{-| Copyright : (C) 2013-2016, University of Twente 2017 , Google Inc. License : BSD2 (see the file LICENSE) Maintainer : Christiaan Baaij <christiaan.baaij@gmail.com> Whereas the output of a Mealy machine depends on /current transition/, the output of a Moore machine depends on the /previous state/. Moore machines are strictly less expressive, but may impose laxer timing requirements. -} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE Safe #-} module Clash.Prelude.Moore ( -- * Moore machine moore , mooreB , medvedev , medvedevB ) where import qualified Clash.Explicit.Moore as E import Clash.Signal {- $setup >>> :set -XDataKinds -XTypeApplications >>> import Clash.Prelude >>> :{ let macT s (x,y) = x * y + s mac = moore macT id 0 :} -} -- | Create a synchronous function from a combinational function describing -- a moore machine -- -- @ -- macT :: Int -- Current state -- -> (Int,Int) -- Input -- -> Int -- Updated state -- macT s (x,y) = x * y + s -- -- mac :: HiddenClockReset domain gated synchronous => 'Signal' domain (Int, Int) -> 'Signal' domain Int -- mac = 'moore' mac id 0 -- @ -- -- >>> simulate mac [(1,1),(2,2),(3,3),(4,4)] -- [0,1,5,14... -- ... -- -- Synchronous sequential functions can be composed just like their -- combinational counterpart: -- -- @ -- dualMac -- :: HiddenClockReset domain gated synchronous -- => ('Signal' domain Int, 'Signal' domain Int) -- -> ('Signal' domain Int, 'Signal' domain Int) -- -> 'Signal' domain Int -- dualMac (a,b) (x,y) = s1 + s2 -- where -- s1 = 'moore' mac id 0 ('Clash.Signal.bundle' (a,x)) -- s2 = 'moore' mac id 0 ('Clash.Signal.bundle' (b,y)) -- @ moore :: HiddenClockReset domain gated synchronous => (s -> i -> s) -- ^ Transfer function in moore machine form: -- @state -> input -> newstate@ -> (s -> o) -- ^ Output function in moore machine form: -- @state -> output@ -> s -- ^ Initial state -> (Signal domain i -> Signal domain o) -- ^ Synchronous sequential function with input and output matching that -- of the moore machine moore = hideClockReset E.moore {-# INLINE moore #-} -- | Create a synchronous function from a combinational function describing -- a moore machine without any output logic medvedev :: HiddenClockReset domain gated synchronous => (s -> i -> s) -> s -> (Signal domain i -> Signal domain s) medvedev tr st = moore tr id st {-# INLINE medvedev #-} -- | A version of 'moore' that does automatic 'Bundle'ing -- -- Given a functions @t@ and @o@ of types: -- -- @ -- __t__ :: Int -> (Bool, Int) -> Int -- __o__ :: Int -> (Int, Bool) -- @ -- -- When we want to make compositions of @t@ and @o@ in @g@ using 'moore', we have to -- write: -- -- @ -- g a b c = (b1,b2,i2) -- where -- (i1,b1) = 'Clash.Signal.unbundle' ('moore' t o 0 ('Clash.Signal.bundle' (a,b))) -- (i2,b2) = 'Clash.Signal.unbundle' ('moore' t o 3 ('Clash.Signal.bundle' (i1,c))) -- @ -- -- Using 'mooreB' however we can write: -- -- @ -- g a b c = (b1,b2,i2) -- where -- (i1,b1) = 'mooreB' t o 0 (a,b) -- (i2,b2) = 'mooreB' t o 3 (i1,c) -- @ mooreB :: (Bundle i, Bundle o,HiddenClockReset domain gated synchronous) => (s -> i -> s) -- ^ Transfer function in moore machine form: -- @state -> input -> newstate@ -> (s -> o) -- ^ Output function in moore machine form: -- @state -> output@ -> s -- ^ Initial state -> (Unbundled domain i -> Unbundled domain o) -- ^ Synchronous sequential function with input and output matching that -- of the moore machine mooreB = hideClockReset E.mooreB {-# INLINE mooreB #-} -- | A version of 'medvedev' that does automatic 'Bundle'ing medvedevB :: (Bundle i, Bundle s, HiddenClockReset domain gated synchronous) => (s -> i -> s) -> s -> (Unbundled domain i -> Unbundled domain s) medvedevB tr st = mooreB tr id st {-# INLINE medvedevB #-}