singletons-2.5: A framework for generating singleton types

Copyright(C) 2013-2014 Richard Eisenberg Jan Stolarek
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Bool

Contents

Description

Defines functions and datatypes relating to the singleton for Bool, including a singletons version of all the definitions in Data.Bool.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.Bool. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis

The Bool singleton

data family Sing :: k -> Type Source #

The singleton kind-indexed data family.

Instances
SDecide k => TestCoercion (Sing :: k -> Type) Source # 
Instance details

Defined in Data.Singletons.Decide

Methods

testCoercion :: Sing a -> Sing b -> Maybe (Coercion a b) #

SDecide k => TestEquality (Sing :: k -> Type) Source # 
Instance details

Defined in Data.Singletons.Decide

Methods

testEquality :: Sing a -> Sing b -> Maybe (a :~: b) #

Show (SSymbol s) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> SSymbol s -> ShowS #

show :: SSymbol s -> String #

showList :: [SSymbol s] -> ShowS #

Show (SNat n) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> SNat n -> ShowS #

show :: SNat n -> String #

showList :: [SNat n] -> ShowS #

Eq (Sing a) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Methods

(==) :: Sing a -> Sing a -> Bool #

(/=) :: Sing a -> Sing a -> Bool #

Ord (Sing a) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Methods

compare :: Sing a -> Sing a -> Ordering #

(<) :: Sing a -> Sing a -> Bool #

(<=) :: Sing a -> Sing a -> Bool #

(>) :: Sing a -> Sing a -> Bool #

(>=) :: Sing a -> Sing a -> Bool #

max :: Sing a -> Sing a -> Sing a #

min :: Sing a -> Sing a -> Sing a #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing [a]) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

Show (Sing a) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Methods

showsPrec :: Int -> Sing a -> ShowS #

show :: Sing a -> String #

showList :: [Sing a] -> ShowS #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f, ShowSing g) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing m => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing (Maybe a) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing (Maybe a) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing (Maybe a) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing Bool => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing Bool => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing [a]) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

data Sing (a :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: Bool) where
data Sing (a :: Ordering) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: Ordering) where
data Sing (n :: Nat) Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

data Sing (n :: Nat) where
data Sing (n :: Symbol) Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

data Sing (n :: Symbol) where
data Sing (a :: ()) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: ()) where
data Sing (a :: Void) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: Void)
data Sing (a :: All) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (a :: All) where
data Sing (a :: Any) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (a :: Any) where
data Sing (a :: PErrorMessage) Source # 
Instance details

Defined in Data.Singletons.TypeError

data Sing (a :: PErrorMessage) where
data Sing (b :: [a]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: [a]) where
  • SNil :: forall k (b :: [k]). Sing ([] :: [k])
  • SCons :: forall a (b :: [a]) (n :: a) (n :: [a]). Sing n -> Sing n -> Sing (n ': n)
data Sing (b :: Maybe a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: Maybe a) where
data Sing (a :: TYPE rep) Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing :: k -> Type` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.TypeRepTYPE

data Sing (a :: TYPE rep) = STypeRep (TypeRep a)
data Sing (b :: Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Min a) where
data Sing (b :: Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Max a) where
data Sing (b :: First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: First a) where
data Sing (b :: Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Last a) where
data Sing (a :: WrappedMonoid m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (a :: WrappedMonoid m) where
data Sing (b :: Option a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Option a) where
data Sing (b :: Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: Identity a) where
data Sing (b :: First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

data Sing (b :: First a) where
data Sing (b :: Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

data Sing (b :: Last a) where
data Sing (b :: Dual a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Dual a) where
data Sing (b :: Sum a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Sum a) where
data Sing (b :: Product a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Product a) where
data Sing (b :: Down a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

data Sing (b :: Down a) where
data Sing (b :: NonEmpty a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: NonEmpty a) where
data Sing (c :: Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (c :: Either a b) where
data Sing (c :: (a, b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (c :: (a, b)) where
data Sing (c :: Arg a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

data Sing (c :: Arg a b) where
data Sing (f :: k1 ~> k2) Source # 
Instance details

Defined in Data.Singletons.Internal

data Sing (f :: k1 ~> k2) = SLambda {}
data Sing (d :: (a, b, c)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (d :: (a, b, c)) where
data Sing (c :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

data Sing (c :: Const a b) where
data Sing (e :: (a, b, c, d)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (e :: (a, b, c, d)) where
data Sing (f :: (a, b, c, d, e)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (f :: (a, b, c, d, e)) where
data Sing (g :: (a, b, c, d, e, f)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (g :: (a, b, c, d, e, f)) where
data Sing (h :: (a, b, c, d, e, f, g)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (h :: (a, b, c, d, e, f, g)) where

Though Haddock doesn't show it, the Sing instance above declares constructors

SFalse :: Sing False
STrue  :: Sing True

type SBool = (Sing :: Bool -> Type) Source #

SBool is a kind-restricted synonym for Sing: type SBool (a :: Bool) = Sing a

Conditionals

type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ... #

Type-level If. If True a b ==> a; If False a b ==> b

Equations

If True (tru :: k) (fls :: k) = tru 
If False (tru :: k) (fls :: k) = fls 

sIf :: Sing a -> Sing b -> Sing c -> Sing (If a b c) Source #

Conditional over singletons

Singletons from Data.Bool

type family Not (a :: Bool) = (res :: Bool) | res -> a where ... #

Type-level "not". An injective type family since 4.10.0.0.

Since: base-4.7.0.0

Equations

Not False = True 
Not True = False 

sNot :: Sing a -> Sing (Not a) Source #

Negation of a singleton

type family (a :: Bool) && (b :: Bool) :: Bool where ... infixr 3 #

Type-level "and"

Equations

False && a = False 
True && a = a 
a && False = False 
a && True = a 
a && a = a 

type family (a :: Bool) || (b :: Bool) :: Bool where ... infixr 2 #

Type-level "or"

Equations

False || a = a 
True || a = True 
a || False = a 
a || True = True 
a || a = a 

(%&&) :: Sing a -> Sing b -> Sing (a && b) infixr 3 Source #

Conjunction of singletons

(%||) :: Sing a -> Sing b -> Sing (a || b) infixr 2 Source #

Disjunction of singletons

The following are derived from the function bool in Data.Bool. The extra underscore is to avoid name clashes with the type Bool.

bool_ :: a -> a -> Bool -> a Source #

type family Bool_ (a :: a) (a :: a) (a :: Bool) :: a where ... Source #

Equations

Bool_ fls _tru False = fls 
Bool_ _fls tru True = tru 

sBool_ :: forall a (t :: a) (t :: a) (t :: Bool). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Bool_Sym0 t) t) t :: a) Source #

type family Otherwise :: Bool where ... Source #

Equations

Otherwise = TrueSym0 

Defunctionalization symbols

data NotSym0 :: (~>) Bool Bool Source #

Instances
SingI NotSym0 Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

SuppressUnusedWarnings NotSym0 Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply NotSym0 (a6989586621679363899 :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply NotSym0 (a6989586621679363899 :: Bool) = Not a6989586621679363899

type NotSym1 (a6989586621679363899 :: Bool) = Not a6989586621679363899 Source #

data (&&@#@$) :: (~>) Bool ((~>) Bool Bool) infixr 3 Source #

Instances
SingI (&&@#@$) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

SuppressUnusedWarnings (&&@#@$) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply (&&@#@$) (a6989586621679363358 :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply (&&@#@$) (a6989586621679363358 :: Bool) = (&&@#@$$) a6989586621679363358

data (&&@#@$$) (a6989586621679363358 :: Bool) :: (~>) Bool Bool infixr 3 Source #

Instances
SingI x => SingI ((&&@#@$$) x :: TyFun Bool Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

Methods

sing :: Sing ((&&@#@$$) x) Source #

SuppressUnusedWarnings ((&&@#@$$) a6989586621679363358 :: TyFun Bool Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply ((&&@#@$$) a6989586621679363358 :: TyFun Bool Bool -> Type) (b6989586621679363359 :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply ((&&@#@$$) a6989586621679363358 :: TyFun Bool Bool -> Type) (b6989586621679363359 :: Bool) = a6989586621679363358 && b6989586621679363359

type (&&@#@$$$) (a6989586621679363358 :: Bool) (b6989586621679363359 :: Bool) = (&&) a6989586621679363358 b6989586621679363359 Source #

data (||@#@$) :: (~>) Bool ((~>) Bool Bool) infixr 2 Source #

Instances
SingI (||@#@$) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

SuppressUnusedWarnings (||@#@$) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply (||@#@$) (a6989586621679363599 :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply (||@#@$) (a6989586621679363599 :: Bool) = (||@#@$$) a6989586621679363599

data (||@#@$$) (a6989586621679363599 :: Bool) :: (~>) Bool Bool infixr 2 Source #

Instances
SingI x => SingI ((||@#@$$) x :: TyFun Bool Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

Methods

sing :: Sing ((||@#@$$) x) Source #

SuppressUnusedWarnings ((||@#@$$) a6989586621679363599 :: TyFun Bool Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply ((||@#@$$) a6989586621679363599 :: TyFun Bool Bool -> Type) (b6989586621679363600 :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply ((||@#@$$) a6989586621679363599 :: TyFun Bool Bool -> Type) (b6989586621679363600 :: Bool) = a6989586621679363599 || b6989586621679363600

type (||@#@$$$) (a6989586621679363599 :: Bool) (b6989586621679363600 :: Bool) = (||) a6989586621679363599 b6989586621679363600 Source #

data Bool_Sym0 :: forall a6989586621679362607. (~>) a6989586621679362607 ((~>) a6989586621679362607 ((~>) Bool a6989586621679362607)) Source #

Instances
SingI (Bool_Sym0 :: TyFun a (a ~> (Bool ~> a)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

SuppressUnusedWarnings (Bool_Sym0 :: TyFun a6989586621679362607 (a6989586621679362607 ~> (Bool ~> a6989586621679362607)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply (Bool_Sym0 :: TyFun a6989586621679362607 (a6989586621679362607 ~> (Bool ~> a6989586621679362607)) -> Type) (a6989586621679362613 :: a6989586621679362607) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply (Bool_Sym0 :: TyFun a6989586621679362607 (a6989586621679362607 ~> (Bool ~> a6989586621679362607)) -> Type) (a6989586621679362613 :: a6989586621679362607) = Bool_Sym1 a6989586621679362613

data Bool_Sym1 (a6989586621679362613 :: a6989586621679362607) :: (~>) a6989586621679362607 ((~>) Bool a6989586621679362607) Source #

Instances
SingI d => SingI (Bool_Sym1 d :: TyFun a (Bool ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

Methods

sing :: Sing (Bool_Sym1 d) Source #

SuppressUnusedWarnings (Bool_Sym1 a6989586621679362613 :: TyFun a6989586621679362607 (Bool ~> a6989586621679362607) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply (Bool_Sym1 a6989586621679362613 :: TyFun a6989586621679362607 (Bool ~> a6989586621679362607) -> Type) (a6989586621679362614 :: a6989586621679362607) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply (Bool_Sym1 a6989586621679362613 :: TyFun a6989586621679362607 (Bool ~> a6989586621679362607) -> Type) (a6989586621679362614 :: a6989586621679362607) = Bool_Sym2 a6989586621679362613 a6989586621679362614

data Bool_Sym2 (a6989586621679362613 :: a6989586621679362607) (a6989586621679362614 :: a6989586621679362607) :: (~>) Bool a6989586621679362607 Source #

Instances
(SingI d1, SingI d2) => SingI (Bool_Sym2 d1 d2 :: TyFun Bool a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

Methods

sing :: Sing (Bool_Sym2 d1 d2) Source #

SuppressUnusedWarnings (Bool_Sym2 a6989586621679362614 a6989586621679362613 :: TyFun Bool a6989586621679362607 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply (Bool_Sym2 a6989586621679362614 a6989586621679362613 :: TyFun Bool a -> Type) (a6989586621679362615 :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Bool

type Apply (Bool_Sym2 a6989586621679362614 a6989586621679362613 :: TyFun Bool a -> Type) (a6989586621679362615 :: Bool) = Bool_ a6989586621679362614 a6989586621679362613 a6989586621679362615

type Bool_Sym3 (a6989586621679362613 :: a6989586621679362607) (a6989586621679362614 :: a6989586621679362607) (a6989586621679362615 :: Bool) = Bool_ a6989586621679362613 a6989586621679362614 a6989586621679362615 Source #