singletons-2.5: A framework for generating singleton types

Copyright(C) 2013 Richard Eisenberg
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Eq

Contents

Description

Defines the SEq singleton version of the Eq type class.

Synopsis
  • class PEq a where
    • type (x :: a) == (y :: a) :: Bool
    • type (x :: a) /= (y :: a) :: Bool
  • class SEq k where
  • type family DefaultEq (a :: k) (b :: k) :: Bool where ...
  • data (==@#@$) :: forall a6989586621679366522. (~>) a6989586621679366522 ((~>) a6989586621679366522 Bool)
  • data (==@#@$$) (x6989586621679366523 :: a6989586621679366522) :: (~>) a6989586621679366522 Bool
  • type (==@#@$$$) (x6989586621679366523 :: a6989586621679366522) (y6989586621679366524 :: a6989586621679366522) = (==) x6989586621679366523 y6989586621679366524
  • data (/=@#@$) :: forall a6989586621679366522. (~>) a6989586621679366522 ((~>) a6989586621679366522 Bool)
  • data (/=@#@$$) (x6989586621679366525 :: a6989586621679366522) :: (~>) a6989586621679366522 Bool
  • type (/=@#@$$$) (x6989586621679366525 :: a6989586621679366522) (y6989586621679366526 :: a6989586621679366522) = (/=) x6989586621679366525 y6989586621679366526
  • data DefaultEqSym0 :: forall k6989586621679366516. (~>) k6989586621679366516 ((~>) k6989586621679366516 Bool)
  • data DefaultEqSym1 (a6989586621679366517 :: k6989586621679366516) :: (~>) k6989586621679366516 Bool
  • type DefaultEqSym2 (a6989586621679366517 :: k6989586621679366516) (b6989586621679366518 :: k6989586621679366516) = DefaultEq a6989586621679366517 b6989586621679366518

Documentation

class PEq a Source #

The promoted analogue of Eq. If you supply no definition for '(==)', then it defaults to a use of DefaultEq.

Associated Types

type (x :: a) == (y :: a) :: Bool infix 4 Source #

type (x :: a) /= (y :: a) :: Bool infix 4 Source #

Instances
PEq Bool Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq Ordering Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq Nat Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq Symbol Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq () Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq Void Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq All Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq Any Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq [a] Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Maybe a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (TYPE rep) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (WrappedMonoid m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Option a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Dual a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Sum a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Product a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Down a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (NonEmpty a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Arg a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b, c) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b, c, d) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b, c, d, e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

class SEq k where Source #

The singleton analogue of Eq. Unlike the definition for Eq, it is required that instances define a body for '(%==)'. You may also supply a body for '(%/=)'.

Minimal complete definition

(%==)

Methods

(%==) :: forall (a :: k) (b :: k). Sing a -> Sing b -> Sing (a == b) infix 4 Source #

Boolean equality on singletons

(%/=) :: forall (a :: k) (b :: k). Sing a -> Sing b -> Sing (a /= b) infix 4 Source #

Boolean disequality on singletons

(%/=) :: forall (a :: k) (b :: k). (a /= b) ~ Not (a == b) => Sing a -> Sing b -> Sing (a /= b) infix 4 Source #

Boolean disequality on singletons

Instances
SEq Bool Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Ordering Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Nat Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Symbol Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq () Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Void Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Bool => SEq All Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Bool => SEq Any Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

(SEq a, SEq [a]) => SEq [a] Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Maybe a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq (TYPE rep) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq a => SEq (Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq m => SEq (WrappedMonoid m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq (Maybe a) => SEq (Option a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq (Maybe a) => SEq (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq (Maybe a) => SEq (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Dual a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Sum a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Product a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Down a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

(SEq a, SEq [a]) => SEq (NonEmpty a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

(SEq a, SEq b) => SEq (Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b) => SEq (a, b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

SEq a => SEq (Arg a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b, SEq c) => SEq (a, b, c) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

SEq a => SEq (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b, SEq c, SEq d) => SEq (a, b, c, d) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b, SEq c, SEq d, SEq e) => SEq (a, b, c, d, e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b, SEq c, SEq d, SEq e, SEq f) => SEq (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b, SEq c, SEq d, SEq e, SEq f, SEq g) => SEq (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

type family DefaultEq (a :: k) (b :: k) :: Bool where ... Source #

A sensible way to compute Boolean equality for types of any kind. Note that this definition is slightly different from the '(DTE.==)' type family from Data.Type.Equality in base, as '(DTE.==)' attempts to distinguish applications of type constructors from other types. As a result, a == a does not reduce to True for every a, but DefaultEq a a does reduce to True for every a. The latter behavior is more desirable for singletons' purposes, so we use it instead of '(DTE.==)'.

Equations

DefaultEq a a = True 
DefaultEq a b = False 

Defunctionalization symbols

data (==@#@$) :: forall a6989586621679366522. (~>) a6989586621679366522 ((~>) a6989586621679366522 Bool) infix 4 Source #

Instances
SEq a => SingI ((==@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

SuppressUnusedWarnings ((==@#@$) :: TyFun a6989586621679366522 (a6989586621679366522 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((==@#@$) :: TyFun a6989586621679366522 (a6989586621679366522 ~> Bool) -> Type) (x6989586621679366523 :: a6989586621679366522) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((==@#@$) :: TyFun a6989586621679366522 (a6989586621679366522 ~> Bool) -> Type) (x6989586621679366523 :: a6989586621679366522) = (==@#@$$) x6989586621679366523

data (==@#@$$) (x6989586621679366523 :: a6989586621679366522) :: (~>) a6989586621679366522 Bool infix 4 Source #

Instances
(SEq a, SingI x) => SingI ((==@#@$$) x :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

sing :: Sing ((==@#@$$) x) Source #

SuppressUnusedWarnings ((==@#@$$) x6989586621679366523 :: TyFun a6989586621679366522 Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((==@#@$$) x6989586621679366523 :: TyFun a Bool -> Type) (y6989586621679366524 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((==@#@$$) x6989586621679366523 :: TyFun a Bool -> Type) (y6989586621679366524 :: a) = x6989586621679366523 == y6989586621679366524

type (==@#@$$$) (x6989586621679366523 :: a6989586621679366522) (y6989586621679366524 :: a6989586621679366522) = (==) x6989586621679366523 y6989586621679366524 Source #

data (/=@#@$) :: forall a6989586621679366522. (~>) a6989586621679366522 ((~>) a6989586621679366522 Bool) infix 4 Source #

Instances
SEq a => SingI ((/=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

SuppressUnusedWarnings ((/=@#@$) :: TyFun a6989586621679366522 (a6989586621679366522 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((/=@#@$) :: TyFun a6989586621679366522 (a6989586621679366522 ~> Bool) -> Type) (x6989586621679366525 :: a6989586621679366522) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((/=@#@$) :: TyFun a6989586621679366522 (a6989586621679366522 ~> Bool) -> Type) (x6989586621679366525 :: a6989586621679366522) = (/=@#@$$) x6989586621679366525

data (/=@#@$$) (x6989586621679366525 :: a6989586621679366522) :: (~>) a6989586621679366522 Bool infix 4 Source #

Instances
(SEq a, SingI x) => SingI ((/=@#@$$) x :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

sing :: Sing ((/=@#@$$) x) Source #

SuppressUnusedWarnings ((/=@#@$$) x6989586621679366525 :: TyFun a6989586621679366522 Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((/=@#@$$) x6989586621679366525 :: TyFun a Bool -> Type) (y6989586621679366526 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((/=@#@$$) x6989586621679366525 :: TyFun a Bool -> Type) (y6989586621679366526 :: a) = x6989586621679366525 /= y6989586621679366526

type (/=@#@$$$) (x6989586621679366525 :: a6989586621679366522) (y6989586621679366526 :: a6989586621679366522) = (/=) x6989586621679366525 y6989586621679366526 Source #

data DefaultEqSym0 :: forall k6989586621679366516. (~>) k6989586621679366516 ((~>) k6989586621679366516 Bool) Source #

Instances
SuppressUnusedWarnings (DefaultEqSym0 :: TyFun k6989586621679366516 (k6989586621679366516 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply (DefaultEqSym0 :: TyFun k6989586621679366516 (k6989586621679366516 ~> Bool) -> Type) (a6989586621679366517 :: k6989586621679366516) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply (DefaultEqSym0 :: TyFun k6989586621679366516 (k6989586621679366516 ~> Bool) -> Type) (a6989586621679366517 :: k6989586621679366516) = DefaultEqSym1 a6989586621679366517

data DefaultEqSym1 (a6989586621679366517 :: k6989586621679366516) :: (~>) k6989586621679366516 Bool Source #

Instances
SuppressUnusedWarnings (DefaultEqSym1 a6989586621679366517 :: TyFun k6989586621679366516 Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply (DefaultEqSym1 a6989586621679366517 :: TyFun k Bool -> Type) (b6989586621679366518 :: k) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply (DefaultEqSym1 a6989586621679366517 :: TyFun k Bool -> Type) (b6989586621679366518 :: k) = DefaultEq a6989586621679366517 b6989586621679366518

type DefaultEqSym2 (a6989586621679366517 :: k6989586621679366516) (b6989586621679366518 :: k6989586621679366516) = DefaultEq a6989586621679366517 b6989586621679366518 Source #