Copyright | (C) 2013-2016 University of Twente 2016-2017 Myrtle Software Ltd 2017 Google Inc. |
---|---|
License | BSD2 (see the file LICENSE) |
Maintainer | Christiaan Baaij <christiaan.baaij@gmail.com> |
Safe Haskell | Safe |
Language | Haskell2010 |
Extensions |
|
BlockRAM primitives
Using RAMs
We will show a rather elaborate example on how you can, and why you might want
to use blockRam
s. We will build a "small" CPU+Memory+Program ROM where we
will slowly evolve to using blockRams. Note that the code is not meant as a
de-facto standard on how to do CPU design in CλaSH.
We start with the definition of the Instructions, Register names and machine codes:
{-# LANGUAGE RecordWildCards, TupleSections #-} module CPU where import Clash.Prelude type InstrAddr = Unsigned 8 type MemAddr = Unsigned 5 type Value = Signed 8 data Instruction = Compute Operator Reg Reg Reg | Branch Reg Value | Jump Value | Load MemAddr Reg | Store Reg MemAddr | Nop deriving (Eq,Show) data Reg = Zero | PC | RegA | RegB | RegC | RegD | RegE deriving (Eq,Show,Enum) data Operator = Add | Sub | Incr | Imm | CmpGt deriving (Eq,Show) data MachCode = MachCode { inputX :: Reg , inputY :: Reg , result :: Reg , aluCode :: Operator , ldReg :: Reg , rdAddr :: MemAddr , wrAddrM :: Maybe MemAddr , jmpM :: Maybe Value } nullCode = MachCode { inputX = Zero, inputY = Zero, result = Zero, aluCode = Imm , ldReg = Zero, rdAddr = 0, wrAddrM = Nothing , jmpM = Nothing }
Next we define the CPU and its ALU:
cpu :: Vec 7 Value -- ^ Register bank -> (Value,Instruction) -- ^ (Memory output, Current instruction) -> ( Vec 7 Value , (MemAddr, Maybe (MemAddr,Value), InstrAddr) ) cpu regbank (memOut,instr) = (regbank',(rdAddr,(,aluOut)<$>
wrAddrM,fromIntegral ipntr)) where -- Current instruction pointer ipntr = regbank!!
PC -- Decoder (MachCode {..}) = case instr of Compute op rx ry res -> nullCode {inputX=rx,inputY=ry,result=res,aluCode=op} Branch cr a -> nullCode {inputX=cr,jmpM=Just a} Jump a -> nullCode {aluCode=Incr,jmpM=Just a} Load a r -> nullCode {ldReg=r,rdAddr=a} Store r a -> nullCode {inputX=r,wrAddrM=Just a} Nop -> nullCode -- ALU regX = regbank!!
inputX regY = regbank!!
inputY aluOut = alu aluCode regX regY -- next instruction nextPC = case jmpM of Just a | aluOut /= 0 -> ipntr + a _ -> ipntr + 1 -- update registers regbank' =replace
Zero 0 $replace
PC nextPC $replace
result aluOut $replace
ldReg memOut $ regbank alu Add x y = x + y alu Sub x y = x - y alu Incr x _ = x + 1 alu Imm x _ = x alu CmpGt x y = if x > y then 1 else 0
We initially create a memory out of simple registers:
dataMem :: HiddenClockReset domain gated synchronous => Signal domain MemAddr -- ^ Read address -> Signal domain (Maybe (MemAddr,Value)) -- ^ (write address, data in) -> Signal domain Value -- ^ data out dataMem rd wrM =mealy
dataMemT (replicate
d32 0) (bundle (rd,wrM)) where dataMemT mem (rd,wrM) = (mem',dout) where dout = mem!!
rd mem' = case wrM of Just (wr,din) ->replace
wr din mem _ -> mem
And then connect everything:
system :: (KnownNat n, HiddenClockReset domain gated synchronous) => Vec n Instruction -> Signal domain Value system instrs = memOut where memOut = dataMem rdAddr dout (rdAddr,dout,ipntr) =mealyB
cpu (replicate
d7 0) (memOut,instr) instr =asyncRom
instrs<$>
ipntr
Create a simple program that calculates the GCD of 4 and 6:
-- Compute GCD of 4 and 6 prog = -- 0 := 4 Compute Incr Zero RegA RegA :> replicate d3 (Compute Incr RegA Zero RegA) ++ Store RegA 0 :> -- 1 := 6 Compute Incr Zero RegA RegA :> replicate d5 (Compute Incr RegA Zero RegA) ++ Store RegA 1 :> -- A := 4 Load 0 RegA :> -- B := 6 Load 1 RegB :> -- start Compute CmpGt RegA RegB RegC :> Branch RegC 4 :> Compute CmpGt RegB RegA RegC :> Branch RegC 4 :> Jump 5 :> -- (a > b) Compute Sub RegA RegB RegA :> Jump (-6) :> -- (b > a) Compute Sub RegB RegA RegB :> Jump (-8) :> -- end Store RegA 2 :> Load 2 RegC :> Nil
And test our system:
>>> sampleN 31 (system prog) [0,0,0,0,0,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2]
to see that our system indeed calculates that the GCD of 6 and 4 is 2.
Improvement 1: using asyncRam
As you can see, it's fairly straightforward to build a memory using registers
and read (!!
) and write (replace
) logic. This might however not result in
the most efficient hardware structure, especially when building an ASIC.
Instead it is preferable to use the asyncRam
function which
has the potential to be translated to a more efficient structure:
system2 :: (KnownNat n, HiddenClockReset domain gated synchronous) => Vec n Instruction -> Signal domain Value system2 instrs = memOut where memOut =asyncRam
d32 rdAddr dout (rdAddr,dout,ipntr) =mealyB
cpu (replicate
d7 0) (memOut,instr) instr =asyncRom
instrs<$>
ipntr
Again, we can simulate our system and see that it works. This time however,
we need to disregard the first few output samples, because the initial content of an
asyncRam
is undefined
, and consequently, the first few
output samples are also undefined
. We use the utility function printX
to conveniently
filter out the undefinedness and replace it with the string X in the few leading outputs.
>>> printX $ sampleN 31 (system2 prog) [X,X,X,X,X,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2]
Improvement 2: using blockRam
Finally we get to using blockRam
. On FPGAs, asyncRam
will
be implemented in terms of LUTs, and therefore take up logic resources. FPGAs
also have large(r) memory structures called Block RAMs, which are preferred,
especially as the memories we need for our application get bigger. The
blockRam
function will be translated to such a Block RAM.
One important aspect of Block RAMs have a synchronous read port, meaning that,
unlike the behaviour of asyncRam
, given a read address r
at time t
, the value v
in the RAM at address r
is only available at time
t+1
.
For us that means we need to change the design of our CPU. Right now, upon a load instruction we generate a read address for the memory, and the value at that read address is immediately available to be put in the register bank. Because we will be using a BlockRAM, the value is delayed until the next cycle. We hence need to also delay the register address to which the memory address is loaded:
cpu2 :: (Vec 7 Value,Reg) -- ^ (Register bank, Load reg addr) -> (Value,Instruction) -- ^ (Memory output, Current instruction) -> ( (Vec 7 Value,Reg) , (MemAddr, Maybe (MemAddr,Value), InstrAddr) ) cpu2 (regbank,ldRegD) (memOut,instr) = ((regbank',ldRegD'),(rdAddr,(,aluOut)<$>
wrAddrM,fromIntegral ipntr)) where -- Current instruction pointer ipntr = regbank!!
PC -- Decoder (MachCode {..}) = case instr of Compute op rx ry res -> nullCode {inputX=rx,inputY=ry,result=res,aluCode=op} Branch cr a -> nullCode {inputX=cr,jmpM=Just a} Jump a -> nullCode {aluCode=Incr,jmpM=Just a} Load a r -> nullCode {ldReg=r,rdAddr=a} Store r a -> nullCode {inputX=r,wrAddrM=Just a} Nop -> nullCode -- ALU regX = regbank!!
inputX regY = regbank!!
inputY aluOut = alu aluCode regX regY -- next instruction nextPC = case jmpM of Just a | aluOut /= 0 -> ipntr + a _ -> ipntr + 1 -- update registers ldRegD' = ldReg -- Delay the ldReg by 1 cycle regbank' =replace
Zero 0 $replace
PC nextPC $replace
result aluOut $replace
ldRegD memOut $ regbank
We can now finally instantiate our system with a blockRam
:
system3 :: (KnownNat n, HiddenClockReset domain gated synchronous) => Vec n Instruction -> Signal domain Value system3 instrs = memOut where memOut =blockRam
(replicate d32 0) rdAddr dout (rdAddr,dout,ipntr) =mealyB
cpu2 ((replicate
d7 0),Zero) (memOut,instr) instr =asyncRom
instrs<$>
ipntr
We are, however, not done. We will also need to update our program. The reason
being that values that we try to load in our registers won't be loaded into the
register until the next cycle. This is a problem when the next instruction
immediately depended on this memory value. In our case, this was only the case
when the loaded the value 6
, which was stored at address 1
, into RegB
.
Our updated program is thus:
prog2 = -- 0 := 4 Compute Incr Zero RegA RegA :> replicate d3 (Compute Incr RegA Zero RegA) ++ Store RegA 0 :> -- 1 := 6 Compute Incr Zero RegA RegA :> replicate d5 (Compute Incr RegA Zero RegA) ++ Store RegA 1 :> -- A := 4 Load 0 RegA :> -- B := 6 Load 1 RegB :> Nop :> -- Extra NOP -- start Compute CmpGt RegA RegB RegC :> Branch RegC 4 :> Compute CmpGt RegB RegA RegC :> Branch RegC 4 :> Jump 5 :> -- (a > b) Compute Sub RegA RegB RegA :> Jump (-6) :> -- (b > a) Compute Sub RegB RegA RegB :> Jump (-8) :> -- end Store RegA 2 :> Load 2 RegC :> Nil
When we simulate our system we see that it works. This time again,
we need to disregard the first sample, because the initial output of a
blockRam
is undefined
. We use the utility function printX
to conveniently
filter out the undefinedness and replace it with the string X.
>>> printX $ sampleN 33 (system3 prog2) [X,0,0,0,0,0,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2]
This concludes the short introduction to using blockRam
.
Synopsis
- blockRam :: (Enum addr, HiddenClock domain gated, HasCallStack) => Vec n a -> Signal domain addr -> Signal domain (Maybe (addr, a)) -> Signal domain a
- blockRamPow2 :: (KnownNat n, HiddenClock domain gated, HasCallStack) => Vec (2 ^ n) a -> Signal domain (Unsigned n) -> Signal domain (Maybe (Unsigned n, a)) -> Signal domain a
- readNew :: (Eq addr, HiddenClockReset domain gated synchronous) => (Signal domain addr -> Signal domain (Maybe (addr, a)) -> Signal domain a) -> Signal domain addr -> Signal domain (Maybe (addr, a)) -> Signal domain a
BlockRAM synchronised to the system clock
:: (Enum addr, HiddenClock domain gated, HasCallStack) | |
=> Vec n a | Initial content of the BRAM, also
determines the size, NB: MUST be a constant. |
-> Signal domain addr | Read address |
-> Signal domain (Maybe (addr, a)) | (write address |
-> Signal domain a | Value of the |
Create a blockRAM with space for n
elements.
- NB: Read value is delayed by 1 cycle
- NB: Initial output value is
undefined
bram40 ::HiddenClock
domain =>Signal
domain (Unsigned
6) ->Signal
domain (Maybe (Unsigned
6,Bit
)) ->Signal
domainBit
bram40 =blockRam
(replicate
d40 1)
Additional helpful information:
- See Clash.Prelude.BlockRam for more information on how to use a Block RAM.
- Use the adapter
readNew
for obtaining write-before-read semantics like this:readNew (blockRam inits) rd wrM
.
:: (KnownNat n, HiddenClock domain gated, HasCallStack) | |
=> Vec (2 ^ n) a | Initial content of the BRAM, also
determines the size, NB: MUST be a constant. |
-> Signal domain (Unsigned n) | Read address |
-> Signal domain (Maybe (Unsigned n, a)) | (write address |
-> Signal domain a | Value of the |
Create a blockRAM with space for 2^n
elements
- NB: Read value is delayed by 1 cycle
- NB: Initial output value is
undefined
bram32 ::HiddenClock
domain =>Signal
domain (Unsigned
5) ->Signal
domain (Maybe (Unsigned
5,Bit
)) ->Signal
domainBit
bram32 =blockRamPow2
(replicate
d32 1)
Additional helpful information:
- See Clash.Prelude.BlockRam for more information on how to use a Block RAM.
- Use the adapter
readNew
for obtaining write-before-read semantics like this:readNew (blockRamPow2 inits) rd wrM
.
Read/Write conflict resolution
:: (Eq addr, HiddenClockReset domain gated synchronous) | |
=> (Signal domain addr -> Signal domain (Maybe (addr, a)) -> Signal domain a) | The |
-> Signal domain addr | Read address |
-> Signal domain (Maybe (addr, a)) | (Write address |
-> Signal domain a | Value of the |
Create read-after-write blockRAM from a read-before-write one (synchronised to system clock)
>>>
import Clash.Prelude
>>>
:t readNew (blockRam (0 :> 1 :> Nil))
readNew (blockRam (0 :> 1 :> Nil)) :: ... ... => Signal domain addr -> Signal domain (Maybe (addr, a)) -> Signal domain a