumFrom :: (a :~~: b) -> [a :~~: b] #

enumFromThen :: (a :~~: b) -> (a :~~: b) -> [a :~~: b] #

enumFromTo :: (a :~~: b) -> (a :~~: b) -> [a :~~: b] #

enumFromThenTo :: (a :~~: b) -> (a :~~: b) -> (a :~~: b) -> [a :~~: b] #

class Eq a where #

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq.

Minimal complete definition: either == or /=.

Minimal complete definition

(==) | (/=)

Methods

(==) :: a -> a -> Bool infix 4 #

(/=) :: a -> a -> Bool infix 4 #

Instances
Eq Bool 
Instance details

Methods

(==) :: Bool -> Bool -> Bool #

(/=) :: Bool -> Bool -> Bool #

Eq Char 
Instance details

Methods

(==) :: Char -> Char -> Bool #

(/=) :: Char -> Char -> Bool #

Eq Double 
Instance details

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Eq Float 
Instance details

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Eq Int 
Instance details

Methods

(==) :: Int -> Int -> Bool #

(/=) :: Int -> Int -> Bool #

Eq Int8

Since: 2.1

Instance details

Methods

(==) :: Int8 -> Int8 -> Bool #

(/=) :: Int8 -> Int8 -> Bool #

Eq Int16

Since: 2.1

Instance details

Methods

(==) :: Int16 -> Int16 -> Bool #

(/=) :: Int16 -> Int16 -> Bool #

Eq Int32

Since: 2.1

Instance details

Methods

(==) :: Int32 -> Int32 -> Bool #

(/=) :: Int32 -> Int32 -> Bool #

Eq Int64

Since: 2.1

Instance details

Methods

(==) :: Int64 -> Int64 -> Bool #

(/=) :: Int64 -> Int64 -> Bool #

Eq Integer 
Instance details

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Eq Natural 
Instance details

Methods

(==) :: Natural -> Natural -> Bool #

(/=) :: Natural -> Natural -> Bool #

Eq Ordering 
Instance details
Eq Word 
Instance details

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Eq Word8

Since: 2.1

Instance details

Methods

(==) :: Word8 -> Word8 -> Bool #

(/=) :: Word8 -> Word8 -> Bool #

Eq Word16

Since: 2.1

Instance details

Methods

(==) :: Word16 -> Word16 -> Bool #

(/=) :: Word16 -> Word16 -> Bool #

Eq Word32

Since: 2.1

Instance details

Methods

(==) :: Word32 -> Word32 -> Bool #

(/=) :: Word32 -> Word32 -> Bool #

Eq Word64

Since: 2.1

Instance details

Methods

(==) :: Word64 -> Word64 -> Bool #

(/=) :: Word64 -> Word64 -> Bool #

Eq SomeTypeRep 
Instance details
Eq Exp 
Instance details

Methods

(==) :: Exp -> Exp -> Bool #

(/=) :: Exp -> Exp -> Bool #

Eq Match 
Instance details

Methods

(==) :: Match -> Match -> Bool #

(/=) :: Match -> Match -> Bool #

Eq Clause 
Instance details

Methods

(==) :: Clause -> Clause -> Bool #

(/=) :: Clause -> Clause -> Bool #

Eq Pat 
Instance details

Methods

(==) :: Pat -> Pat -> Bool #

(/=) :: Pat -> Pat -> Bool #

Eq Type 
Instance details

Methods

(==) :: Type -> Type -> Bool #

(/=) :: Type -> Type -> Bool #

Eq Dec 
Instance details

Methods

(==) :: Dec -> Dec -> Bool #

(/=) :: Dec -> Dec -> Bool #

Eq Name 
Instance details

Methods

(==) :: Name -> Name -> Bool #

(/=) :: Name -> Name -> Bool #

Eq FunDep 
Instance details

Methods

(==) :: FunDep -> FunDep -> Bool #

(/=) :: FunDep -> FunDep -> Bool #

Eq InjectivityAnn 
Instance details
Eq Overlap 
Instance details

Methods

(==) :: Overlap -> Overlap -> Bool #

(/=) :: Overlap -> Overlap -> Bool #

Eq DerivStrategy 
Instance details
Eq () 
Instance details

Methods

(==) :: () -> () -> Bool #

(/=) :: () -> () -> Bool #

Eq TyCon 
Instance details

Methods

(==) :: TyCon -> TyCon -> Bool #

(/=) :: TyCon -> TyCon -> Bool #

Eq Module 
Instance details

Methods

(==) :: Module -> Module -> Bool #

(/=) :: Module -> Module -> Bool #

Eq TrName 
Instance details

Methods

(==) :: TrName -> TrName -> Bool #

(/=) :: TrName -> TrName -> Bool #

Eq BigNat 
Instance details

Methods

(==) :: BigNat -> BigNat -> Bool #

(/=) :: BigNat -> BigNat -> Bool #

Eq Void

Since: 4.8.0.0

Instance details

Methods

(==) :: Void -> Void -> Bool #

(/=) :: Void -> Void -> Bool #

Eq SpecConstrAnnotation 
Instance details
Eq Constr

Equality of constructors

Since: 4.0.0.0

Instance details

Methods

(==) :: Constr -> Constr -> Bool #

(/=) :: Constr -> Constr -> Bool #

Eq DataRep 
Instance details

Methods

(==) :: DataRep -> DataRep -> Bool #

(/=) :: DataRep -> DataRep -> Bool #

Eq ConstrRep 
Instance details
Eq Fixity 
Instance details

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq Unique 
Instance details

Methods

(==) :: Unique -> Unique -> Bool #

(/=) :: Unique -> Unique -> Bool #

Eq Version

Since: 2.1

Instance details

Methods

(==) :: Version -> Version -> Bool #

(/=) :: Version -> Version -> Bool #

Eq ThreadId

Since: 4.2.0.0

Instance details
Eq BlockReason 
Instance details
Eq ThreadStatus 
Instance details
Eq AsyncException 
Instance details
Eq ArrayException 
Instance details
Eq ExitCode 
Instance details
Eq IOErrorType

Since: 4.1.0.0

Instance details
Eq MaskingState 
Instance details
Eq IOException

Since: 4.1.0.0

Instance details
Eq ErrorCall 
Instance details
Eq ArithException 
Instance details
Eq All 
Instance details

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Eq Any 
Instance details

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Eq Fixity 
Instance details

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq Associativity 
Instance details
Eq SourceUnpackedness 
Instance details
Eq SourceStrictness 
Instance details
Eq DecidedStrictness 
Instance details
Eq SomeSymbol

Since: 4.7.0.0

Instance details
Eq SomeNat

Since: 4.7.0.0

Instance details

Methods

(==) :: SomeNat -> SomeNat -> Bool #

(/=) :: SomeNat -> SomeNat -> Bool #

Eq CChar 
Instance details

Methods

(==) :: CChar -> CChar -> Bool #

(/=) :: CChar -> CChar -> Bool #

Eq CSChar 
Instance details

Methods

(==) :: CSChar -> CSChar -> Bool #

(/=) :: CSChar -> CSChar -> Bool #

Eq CUChar 
Instance details

Methods

(==) :: CUChar -> CUChar -> Bool #

(/=) :: CUChar -> CUChar -> Bool #

Eq CShort 
Instance details

Methods

(==) :: CShort -> CShort -> Bool #

(/=) :: CShort -> CShort -> Bool #

Eq CUShort 
Instance details

Methods

(==) :: CUShort -> CUShort -> Bool #

(/=) :: CUShort -> CUShort -> Bool #

Eq CInt 
Instance details

Methods

(==) :: CInt -> CInt -> Bool #

(/=) :: CInt -> CInt -> Bool #

Eq CUInt 
Instance details

Methods

(==) :: CUInt -> CUInt -> Bool #

(/=) :: CUInt -> CUInt -> Bool #

Eq CLong 
Instance details

Methods

(==) :: CLong -> CLong -> Bool #

(/=) :: CLong -> CLong -> Bool #

Eq CULong 
Instance details

Methods

(==) :: CULong -> CULong -> Bool #

(/=) :: CULong -> CULong -> Bool #

Eq CLLong 
Instance details

Methods

(==) :: CLLong -> CLLong -> Bool #

(/=) :: CLLong -> CLLong -> Bool #

Eq CULLong 
Instance details

Methods

(==) :: CULLong -> CULLong -> Bool #

(/=) :: CULLong -> CULLong -> Bool #

Eq CBool 
Instance details

Methods

(==) :: CBool -> CBool -> Bool #

(/=) :: CBool -> CBool -> Bool #

Eq CFloat 
Instance details

Methods

(==) :: CFloat -> CFloat -> Bool #

(/=) :: CFloat -> CFloat -> Bool #

Eq CDouble 
Instance details

Methods

(==) :: CDouble -> CDouble -> Bool #

(/=) :: CDouble -> CDouble -> Bool #

Eq CPtrdiff 
Instance details
Eq CSize 
Instance details

Methods

(==) :: CSize -> CSize -> Bool #

(/=) :: CSize -> CSize -> Bool #

Eq CWchar 
Instance details

Methods

(==) :: CWchar -> CWchar -> Bool #

(/=) :: CWchar -> CWchar -> Bool #

Eq CSigAtomic 
Instance details
Eq CClock 
Instance details

Methods

(==) :: CClock -> CClock -> Bool #

(/=) :: CClock -> CClock -> Bool #

Eq CTime 
Instance details

Methods

(==) :: CTime -> CTime -> Bool #

(/=) :: CTime -> CTime -> Bool #

Eq CUSeconds 
Instance details
Eq CSUSeconds 
Instance details
Eq CIntPtr 
Instance details

Methods

(==) :: CIntPtr -> CIntPtr -> Bool #

(/=) :: CIntPtr -> CIntPtr -> Bool #

Eq CUIntPtr 
Instance details
Eq CIntMax 
Instance details

Methods

(==) :: CIntMax -> CIntMax -> Bool #

(/=) :: CIntMax -> CIntMax -> Bool #

Eq CUIntMax 
Instance details
Eq Fingerprint 
Instance details
Eq Lexeme 
Instance details

Methods

(==) :: Lexeme -> Lexeme -> Bool #

(/=) :: Lexeme -> Lexeme -> Bool #

Eq Number 
Instance details

Methods

(==) :: Number -> Number -> Bool #

(/=) :: Number -> Number -> Bool #

Eq GeneralCategory 
Instance details
Eq SrcLoc 
Instance details

Methods

(==) :: SrcLoc -> SrcLoc -> Bool #

(/=) :: SrcLoc -> SrcLoc -> Bool #

Eq ByteString 
Instance details
Eq ByteString 
Instance details
Eq IntSet 
Instance details

Methods

(==) :: IntSet -> IntSet -> Bool #

(/=) :: IntSet -> IntSet -> Bool #

Eq TyVarBndr 
Instance details
Eq Extension 
Instance details
Eq ForeignSrcLang 
Instance details
Eq Doc 
Instance details

Methods

(==) :: Doc -> Doc -> Bool #

(/=) :: Doc -> Doc -> Bool #

Eq TextDetails 
Instance details
Eq Style 
Instance details

Methods

(==) :: Style -> Style -> Bool #

(/=) :: Style -> Style -> Bool #

Eq Mode 
Instance details

Methods

(==) :: Mode -> Mode -> Bool #

(/=) :: Mode -> Mode -> Bool #

Eq ModName 
Instance details

Methods

(==) :: ModName -> ModName -> Bool #

(/=) :: ModName -> ModName -> Bool #

Eq PkgName 
Instance details

Methods

(==) :: PkgName -> PkgName -> Bool #

(/=) :: PkgName -> PkgName -> Bool #

Eq Module 
Instance details

Methods

(==) :: Module -> Module -> Bool #

(/=) :: Module -> Module -> Bool #

Eq OccName 
Instance details

Methods

(==) :: OccName -> OccName -> Bool #

(/=) :: OccName -> OccName -> Bool #

Eq NameFlavour 
Instance details
Eq NameSpace 
Instance details
Eq Loc 
Instance details

Methods

(==) :: Loc -> Loc -> Bool #

(/=) :: Loc -> Loc -> Bool #

Eq Info 
Instance details

Methods

(==) :: Info -> Info -> Bool #

(/=) :: Info -> Info -> Bool #

Eq ModuleInfo 
Instance details
Eq Fixity 
Instance details

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq FixityDirection 
Instance details
Eq Lit 
Instance details

Methods

(==) :: Lit -> Lit -> Bool #

(/=) :: Lit -> Lit -> Bool #

Eq Body 
Instance details

Methods

(==) :: Body -> Body -> Bool #

(/=) :: Body -> Body -> Bool #

Eq Guard 
Instance details

Methods

(==) :: Guard -> Guard -> Bool #

(/=) :: Guard -> Guard -> Bool #

Eq Stmt 
Instance details

Methods

(==) :: Stmt -> Stmt -> Bool #

(/=) :: Stmt -> Stmt -> Bool #

Eq Range 
Instance details

Methods

(==) :: Range -> Range -> Bool #

(/=) :: Range -> Range -> Bool #

Eq DerivClause 
Instance details
Eq TypeFamilyHead 
Instance details
Eq TySynEqn 
Instance details
Eq Foreign 
Instance details

Methods

(==) :: Foreign -> Foreign -> Bool #

(/=) :: Foreign -> Foreign -> Bool #

Eq Callconv 
Instance details
Eq Safety 
Instance details

Methods

(==) :: Safety -> Safety -> Bool #

(/=) :: Safety -> Safety -> Bool #

Eq Pragma 
Instance details

Methods

(==) :: Pragma -> Pragma -> Bool #

(/=) :: Pragma -> Pragma -> Bool #

Eq Inline 
Instance details

Methods

(==) :: Inline -> Inline -> Bool #

(/=) :: Inline -> Inline -> Bool #

Eq RuleMatch 
Instance details
Eq Phases 
Instance details

Methods

(==) :: Phases -> Phases -> Bool #

(/=) :: Phases -> Phases -> Bool #

Eq RuleBndr 
Instance details
Eq AnnTarget 
Instance details
Eq SourceUnpackedness 
Instance details
Eq SourceStrictness 
Instance details
Eq DecidedStrictness 
Instance details
Eq Con 
Instance details

Methods

(==) :: Con -> Con -> Bool #

(/=) :: Con -> Con -> Bool #

Eq Bang 
Instance details

Methods

(==) :: Bang -> Bang -> Bool #

(/=) :: Bang -> Bang -> Bool #

Eq PatSynDir 
Instance details
Eq PatSynArgs 
Instance details
Eq FamilyResultSig 
Instance details
Eq TyLit 
Instance details

Methods

(==) :: TyLit -> TyLit -> Bool #

(/=) :: TyLit -> TyLit -> Bool #

Eq Role 
Instance details

Methods

(==) :: Role -> Role -> Bool #

(/=) :: Role -> Role -> Bool #

Eq AnnLookup 
Instance details
Eq LocalTime 
Instance details
Eq UniversalTime 
Instance details
Eq UTCTime 
Instance details

Methods

(==) :: UTCTime -> UTCTime -> Bool #

(/=) :: UTCTime -> UTCTime -> Bool #

Eq Day 
Instance details

Methods

(==) :: Day -> Day -> Bool #

(/=) :: Day -> Day -> Bool #

Eq HDL # 
Instance details

Methods

(==) :: HDL -> HDL -> Bool #

(/=) :: HDL -> HDL -> Bool #

Eq SaturationMode # 
Instance details
Eq Bit # 
Instance details

Methods

(==) :: Bit -> Bit -> Bool #

(/=) :: Bit -> Bit -> Bool #

Eq DefName 
Instance details

Methods

(==) :: DefName -> DefName -> Bool #

(/=) :: DefName -> DefName -> Bool #

Eq TimeLocale 
Instance details

Methods

(==) :: TimeLocale -> TimeLocale -> Bool #

(/=) :: TimeLocale -> TimeLocale -> Bool #

Eq ByteArray 
Instance details

Methods

(==) :: ByteArray -> ByteArray -> Bool #

(/=) :: ByteArray -> ByteArray -> Bool #

Eq Addr 
Instance details

Methods

(==) :: Addr -> Addr -> Bool #

(/=) :: Addr -> Addr -> Bool #

Eq ConstructorInfo 
Instance details

Methods

(==) :: ConstructorInfo -> ConstructorInfo -> Bool #

(/=) :: ConstructorInfo -> ConstructorInfo -> Bool #

Eq ConstructorVariant 
Instance details

Methods

(==) :: ConstructorVariant -> ConstructorVariant -> Bool #

(/=) :: ConstructorVariant -> ConstructorVariant -> Bool #

Eq DatatypeInfo 
Instance details

Methods

(==) :: DatatypeInfo -> DatatypeInfo -> Bool #

(/=) :: DatatypeInfo -> DatatypeInfo -> Bool #

Eq DatatypeVariant 
Instance details

Methods

(==) :: DatatypeVariant -> DatatypeVariant -> Bool #

(/=) :: DatatypeVariant -> DatatypeVariant -> Bool #

Eq FieldStrictness 
Instance details

Methods

(==) :: FieldStrictness -> FieldStrictness -> Bool #

(/=) :: FieldStrictness -> FieldStrictness -> Bool #

Eq Strictness 
Instance details

Methods

(==) :: Strictness -> Strictness -> Bool #

(/=) :: Strictness -> Strictness -> Bool #

Eq Unpackedness 
Instance details

Methods

(==) :: Unpackedness -> Unpackedness -> Bool #

(/=) :: Unpackedness -> Unpackedness -> Bool #

Eq Half 
Instance details

Methods

(==) :: Half -> Half -> Bool #

(/=) :: Half -> Half -> Bool #

Eq ResetKind # 
Instance details
Eq ClockKind # 
Instance details
Eq NewOrData 
Instance details

Methods

(==) :: NewOrData -> NewOrData -> Bool #

(/=) :: NewOrData -> NewOrData -> Bool #

() :=> (Eq Bool) 
Instance details

Methods

ins :: () :- Eq Bool

() :=> (Eq Double) 
Instance details

Methods

ins :: () :- Eq Double

() :=> (Eq Float) 
Instance details

Methods

ins :: () :- Eq Float

() :=> (Eq Int) 
Instance details

Methods

ins :: () :- Eq Int

() :=> (Eq Integer) 
Instance details

Methods

ins :: () :- Eq Integer

() :=> (Eq Natural) 
Instance details

Methods

ins :: () :- Eq Natural

() :=> (Eq Word) 
Instance details

Methods

ins :: () :- Eq Word

() :=> (Eq ()) 
Instance details

Methods

ins :: () :- Eq ()

() :=> (Eq (a :- b)) 
Instance details

Methods

ins :: () :- Eq (a :- b)

() :=> (Eq (Dict a)) 
Instance details

Methods

ins :: () :- Eq (Dict a)

Class () (Eq a) 
Instance details

Methods

cls :: Eq a :- ()

Eq a => Eq [a] 
Instance details

Methods

(==) :: [a] -> [a] -> Bool #

(/=) :: [a] -> [a] -> Bool #

Eq a => Eq (Maybe a) 
Instance details

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Eq a => Eq (Ratio a) 
Instance details

Methods

(==) :: Ratio a -> Ratio a -> Bool #

(/=) :: Ratio a -> Ratio a -> Bool #

Eq (Ptr a) 
Instance details

Methods

(==) :: Ptr a -> Ptr a -> Bool #

(/=) :: Ptr a -> Ptr a -> Bool #

Eq (FunPtr a) 
Instance details

Methods

(==) :: FunPtr a -> FunPtr a -> Bool #

(/=) :: FunPtr a -> FunPtr a -> Bool #

Eq p => Eq (Par1 p) 
Instance details

Methods

(==) :: Par1 p -> Par1 p -> Bool #

(/=) :: Par1 p -> Par1 p -> Bool #

Eq a => Eq (Complex a) 
Instance details

Methods

(==) :: Complex a -> Complex a -> Bool #

(/=) :: Complex a -> Complex a -> Bool #

Eq (Fixed a) 
Instance details

Methods

(==) :: Fixed a -> Fixed a -> Bool #

(/=) :: Fixed a -> Fixed a -> Bool #

Eq a => Eq (Min a) 
Instance details

Methods

(==) :: Min a -> Min a -> Bool #

(/=) :: Min a -> Min a -> Bool #

Eq a => Eq (Max a) 
Instance details

Methods

(==) :: Max a -> Max a -> Bool #

(/=) :: Max a -> Max a -> Bool #

Eq a => Eq (First a) 
Instance details

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a) 
Instance details

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq m => Eq (WrappedMonoid m) 
Instance details
Eq a => Eq (Option a) 
Instance details

Methods

(==) :: Option a -> Option a -> Bool #

(/=) :: Option a -> Option a -> Bool #

Eq (StableName a)

Since: 2.1

Instance details

Methods

(==) :: StableName a -> StableName a -> Bool #

(/=) :: StableName a -> StableName a -> Bool #

Eq a => Eq (ZipList a) 
Instance details

Methods

(==) :: ZipList a -> ZipList a -> Bool #

(/=) :: ZipList a -> ZipList a -> Bool #

Eq a => Eq (Identity a) 
Instance details

Methods

(==) :: Identity a -> Identity a -> Bool #

(/=) :: Identity a -> Identity a -> Bool #

Eq (TVar a)

Since: 4.8.0.0

Instance details

Methods

(==) :: TVar a -> TVar a -> Bool #

(/=) :: TVar a -> TVar a -> Bool #

Eq (IORef a)

Pointer equality.

Since: 4.1.0.0

Instance details

Methods

(==) :: IORef a -> IORef a -> Bool #

(/=) :: IORef a -> IORef a -> Bool #

Eq a => Eq (First a) 
Instance details

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a) 
Instance details

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq a => Eq (Dual a) 
Instance details

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Eq a => Eq (Sum a) 
Instance details

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Eq a => Eq (Product a) 
Instance details

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Eq a => Eq (Down a) 
Instance details

Methods

(==) :: Down a -> Down a -> Bool #

(/=) :: Down a -> Down a -> Bool #

Eq (MVar a)

Since: 4.1.0.0

Instance details

Methods

(==) :: MVar a -> MVar a -> Bool #

(/=) :: MVar a -> MVar a -> Bool #

Eq a => Eq (NonEmpty a) 
Instance details

Methods

(==) :: NonEmpty a -> NonEmpty a -> Bool #

(/=) :: NonEmpty a -> NonEmpty a -> Bool #

Eq a => Eq (IntMap a) 
Instance details

Methods

(==) :: IntMap a -> IntMap a -> Bool #

(/=) :: IntMap a -> IntMap a -> Bool #

Eq a => Eq (Tree a) 
Instance details

Methods

(==) :: Tree a -> Tree a -> Bool #

(/=) :: Tree a -> Tree a -> Bool #

Eq a => Eq (Seq a) 
Instance details

Methods

(==) :: Seq a -> Seq a -> Bool #

(/=) :: Seq a -> Seq a -> Bool #

Eq a => Eq (ViewL a) 
Instance details

Methods

(==) :: ViewL a -> ViewL a -> Bool #

(/=) :: ViewL a -> ViewL a -> Bool #

Eq a => Eq (ViewR a) 
Instance details

Methods

(==) :: ViewR a -> ViewR a -> Bool #

(/=) :: ViewR a -> ViewR a -> Bool #

Eq a => Eq (Set a) 
Instance details

Methods

(==) :: Set a -> Set a -> Bool #

(/=) :: Set a -> Set a -> Bool #

Eq (Doc a) 
Instance details

Methods

(==) :: Doc a -> Doc a -> Bool #

(/=) :: Doc a -> Doc a -> Bool #

Eq a => Eq (AnnotDetails a) 
Instance details
Eq a => Eq (Span a) 
Instance details

Methods

(==) :: Span a -> Span a -> Bool #

(/=) :: Span a -> Span a -> Bool #

Eq (BitVector n) # 
Instance details

Methods

(==) :: BitVector n -> BitVector n -> Bool #

(/=) :: BitVector n -> BitVector n -> Bool #

Eq (Index n) # 
Instance details

Methods

(==) :: Index n -> Index n -> Bool #

(/=) :: Index n -> Index n -> Bool #

Eq a => Eq (Bounds a) 
Instance details

Methods

(==) :: Bounds a -> Bounds a -> Bool #

(/=) :: Bounds a -> Bounds a -> Bool #

Eq a => Eq (DList a) 
Instance details

Methods

(==) :: DList a -> DList a -> Bool #

(/=) :: DList a -> DList a -> Bool #

Eq a => Eq (HashSet a) 
Instance details

Methods

(==) :: HashSet a -> HashSet a -> Bool #

(/=) :: HashSet a -> HashSet a -> Bool #

(Storable a, Eq a) => Eq (Vector a) 
Instance details

Methods

(==) :: Vector a -> Vector a -> Bool #

(/=) :: Vector a -> Vector a -> Bool #

(Prim a, Eq a) => Eq (Vector a) 
Instance details

Methods

(==) :: Vector a -> Vector a -> Bool #

(/=) :: Vector a -> Vector a -> Bool #

Eq a => Eq (Vector a) 
Instance details

Methods

(==) :: Vector a -> Vector a -> Bool #

(/=) :: Vector a -> Vector a -> Bool #

Eq a => Eq (Array a) 
Instance details

Methods

(==) :: Array a -> Array a -> Bool #

(/=) :: Array a -> Array a -> Bool #

Eq (Unsigned n) # 
Instance details

Methods

(==) :: Unsigned n -> Unsigned n -> Bool #

(/=) :: Unsigned n -> Unsigned n -> Bool #

Eq (Signed n) # 
Instance details

Methods

(==) :: Signed n -> Signed n -> Bool #

(/=) :: Signed n -> Signed n -> Bool #

Eq (Dict a) 
Instance details

Methods

(==) :: Dict a -> Dict a -> Bool #

(/=) :: Dict a -> Dict a -> Bool #

(Eq a) :=> (Eq [a]) 
Instance details

Methods

ins :: Eq a :- Eq [a]

(Eq a) :=> (Eq (Maybe a)) 
Instance details

Methods

ins :: Eq a :- Eq (Maybe a)

(Eq a) :=> (Eq (Complex a)) 
Instance details

Methods

ins :: Eq a :- Eq (Complex a)

(Eq a) :=> (Eq (Ratio a)) 
Instance details

Methods

ins :: Eq a :- Eq (Ratio a)

(Eq a) :=> (Eq (Identity a)) 
Instance details

Methods

ins :: Eq a :- Eq (Identity a)

(Eq a) :=> (Eq (Const a b)) 
Instance details

Methods

ins :: Eq a :- Eq (Const a b)

Class (Eq a) (Ord a) 
Instance details

Methods

cls :: Ord a :- Eq a

Class (Eq a) (Bits a) 
Instance details

Methods

cls :: Bits a :- Eq a

(Eq a, Eq b) => Eq (Either a b) 
Instance details

Methods

(==) :: Either a b -> Either a b -> Bool #

(/=) :: Either a b -> Either a b -> Bool #

Eq (V1 p)

Since: 4.9.0.0

Instance details

Methods

(==) :: V1 p -> V1 p -> Bool #

(/=) :: V1 p -> V1 p -> Bool #

Eq (U1 p)

Since: 4.9.0.0

Instance details

Methods

(==) :: U1 p -> U1 p -> Bool #

(/=) :: U1 p -> U1 p -> Bool #

Eq (TypeRep a)

Since: 2.1

Instance details

Methods

(==) :: TypeRep a -> TypeRep a -> Bool #

(/=) :: TypeRep a -> TypeRep a -> Bool #

(Eq a, Eq b) => Eq (a, b) 
Instance details

Methods

(==) :: (a, b) -> (a, b) -> Bool #

(/=) :: (a, b) -> (a, b) -> Bool #

(Ix i, Eq e) => Eq (Array i e)

Since: 2.1

Instance details

Methods

(==) :: Array i e -> Array i e -> Bool #

(/=) :: Array i e -> Array i e -> Bool #

Eq a => Eq (Arg a b)

Since: 4.9.0.0

Instance details

Methods

(==) :: Arg a b -> Arg a b -> Bool #

(/=) :: Arg a b -> Arg a b -> Bool #

Eq (Proxy s)

Since: 4.7.0.0

Instance details

Methods

(==) :: Proxy s -> Proxy s -> Bool #

(/=) :: Proxy s -> Proxy s -> Bool #

Eq (STRef s a)

Pointer equality.

Since: 2.1

Instance details

Methods

(==) :: STRef s a -> STRef s a -> Bool #

(/=) :: STRef s a -> STRef s a -> Bool #

(Eq k, Eq a) => Eq (Map k a) 
Instance details

Methods

(==) :: Map k a -> Map k a -> Bool #

(/=) :: Map k a -> Map k a -> Bool #

(KnownNat n, Eq a) => Eq (Vec n a) # 
Instance details

Methods

(==) :: Vec n a -> Vec n a -> Bool #

(/=) :: Vec n a -> Vec n a -> Bool #

(Eq i, Eq a) => Eq (Level i a) 
Instance details

Methods

(==) :: Level i a -> Level i a -> Bool #

(/=) :: Level i a -> Level i a -> Bool #

(Eq1 f, Eq a) => Eq (Cofree f a) 
Instance details

Methods

(==) :: Cofree f a -> Cofree f a -> Bool #

(/=) :: Cofree f a -> Cofree f a -> Bool #

(Eq1 f, Eq a) => Eq (Free f a) 
Instance details

Methods

(==) :: Free f a -> Free f a -> Bool #

(/=) :: Free f a -> Free f a -> Bool #

(Eq1 f, Eq a) => Eq (Yoneda f a) 
Instance details

Methods

(==) :: Yoneda f a -> Yoneda f a -> Bool #

(/=) :: Yoneda f a -> Yoneda f a -> Bool #

(Eq k, Eq v) => Eq (HashMap k v) 
Instance details

Methods

(==) :: HashMap k v -> HashMap k v -> Bool #

(/=) :: HashMap k v -> HashMap k v -> Bool #

Eq (MutableArray s a) 
Instance details

Methods

(==) :: MutableArray s a -> MutableArray s a -> Bool #

(/=) :: MutableArray s a -> MutableArray s a -> Bool #

(Eq k, Eq v) => Eq (Leaf k v) 
Instance details

Methods

(==) :: Leaf k v -> Leaf k v -> Bool #

(/=) :: Leaf k v -> Leaf k v -> Bool #

(KnownNat d, Eq a) => Eq (RTree d a) # 
Instance details

Methods

(==) :: RTree d a -> RTree d a -> Bool #

(/=) :: RTree d a -> RTree d a -> Bool #

Eq (a :- b) 
Instance details

Methods

(==) :: (a :- b) -> (a :- b) -> Bool #

(/=) :: (a :- b) -> (a :- b) -> Bool #

(Eq a, Eq b) :=> (Eq (a, b)) 
Instance details

Methods

ins :: (Eq a, Eq b) :- Eq (a, b)

(Eq a, Eq b) :=> (Eq (Either a b)) 
Instance details

Methods

ins :: (Eq a, Eq b) :- Eq (Either a b)

Eq (f p) => Eq (Rec1 f p) 
Instance details

Methods

(==) :: Rec1 f p -> Rec1 f p -> Bool #

(/=) :: Rec1 f p -> Rec1 f p -> Bool #

Eq (URec (Ptr ()) p) 
Instance details

Methods

(==) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(/=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

Eq (URec Char p) 
Instance details

Methods

(==) :: URec Char p -> URec Char p -> Bool #

(/=) :: URec Char p -> URec Char p -> Bool #

Eq (URec Double p) 
Instance details

Methods

(==) :: URec Double p -> URec Double p -> Bool #

(/=) :: URec Double p -> URec Double p -> Bool #

Eq (URec Float p) 
Instance details

Methods

(==) :: URec Float p -> URec Float p -> Bool #

(/=) :: URec Float p -> URec Float p -> Bool #

Eq (URec Int p) 
Instance details

Methods

(==) :: URec Int p -> URec Int p -> Bool #

(/=) :: URec Int p -> URec Int p -> Bool #

Eq (URec Word p) 
Instance details

Methods

(==) :: URec Word p -> URec Word p -> Bool #

(/=) :: URec Word p -> URec Word p -> Bool #

(Eq a, Eq b, Eq c) => Eq (a, b, c) 
Instance details

Methods

(==) :: (a, b, c) -> (a, b, c) -> Bool #

(/=) :: (a, b, c) -> (a, b, c) -> Bool #

Eq (STArray s i e)

Since: 2.1

Instance details

Methods

(==) :: STArray s i e -> STArray s i e -> Bool #

(/=) :: STArray s i e -> STArray s i e -> Bool #

Eq a => Eq (Const a b) 
Instance details

Methods

(==) :: Const a b -> Const a b -> Bool #

(/=) :: Const a b -> Const a b -> Bool #

Eq (f a) => Eq (Alt f a) 
Instance details

Methods

(==) :: Alt f a -> Alt f a -> Bool #

(/=) :: Alt f a -> Alt f a -> Bool #

Eq (a :~: b) 
Instance details

Methods

(==) :: (a :~: b) -> (a :~: b) -> Bool #

(/=) :: (a :~: b) -> (a :~: b) -> Bool #

(Eq e, Eq1 m, Eq a) => Eq (ErrorT e m a) 
Instance details

Methods

(==) :: ErrorT e m a -> ErrorT e m a -> Bool #

(/=) :: ErrorT e m a -> ErrorT e m a -> Bool #

Eq a => Eq (Constant a b) 
Instance details

Methods

(==) :: Constant a b -> Constant a b -> Bool #

(/=) :: Constant a b -> Constant a b -> Bool #

Eq b => Eq (Tagged s b) 
Instance details

Methods

(==) :: Tagged s b -> Tagged s b -> Bool #

(/=) :: Tagged s b -> Tagged s b -> Bool #

Eq (p (Fix p a) a) => Eq (Fix p a) 
Instance details

Methods

(==) :: Fix p a -> Fix p a -> Bool #

(/=) :: Fix p a -> Fix p a -> Bool #

Eq (p a a) => Eq (Join p a) 
Instance details

Methods

(==) :: Join p a -> Join p a -> Bool #

(/=) :: Join p a -> Join p a -> Bool #

(Eq a, Eq (f b)) => Eq (CofreeF f a b) 
Instance details

Methods

(==) :: CofreeF f a b -> CofreeF f a b -> Bool #

(/=) :: CofreeF f a b -> CofreeF f a b -> Bool #

Eq (w (CofreeF f a (CofreeT f w a))) => Eq (CofreeT f w a) 
Instance details

Methods

(==) :: CofreeT f w a -> CofreeT f w a -> Bool #

(/=) :: CofreeT f w a -> CofreeT f w a -> Bool #

(Eq1 f, Eq1 m, Eq a) => Eq (FreeT f m a) 
Instance details

Methods

(==) :: FreeT f m a -> FreeT f m a -> Bool #

(/=) :: FreeT f m a -> FreeT f m a -> Bool #

(Eq a, Eq (f b)) => Eq (FreeF f a b) 
Instance details

Methods

(==) :: FreeF f a b -> FreeF f a b -> Bool #

(/=) :: FreeF f a b -> FreeF f a b -> Bool #

Eq (rep (int + frac)) => Eq (Fixed rep int frac) # 
Instance details

Methods

(==) :: Fixed rep int frac -> Fixed rep int frac -> Bool #

(/=) :: Fixed rep int frac -> Fixed rep int frac -> Bool #

Eq c => Eq (K1 i c p) 
Instance details

Methods

(==) :: K1 i c p -> K1 i c p -> Bool #

(/=) :: K1 i c p -> K1 i c p -> Bool #

(Eq (f p), Eq (g p)) => Eq ((f :+: g) p) 
Instance details

Methods

(==) :: (f :+: g) p -> (f :+: g) p -> Bool #

(/=) :: (f :+: g) p -> (f :+: g) p -> Bool #

(Eq (f p), Eq (g p)) => Eq ((f :*: g) p) 
Instance details

Methods

(==) :: (f :*: g) p -> (f :*: g) p -> Bool #

(/=) :: (f :*: g) p -> (f :*: g) p -> Bool #

(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) 
Instance details

Methods

(==) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(/=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(Eq1 f, Eq1 g, Eq a) => Eq (Product f g a)

Since: 4.9.0.0

Instance details

Methods

(==) :: Product f g a -> Product f g a -> Bool #

(/=) :: Product f g a -> Product f g a -> Bool #

(Eq1 f, Eq1 g, Eq a) => Eq (Sum f g a)

Since: 4.9.0.0

Instance details

Methods

(==) :: Sum f g a -> Sum f g a -> Bool #

(/=) :: Sum f g a -> Sum f g a -> Bool #

Eq (a :~~: b)

Since: 4.10.0.0

Instance details

Methods

(==) :: (a :~~: b) -> (a :~~: b) -> Bool #

(/=) :: (a :~~: b) -> (a :~~: b) -> Bool #

Eq (f p) => Eq (M1 i c f p) 
Instance details

Methods

(==) :: M1 i c f p -> M1 i c f p -> Bool #

(/=) :: M1 i c f p -> M1 i c f p -> Bool #

Eq (f (g p)) => Eq ((f :.: g) p) 
Instance details

Methods

(==) :: (f :.: g) p -> (f :.: g) p -> Bool #

(/=) :: (f :.: g) p -> (f :.: g) p -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) 
Instance details

Methods

(==) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(/=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(Eq1 f, Eq1 g, Eq a) => Eq (Compose f g a)

Since: 4.9.0.0

Instance details

Methods

(==) :: Compose f g a -> Compose f g a -> Bool #

(/=) :: Compose f g a -> Compose f g a -> Bool #

Eq (f a) => Eq (Clown f a b) 
Instance details

Methods

(==) :: Clown f a b -> Clown f a b -> Bool #

(/=) :: Clown f a b -> Clown f a b -> Bool #

Eq (p b a) => Eq (Flip p a b) 
Instance details

Methods

(==) :: Flip p a b -> Flip p a b -> Bool #

(/=) :: Flip p a b -> Flip p a b -> Bool #

Eq (g b) => Eq (Joker g a b) 
Instance details

Methods

(==) :: Joker g a b -> Joker g a b -> Bool #

(/=) :: Joker g a b -> Joker g a b -> Bool #

Eq (p a b) => Eq (WrappedBifunctor p a b) 
Instance details

Methods

(==) :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> Bool #

(/=) :: WrappedBifunctor p a b -> WrappedBifunctor p a b -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) 
Instance details

Methods

(==) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(/=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(Eq (f a b), Eq (g a b)) => Eq (Product f g a b) 
Instance details

Methods

(==) :: Product f g a b -> Product f g a b -> Bool #

(/=) :: Product f g a b -> Product f g a b -> Bool #

(Eq (p a b), Eq (q a b)) => Eq (Sum p q a b) 
Instance details

Methods

(==) :: Sum p q a b -> Sum p q a b -> Bool #

(/=) :: Sum p q a b -> Sum p q a b -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) 
Instance details

Methods

(==) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(/=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

Eq (f (p a b)) => Eq (Tannen f p a b) 
Instance details

Methods

(==) :: Tannen f p a b -> Tannen f p a b -> Bool #

(/=) :: Tannen f p a b -> Tannen f p a b -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) 
Instance details

Methods

(==) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) 
Instance details

Methods

(==) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

Eq (p (f a) (g b)) => Eq (Biff p f g a b) 
Instance details

Methods

(==) :: Biff p f g a b -> Biff p f g a b -> Bool #

(/=) :: Biff p f g a b -> Biff p f g a b -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) 
Instance details

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) 
Instance details

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) 
Instance details

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) 
Instance details

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
Instance details

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 
Instance details

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

class Fractional a => Floating a where #

Trigonometric and hyperbolic functions and related functions.

Minimal complete definition

pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh

Methods

pi :: a #

exp :: a -> a #

log :: a -> a #

sqrt :: a -> a #

(**) :: a -> a -> a infixr 8 #

logBase :: a -> a -> a #

sin :: a -> a #

cos :: a -> a #

tan :: a -> a #

asin :: a -> a #

acos :: a -> a #

atan :: a -> a #

sinh :: a -> a #

cosh :: a -> a #

tanh :: a -> a #

asinh :: a -> a #

acosh :: a -> a #

atanh :: a -> a #

Instances
Floating Double

Since: 2.1

Instance details
Floating Float

Since: 2.1

Instance details
Floating CFloat 
Instance details
Floating CDouble 
Instance details
Floating Half 
Instance details

Methods

pi :: Half #

exp :: Half -> Half #

log :: Half -> Half #

sqrt :: Half -> Half #

(**) :: Half -> Half -> Half #

logBase :: Half -> Half -> Half #

sin :: Half -> Half #

cos :: Half -> Half #

tan :: Half -> Half #

asin :: Half -> Half #

acos :: Half -> Half #

atan :: Half -> Half #

sinh :: Half -> Half #

cosh :: Half -> Half #

tanh :: Half -> Half #

asinh :: Half -> Half #

acosh :: Half -> Half #

atanh :: Half -> Half #

log1p :: Half -> Half #

expm1 :: Half -> Half #

log1pexp :: Half -> Half #

log1mexp :: Half -> Half #

() :=> (Floating Double) 
Instance details

Methods

ins :: () :- Floating Double

() :=> (Floating Float) 
Instance details

Methods

ins :: () :- Floating Float

RealFloat a => Floating (Complex a)

Since: 2.1

Instance details

Methods

pi :: Complex a #

exp :: Complex a -> Complex a #

log :: Complex a -> Complex a #

sqrt :: Complex a -> Complex a #

(**) :: Complex a -> Complex a -> Complex a #

logBase :: Complex a -> Complex a -> Complex a #

sin :: Complex a -> Complex a #

cos :: Complex a -> Complex a #

tan :: Complex a -> Complex a #

asin :: Complex a -> Complex a #

acos :: Complex a -> Complex a #

atan :: Complex a -> Complex a #

sinh :: Complex a -> Complex a #

cosh :: Complex a -> Complex a #

tanh :: Complex a -> Complex a #

asinh :: Complex a -> Complex a #

acosh :: Complex a -> Complex a #

atanh :: Complex a -> Complex a #

log1p :: Complex a -> Complex a #

expm1 :: Complex a -> Complex a #

log1pexp :: Complex a -> Complex a #

log1mexp :: Complex a -> Complex a #

Floating a => Floating (Identity a) 
Instance details
(Floating a) :=> (Floating (Identity a)) 
Instance details

Methods

ins :: Floating a :- Floating (Identity a)

(Floating a) :=> (Floating (Const a b)) 
Instance details

Methods

ins :: Floating a :- Floating (Const a b)

(RealFloat a) :=> (Floating (Complex a)) 
Instance details

Methods

ins :: RealFloat a :- Floating (Complex a)

Class (Fractional a) (Floating a) 
Instance details

Methods

cls :: Floating a :- Fractional a

Floating a => Floating (Op a b) 
Instance details

Methods

pi :: Op a b #

exp :: Op a b -> Op a b #

log :: Op a b -> Op a b #

sqrt :: Op a b -> Op a b #

(**) :: Op a b -> Op a b -> Op a b #

logBase :: Op a b -> Op a b -> Op a b #

sin :: Op a b -> Op a b #

cos :: Op a b -> Op a b #

tan :: Op a b -> Op a b #

asin :: Op a b -> Op a b #

acos :: Op a b -> Op a b #

atan :: Op a b -> Op a b #

sinh :: Op a b -> Op a b #

cosh :: Op a b -> Op a b #

tanh :: Op a b -> Op a b #

asinh :: Op a b -> Op a b #

acosh :: Op a b -> Op a b #

atanh :: Op a b -> Op a b #

log1p :: Op a b -> Op a b #

expm1 :: Op a b -> Op a b #

log1pexp :: Op a b -> Op a b #

log1mexp :: Op a b -> Op a b #

Class (RealFrac a, Floating a) (RealFloat a) 
Instance details

Methods

cls :: RealFloat a :- (RealFrac a, Floating a)

Floating a => Floating (Const a b) 
Instance details

Methods

pi :: Const a b #

exp :: Const a b -> Const a b #

log :: Const a b -> Const a b #

sqrt :: Const a b -> Const a b #

(**) :: Const a b -> Const a b -> Const a b #

logBase :: Const a b -> Const a b -> Const a b #

sin :: Const a b -> Const a b #

cos :: Const a b -> Const a b #

tan :: Const a b -> Const a b #

asin :: Const a b -> Const a b #

acos :: Const a b -> Const a b #

atan :: Const a b -> Const a b #

sinh :: Const a b -> Const a b #

cosh :: Const a b -> Const a b #

tanh :: Const a b -> Const a b #

asinh :: Const a b -> Const a b #

acosh :: Const a b -> Const a b #

atanh :: Const a b -> Const a b #

log1p :: Const a b -> Const a b #

expm1 :: Const a b -> Const a b #

log1pexp :: Const a b -> Const a b #

log1mexp :: Const a b -> Const a b #

Floating a => Floating (Tagged s a) 
Instance details

Methods

pi :: Tagged s a #

exp :: Tagged s a -> Tagged s a #

log :: Tagged s a -> Tagged s a #

sqrt :: Tagged s a -> Tagged s a #

(**) :: Tagged s a -> Tagged s a -> Tagged s a #

logBase :: Tagged s a -> Tagged s a -> Tagged s a #

sin :: Tagged s a -> Tagged s a #

cos :: Tagged s a -> Tagged s a #

tan :: Tagged s a -> Tagged s a #

asin :: Tagged s a -> Tagged s a #

acos :: Tagged s a -> Tagged s a #

atan :: Tagged s a -> Tagged s a #

sinh :: Tagged s a -> Tagged s a #

cosh :: Tagged s a -> Tagged s a #

tanh :: Tagged s a -> Tagged s a #

asinh :: Tagged s a -> Tagged s a #

acosh :: Tagged s a -> Tagged s a #

atanh :: Tagged s a -> Tagged s a #

log1p :: Tagged s a -> Tagged s a #

expm1 :: Tagged s a -> Tagged s a #

log1pexp :: Tagged s a -> Tagged s a #

log1mexp :: Tagged s a -> Tagged s a #

class Num a => Fractional a where #

Fractional numbers, supporting real division.

Minimal complete definition

fromRational, (recip | (/))

Methods

(/) :: a -> a -> a infixl 7 #

fractional division

recip :: a -> a #

reciprocal fraction

fromRational :: Rational -> a #

Conversion from a Rational (that is Ratio Integer). A floating literal stands for an application of fromRational to a value of type Rational, so such literals have type (Fractional a) => a.

Instances
Fractional CFloat 
Instance details
Fractional CDouble 
Instance details
Fractional Half 
Instance details

Methods

(/) :: Half -> Half -> Half #

recip :: Half -> Half #

fromRational :: Rational -> Half #

() :=> (Fractional Double) 
Instance details

Methods

ins :: () :- Fractional Double

() :=> (Fractional Float) 
Instance details

Methods

ins :: () :- Fractional Float

Integral a => Fractional (Ratio a)

Since: 2.0.1

Instance details

Methods

(/) :: Ratio a -> Ratio a -> Ratio a #

recip :: Ratio a -> Ratio a #

fromRational :: Rational -> Ratio a #

RealFloat a => Fractional (Complex a)

Since: 2.1

Instance details

Methods

(/) :: Complex a -> Complex a -> Complex a #

recip :: Complex a -> Complex a #

fromRational :: Rational -> Complex a #

HasResolution a => Fractional (Fixed a)

Since: 2.1

Instance details

Methods

(/) :: Fixed a -> Fixed a -> Fixed a #

recip :: Fixed a -> Fixed a #

fromRational :: Rational -> Fixed a #

Fractional a => Fractional (Identity a) 
Instance details
(Fractional a) :=> (Fractional (Identity a)) 
Instance details

Methods

ins :: Fractional a :- Fractional (Identity a)

(Fractional a) :=> (Fractional (Const a b)) 
Instance details

Methods

ins :: Fractional a :- Fractional (Const a b)

(Integral a) :=> (Fractional (Ratio a)) 
Instance details

Methods

ins :: Integral a :- Fractional (Ratio a)

(RealFloat a) :=> (Fractional (Complex a)) 
Instance details

Methods

ins :: RealFloat a :- Fractional (Complex a)

Class (Fractional a) (Floating a) 
Instance details

Methods

cls :: Floating a :- Fractional a

Class (Num a) (Fractional a) 
Instance details

Methods

cls :: Fractional a :- Num a

Fractional a => Fractional (Op a b) 
Instance details

Methods

(/) :: Op a b -> Op a b -> Op a b #

recip :: Op a b -> Op a b #

fromRational :: Rational -> Op a b #

Fractional a => Fractional (Signal domain a) # 
Instance details

Methods

(/) :: Signal domain a -> Signal domain a -> Signal domain a #

recip :: Signal domain a -> Signal domain a #

fromRational :: Rational -> Signal domain a #

Class (Real a, Fractional a) (RealFrac a) 
Instance details

Methods

cls :: RealFrac a :- (Real a, Fractional a)

Fractional a => Fractional (Const a b) 
Instance details

Methods

(/) :: Const a b -> Const a b -> Const a b #

recip :: Const a b -> Const a b #

fromRational :: Rational -> Const a b #

Fractional a => Fractional (Tagged s a) 
Instance details

Methods

(/) :: Tagged s a -> Tagged s a -> Tagged s a #

recip :: Tagged s a -> Tagged s a #

fromRational :: Rational -> Tagged s a #

FracFixedC rep int frac => Fractional (Fixed rep int frac) #

The operators of this instance saturate on overflow, and use truncation as the rounding method.

When used in a polymorphic setting, use the following Constraint synonyms for less verbose type signatures:

Instance details

Methods

(/) :: Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac #

recip :: Fixed rep int frac -> Fixed rep int frac #

fromRational :: Rational -> Fixed rep int frac #

Fractional a => Fractional (DSignal domain delay a) # 
Instance details

Methods

(/) :: DSignal domain delay a -> DSignal domain delay a -> DSignal domain delay a #

recip :: DSignal domain delay a -> DSignal domain delay a #

fromRational :: Rational -> DSignal domain delay a #

class (Real a, Enum a) => Integral a where #

Integral numbers, supporting integer division.

Minimal complete definition

quotRem, toInteger

Methods

quot :: a -> a -> a infixl 7 #

integer division truncated toward zero

rem :: a -> a -> a infixl 7 #

integer remainder, satisfying

(x `quot` y)*y + (x `rem` y) == x

div :: a -> a -> a infixl 7 #

integer division truncated toward negative infinity

mod :: a -> a -> a infixl 7 #

integer modulus, satisfying

(x `div` y)*y + (x `mod` y) == x

quotRem :: a -> a -> (a, a) #

simultaneous quot and rem

divMod :: a -> a -> (a, a) #

simultaneous div and mod

toInteger :: a -> Integer #

conversion to Integer

Instances
Integral Int

Since: 2.0.1

Instance details

Methods

quot :: Int -> Int -> Int #

rem :: Int -> Int -> Int #

div :: Int -> Int -> Int #

mod :: Int -> Int -> Int #

quotRem :: Int -> Int -> (Int, Int) #

divMod :: Int -> Int -> (Int, Int) #

toInteger :: Int -> Integer #

Integral Int8

Since: 2.1

Instance details

Methods

quot :: Int8 -> Int8 -> Int8 #

rem :: Int8 -> Int8 -> Int8 #

div :: Int8 -> Int8 -> Int8 #

mod :: Int8 -> Int8 -> Int8 #

quotRem :: Int8 -> Int8 -> (Int8, Int8) #

divMod :: Int8 -> Int8 -> (Int8, Int8) #

toInteger :: Int8 -> Integer #

Integral Int16

Since: 2.1

Instance details
Integral Int32

Since: 2.1

Instance details
Integral Int64

Since: 2.1

Instance details
Integral Integer

Since: 2.0.1

Instance details
Integral Natural

Since: 4.8.0.0

Instance details
Integral Word

Since: 2.1

Instance details

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div ::