symmetry-operations-symbols: Derivation of symbols and coordinate triplets Library

[ bsd3, chemistry, library ] [ Propose Tags ]
Versions [RSS] 0.0.1.0, 0.0.1.1, 0.0.1.2, 0.0.1.3, 0.0.1.4, 0.0.2.0, 0.0.2.1
Change log ChangeLog.md
Dependencies base (>=4.8 && <5), matrix (>=0.1 && <0.4), matrix-as-xyz (>=0.1 && <0.2), parsec (>=3 && <4) [details]
License BSD-3-Clause
Copyright Jun Narumi
Author Jun Narumi
Maintainer narumij@gmail.com
Category Chemistry
Home page https://github.com/narumij/symmetry-operations-symbols#readme
Bug tracker https://github.com/narumij/symmetry-operations-symbols/issues
Source repo head: git clone https://github.com/narumij/symmetry-operations-symbols
Uploaded by narumij at 2020-08-09T10:43:23Z
Distributions LTSHaskell:0.0.2.1, Stackage:0.0.2.1
Reverse Dependencies 1 direct, 0 indirect [details]
Downloads 1163 total (19 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs available [build log]
Last success reported on 2020-08-09 [all 1 reports]

Readme for symmetry-operations-symbols-0.0.2.1

[back to package description]

symmetry-operations-symbols

Continuous Integration status Hackage page (downloads and API reference) Hackage-Deps

Haskell Derivation of symbols and coordinate triplets Library

Quickstart

Make new stack project and move to project directory.

% stack new symopRepl
% cd symopRepl

Edit extra-deps part of stack.yaml like below.

extra-deps:
- matrix-as-xyz-0.1.2.2
- symmetry-operations-symbols-0.0.2.1

Edit dependencies part of package.yaml like below.

dependencies:
- base >= 4.8 && < 5
- matrix-as-xyz >= 0.1.2 && < 2
- symmetry-operations-symbols >= 0.0 && < 0.1

Then start repl.

% stack repl

Setup packages and load modules.

repl> :m Data.Matrix.AsXYZ Data.Matrix.SymmetryOperationsSymbols

Use like below.

repl> fromMatrix' . fromXYZ $ "x,y,z"
" 1 "

repl> fromMatrix' . fromXYZ $ "-x,-y,z"
" 2  0,0,z"

repl> fromMatrix' . fromXYZ $ "-y,-x+1/2,z"
" g (-1/4,1/4,0) x+1/4,-x,z"

References

  1. W. Fischer. and E. Koch. (2006), Derivation of symbols and coordinate triplets International Tables for Crystallography (2006). Vol. A, Chapter 11.2, pp. 812–816.

  2. Wondratschek, H. & Neubu ̈ser, J. (1967). Determination of the symmetry elements of a space group from the ‘general positions’ listed in International Tables for X-ray Crystallography, Vol. I. Acta Cryst. 23, 349–352.

License

See the LICENSE file in the repository.