Copyright | (C) 2019 Oleg Grenrus |
---|---|
License | BSD-3-Clause (see the file LICENSE) |
Maintainer | Oleg Grenrus <oleg.grenrus@iki.fi> |
Safe Haskell | Safe |
Language | Haskell2010 |
Documentation
\(M_2\) is isomorphic to \(\mathcal{P}\{\mathbb{B}\}\), i.e. powerset of Bool
.
Instances
Bounded M2 Source # | |
Enum M2 Source # | |
Eq M2 Source # | |
Data M2 Source # | |
Defined in Algebra.Lattice.M2 gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> M2 -> c M2 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c M2 # dataTypeOf :: M2 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c M2) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c M2) # gmapT :: (forall b. Data b => b -> b) -> M2 -> M2 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M2 -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M2 -> r # gmapQ :: (forall d. Data d => d -> u) -> M2 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> M2 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> M2 -> m M2 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M2 -> m M2 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M2 -> m M2 # | |
Ord M2 Source # | |
Read M2 Source # | |
Show M2 Source # | |
Generic M2 Source # | |
Function M2 Source # | |
Arbitrary M2 Source # | |
CoArbitrary M2 Source # | |
Defined in Algebra.Lattice.M2 coarbitrary :: M2 -> Gen b -> Gen b # | |
NFData M2 Source # | |
Defined in Algebra.Lattice.M2 | |
Hashable M2 Source # | |
Defined in Algebra.Lattice.M2 | |
Universe M2 Source # | |
Defined in Algebra.Lattice.M2 | |
Finite M2 Source # | |
Defined in Algebra.Lattice.M2 | |
PartialOrd M2 Source # | |
BoundedMeetSemiLattice M2 Source # | |
Defined in Algebra.Lattice.M2 | |
BoundedJoinSemiLattice M2 Source # | |
Defined in Algebra.Lattice.M2 | |
Lattice M2 Source # | |
Heyting M2 Source # | |
type Rep M2 Source # | |
Defined in Algebra.Lattice.M2 type Rep M2 = D1 (MetaData "M2" "Algebra.Lattice.M2" "lattices-2.0.2-HdMTcqWeXqlAAQvdNaFFrQ" False) ((C1 (MetaCons "M2o" PrefixI False) (U1 :: Type -> Type) :+: C1 (MetaCons "M2a" PrefixI False) (U1 :: Type -> Type)) :+: (C1 (MetaCons "M2b" PrefixI False) (U1 :: Type -> Type) :+: C1 (MetaCons "M2i" PrefixI False) (U1 :: Type -> Type))) |