singletons-2.5: A framework for generating singleton types

Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRichard Eisenberg (rae@cs.brynmawr.edu)
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Const

Contents

Description

Exports the promoted and singled versions of the Const data type.

Synopsis
  • data family Sing :: k -> Type
  • type SConst = (Sing :: Const a b -> Type)
  • type family GetConst (x :: Const a b) :: a where ...
  • data ConstSym0 :: forall (a6989586621679092839 :: Type) k6989586621679092838 (b6989586621679092840 :: k6989586621679092838). (~>) a6989586621679092839 (Const (a6989586621679092839 :: Type) (b6989586621679092840 :: k6989586621679092838))
  • type ConstSym1 (t6989586621680712043 :: a6989586621679092839) = Const t6989586621680712043
  • data GetConstSym0 :: forall a6989586621680712358 b6989586621680712359. (~>) (Const a6989586621680712358 b6989586621680712359) a6989586621680712358
  • type GetConstSym1 (x6989586621680712360 :: Const a6989586621680712358 b6989586621680712359) = GetConst x6989586621680712360

The Const singleton

data family Sing :: k -> Type Source #

The singleton kind-indexed data family.

Instances
SDecide k => TestCoercion (Sing :: k -> Type) Source # 
Instance details

Defined in Data.Singletons.Decide

Methods

testCoercion :: Sing a -> Sing b -> Maybe (Coercion a b) #

SDecide k => TestEquality (Sing :: k -> Type) Source # 
Instance details

Defined in Data.Singletons.Decide

Methods

testEquality :: Sing a -> Sing b -> Maybe (a :~: b) #

Show (SSymbol s) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> SSymbol s -> ShowS #

show :: SSymbol s -> String #

showList :: [SSymbol s] -> ShowS #

Show (SNat n) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> SNat n -> ShowS #

show :: SNat n -> String #

showList :: [SNat n] -> ShowS #

Eq (Sing a) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Methods

(==) :: Sing a -> Sing a -> Bool #

(/=) :: Sing a -> Sing a -> Bool #

Ord (Sing a) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Methods

compare :: Sing a -> Sing a -> Ordering #

(<) :: Sing a -> Sing a -> Bool #

(<=) :: Sing a -> Sing a -> Bool #

(>) :: Sing a -> Sing a -> Bool #

(>=) :: Sing a -> Sing a -> Bool #

max :: Sing a -> Sing a -> Sing a #

min :: Sing a -> Sing a -> Sing a #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing [a]) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

Show (Sing a) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Methods

showsPrec :: Int -> Sing a -> ShowS #

show :: Sing a -> String #

showList :: [Sing a] -> ShowS #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f, ShowSing g) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing b) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing m => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing (Maybe a) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing (Maybe a) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing (Maybe a) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing Bool => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing Bool => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

ShowSing a => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

(ShowSing a, ShowSing [a]) => Show (Sing z) Source # 
Instance details

Defined in Data.Singletons.ShowSing

Methods

showsPrec :: Int -> Sing z -> ShowS #

show :: Sing z -> String #

showList :: [Sing z] -> ShowS #

data Sing (a :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: Bool) where
data Sing (a :: Ordering) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: Ordering) where
data Sing (n :: Nat) Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

data Sing (n :: Nat) where
data Sing (n :: Symbol) Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

data Sing (n :: Symbol) where
data Sing (a :: ()) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: ()) where
data Sing (a :: Void) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (a :: Void)
data Sing (a :: All) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (a :: All) where
data Sing (a :: Any) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (a :: Any) where
data Sing (a :: PErrorMessage) Source # 
Instance details

Defined in Data.Singletons.TypeError

data Sing (a :: PErrorMessage) where
data Sing (b :: [a]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: [a]) where
  • SNil :: forall k (b :: [k]). Sing ([] :: [k])
  • SCons :: forall a (b :: [a]) (n :: a) (n :: [a]). Sing n -> Sing n -> Sing (n ': n)
data Sing (b :: Maybe a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: Maybe a) where
data Sing (a :: TYPE rep) Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing :: k -> Type` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.TypeRepTYPE

data Sing (a :: TYPE rep) = STypeRep (TypeRep a)
data Sing (b :: Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Min a) where
data Sing (b :: Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Max a) where
data Sing (b :: First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: First a) where
data Sing (b :: Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Last a) where
data Sing (a :: WrappedMonoid m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (a :: WrappedMonoid m) where
data Sing (b :: Option a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Option a) where
data Sing (b :: Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: Identity a) where
data Sing (b :: First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

data Sing (b :: First a) where
data Sing (b :: Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

data Sing (b :: Last a) where
data Sing (b :: Dual a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Dual a) where
data Sing (b :: Sum a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Sum a) where
data Sing (b :: Product a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

data Sing (b :: Product a) where
data Sing (b :: Down a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

data Sing (b :: Down a) where
data Sing (b :: NonEmpty a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (b :: NonEmpty a) where
data Sing (c :: Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (c :: Either a b) where
data Sing (c :: (a, b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (c :: (a, b)) where
data Sing (c :: Arg a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

data Sing (c :: Arg a b) where
data Sing (f :: k1 ~> k2) Source # 
Instance details

Defined in Data.Singletons.Internal

data Sing (f :: k1 ~> k2) = SLambda {}
data Sing (d :: (a, b, c)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (d :: (a, b, c)) where
data Sing (c :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

data Sing (c :: Const a b) where
data Sing (e :: (a, b, c, d)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (e :: (a, b, c, d)) where
data Sing (f :: (a, b, c, d, e)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (f :: (a, b, c, d, e)) where
data Sing (g :: (a, b, c, d, e, f)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (g :: (a, b, c, d, e, f)) where
data Sing (h :: (a, b, c, d, e, f, g)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

data Sing (h :: (a, b, c, d, e, f, g)) where

type SConst = (Sing :: Const a b -> Type) Source #

type family GetConst (x :: Const a b) :: a where ... Source #

Equations

GetConst (Const x) = x 

Defunctionalization symbols

data ConstSym0 :: forall (a6989586621679092839 :: Type) k6989586621679092838 (b6989586621679092840 :: k6989586621679092838). (~>) a6989586621679092839 (Const (a6989586621679092839 :: Type) (b6989586621679092840 :: k6989586621679092838)) Source #

Instances
SingI (ConstSym0 :: TyFun a6989586621679092839 (Const a6989586621679092839 b6989586621679092840) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

SuppressUnusedWarnings (ConstSym0 :: TyFun a6989586621679092839 (Const a6989586621679092839 b6989586621679092840) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (ConstSym0 :: TyFun a (Const a b6989586621679092840) -> Type) (t6989586621680712043 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (ConstSym0 :: TyFun a (Const a b6989586621679092840) -> Type) (t6989586621680712043 :: a) = (Const t6989586621680712043 :: Const a b6989586621679092840)

type ConstSym1 (t6989586621680712043 :: a6989586621679092839) = Const t6989586621680712043 Source #

data GetConstSym0 :: forall a6989586621680712358 b6989586621680712359. (~>) (Const a6989586621680712358 b6989586621680712359) a6989586621680712358 Source #

Instances
SuppressUnusedWarnings (GetConstSym0 :: TyFun (Const a6989586621680712358 b6989586621680712359) a6989586621680712358 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (x6989586621680712360 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (x6989586621680712360 :: Const a b) = GetConst x6989586621680712360

type GetConstSym1 (x6989586621680712360 :: Const a6989586621680712358 b6989586621680712359) = GetConst x6989586621680712360 Source #

Orphan instances

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Methods

sPure :: Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SFunctor (Const m :: Type -> Type) Source # 
Instance details

Methods

sFmap :: Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PFunctor (Const m :: Type -> Type) Source # 
Instance details

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

SFoldable (Const m :: Type -> Type) Source # 
Instance details

PFoldable (Const m :: Type -> Type) Source # 
Instance details

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

SingI (TyCon1 (Const :: k1 -> Const k1 b) :: k1 ~> Const k1 b) Source # 
Instance details

SingKind a => SingKind (Const a b) Source # 
Instance details

Associated Types

type Demote (Const a b) = (r :: Type) Source #

Methods

fromSing :: Sing a0 -> Demote (Const a b) Source #

toSing :: Demote (Const a b) -> SomeSing (Const a b) Source #

SDecide a => SDecide (Const a b) Source # 
Instance details

Methods

(%~) :: Sing a0 -> Sing b0 -> Decision (a0 :~: b0) Source #

PEq (Const a b) Source # 
Instance details

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

SEq a => SEq (Const a b) Source # 
Instance details

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

SOrd a => SOrd (Const a b) Source # 
Instance details

Methods

sCompare :: Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

POrd (Const a b) Source # 
Instance details

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

SNum a => SNum (Const a b) Source # 
Instance details

PNum (Const a b) Source # 
Instance details

Associated Types

type arg + arg :: a Source #

type arg - arg :: a Source #

type arg * arg :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

SBounded a => SBounded (Const a b) Source # 
Instance details

PBounded (Const a b) Source # 
Instance details

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

SEnum a => SEnum (Const a b) Source # 
Instance details

PEnum (Const a b) Source # 
Instance details

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

SSemigroup a => SSemigroup (Const a b) Source # 
Instance details

Methods

(%<>) :: Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: Sing t -> Sing (Apply SconcatSym0 t) Source #

PSemigroup (Const a b) Source # 
Instance details

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

SShow a => SShow (Const a b) Source # 
Instance details

PShow (Const a b) Source # 
Instance details

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

SMonoid a => SMonoid (Const a b) Source # 
Instance details

PMonoid (Const a b) Source # 
Instance details

Associated Types

type Mempty :: a Source #

type Mappend arg arg :: a Source #

type Mconcat arg :: a Source #

SingI a2 => SingI (Const a2 :: Const a1 b) Source # 
Instance details

Methods

sing :: Sing (Const0 a2) Source #