{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE Safe #-}
module Algebra.Lattice (
Lattice (..),
joinLeq, joins1, meetLeq, meets1,
BoundedJoinSemiLattice(..), BoundedMeetSemiLattice(..),
joins, meets,
fromBool,
BoundedLattice,
Meet(..), Join(..),
lfp, lfpFrom, unsafeLfp,
gfp, gfpFrom, unsafeGfp,
) where
import Prelude ()
import Prelude.Compat
import qualified Algebra.PartialOrd as PO
import Control.Applicative (Const (..))
import Control.Monad.Zip (MonadZip (..))
import Data.Data (Data, Typeable)
import Data.Functor.Identity (Identity (..))
import Data.Hashable (Hashable (..))
import Data.Proxy (Proxy (..))
import Data.Semigroup (All (..), Any (..), Endo (..), Semigroup (..))
import Data.Semigroup.Foldable (Foldable1 (..))
import Data.Tagged (Tagged (..))
import Data.Universe.Class (Finite (..), Universe (..))
import Data.Void (Void)
import GHC.Generics (Generic)
import qualified Data.HashMap.Lazy as HM
import qualified Data.HashSet as HS
import qualified Data.IntMap as IM
import qualified Data.IntSet as IS
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Test.QuickCheck as QC
infixr 6 /\
infixr 5 \/
class Lattice a where
(\/) :: a -> a -> a
(/\) :: a -> a -> a
joinLeq :: (Eq a, Lattice a) => a -> a -> Bool
joinLeq x y = (x \/ y) == y
meetLeq :: (Eq a, Lattice a) => a -> a -> Bool
meetLeq x y = (x /\ y) == x
class Lattice a => BoundedJoinSemiLattice a where
bottom :: a
joins :: (BoundedJoinSemiLattice a, Foldable f) => f a -> a
joins = getJoin . foldMap Join
joins1 :: (Lattice a, Foldable1 f) => f a -> a
joins1 = getJoin . foldMap1 Join
class Lattice a => BoundedMeetSemiLattice a where
top :: a
meets :: (BoundedMeetSemiLattice a, Foldable f) => f a -> a
meets = getMeet . foldMap Meet
meets1 :: (Lattice a, Foldable1 f) => f a -> a
meets1 = getMeet . foldMap1 Meet
type BoundedLattice a = (BoundedMeetSemiLattice a, BoundedJoinSemiLattice a)
fromBool :: BoundedLattice a => Bool -> a
fromBool True = top
fromBool False = bottom
instance Ord a => Lattice (Set.Set a) where
(\/) = Set.union
(/\) = Set.intersection
instance Ord a => BoundedJoinSemiLattice (Set.Set a) where
bottom = Set.empty
instance (Ord a, Finite a) => BoundedMeetSemiLattice (Set.Set a) where
top = Set.fromList universeF
instance Lattice IS.IntSet where
(\/) = IS.union
(/\) = IS.intersection
instance BoundedJoinSemiLattice IS.IntSet where
bottom = IS.empty
instance (Eq a, Hashable a) => Lattice (HS.HashSet a) where
(\/) = HS.union
(/\) = HS.intersection
instance (Eq a, Hashable a) => BoundedJoinSemiLattice (HS.HashSet a) where
bottom = HS.empty
instance (Eq a, Hashable a, Finite a) => BoundedMeetSemiLattice (HS.HashSet a) where
top = HS.fromList universeF
instance (Ord k, Lattice v) => Lattice (Map.Map k v) where
(\/) = Map.unionWith (\/)
(/\) = Map.intersectionWith (/\)
instance (Ord k, Lattice v) => BoundedJoinSemiLattice (Map.Map k v) where
bottom = Map.empty
instance (Ord k, Finite k, BoundedMeetSemiLattice v) => BoundedMeetSemiLattice (Map.Map k v) where
top = Map.fromList (universeF `zip` repeat top)
instance Lattice v => Lattice (IM.IntMap v) where
(\/) = IM.unionWith (\/)
(/\) = IM.intersectionWith (/\)
instance Lattice v => BoundedJoinSemiLattice (IM.IntMap v) where
bottom = IM.empty
instance (Eq k, Hashable k, Lattice v) => BoundedJoinSemiLattice (HM.HashMap k v) where
bottom = HM.empty
instance (Eq k, Hashable k, Lattice v) => Lattice (HM.HashMap k v) where
(\/) = HM.unionWith (\/)
(/\) = HM.intersectionWith (/\)
instance (Eq k, Hashable k, Finite k, BoundedMeetSemiLattice v) => BoundedMeetSemiLattice (HM.HashMap k v) where
top = HM.fromList (universeF `zip` repeat top)
instance Lattice v => Lattice (k -> v) where
f \/ g = \x -> f x \/ g x
f /\ g = \x -> f x /\ g x
instance BoundedJoinSemiLattice v => BoundedJoinSemiLattice (k -> v) where
bottom = const bottom
instance BoundedMeetSemiLattice v => BoundedMeetSemiLattice (k -> v) where
top = const top
instance Lattice () where
_ \/ _ = ()
_ /\ _ = ()
instance BoundedJoinSemiLattice () where
bottom = ()
instance BoundedMeetSemiLattice () where
top = ()
instance (Lattice a, Lattice b) => Lattice (a, b) where
(x1, y1) \/ (x2, y2) = (x1 \/ x2, y1 \/ y2)
(x1, y1) /\ (x2, y2) = (x1 /\ x2, y1 /\ y2)
instance (BoundedJoinSemiLattice a, BoundedJoinSemiLattice b) => BoundedJoinSemiLattice (a, b) where
bottom = (bottom, bottom)
instance (BoundedMeetSemiLattice a, BoundedMeetSemiLattice b) => BoundedMeetSemiLattice (a, b) where
top = (top, top)
instance Lattice Bool where
(\/) = (||)
(/\) = (&&)
instance BoundedJoinSemiLattice Bool where
bottom = False
instance BoundedMeetSemiLattice Bool where
top = True
newtype Join a = Join { getJoin :: a }
deriving (Eq, Ord, Read, Show, Bounded, Typeable, Data, Generic)
instance Lattice a => Semigroup (Join a) where
Join a <> Join b = Join (a \/ b)
instance BoundedJoinSemiLattice a => Monoid (Join a) where
mempty = Join bottom
Join a `mappend` Join b = Join (a \/ b)
instance (Eq a, Lattice a) => PO.PartialOrd (Join a) where
leq (Join a) (Join b) = joinLeq a b
instance Functor Join where
fmap f (Join x) = Join (f x)
instance Applicative Join where
pure = Join
Join f <*> Join x = Join (f x)
_ *> x = x
instance Monad Join where
return = pure
Join m >>= f = f m
(>>) = (*>)
instance MonadZip Join where
mzip (Join x) (Join y) = Join (x, y)
instance Universe a => Universe (Join a) where
universe = fmap Join universe
instance Finite a => Finite (Join a) where
universeF = fmap Join universeF
newtype Meet a = Meet { getMeet :: a }
deriving (Eq, Ord, Read, Show, Bounded, Typeable, Data, Generic)
instance Lattice a => Semigroup (Meet a) where
Meet a <> Meet b = Meet (a /\ b)
instance BoundedMeetSemiLattice a => Monoid (Meet a) where
mempty = Meet top
Meet a `mappend` Meet b = Meet (a /\ b)
instance (Eq a, Lattice a) => PO.PartialOrd (Meet a) where
leq (Meet a) (Meet b) = meetLeq a b
instance Functor Meet where
fmap f (Meet x) = Meet (f x)
instance Applicative Meet where
pure = Meet
Meet f <*> Meet x = Meet (f x)
_ *> x = x
instance Monad Meet where
return = pure
Meet m >>= f = f m
(>>) = (*>)
instance MonadZip Meet where
mzip (Meet x) (Meet y) = Meet (x, y)
instance Universe a => Universe (Meet a) where
universe = fmap Meet universe
instance Finite a => Finite (Meet a) where
universeF = fmap Meet universeF
instance Lattice All where
All a \/ All b = All $ a \/ b
All a /\ All b = All $ a /\ b
instance BoundedJoinSemiLattice All where
bottom = All False
instance BoundedMeetSemiLattice All where
top = All True
instance Lattice Any where
Any a \/ Any b = Any $ a \/ b
Any a /\ Any b = Any $ a /\ b
instance BoundedJoinSemiLattice Any where
bottom = Any False
instance BoundedMeetSemiLattice Any where
top = Any True
instance Lattice a => Lattice (Endo a) where
Endo a \/ Endo b = Endo $ a \/ b
Endo a /\ Endo b = Endo $ a /\ b
instance BoundedJoinSemiLattice a => BoundedJoinSemiLattice (Endo a) where
bottom = Endo bottom
instance BoundedMeetSemiLattice a => BoundedMeetSemiLattice (Endo a) where
top = Endo top
instance Lattice a => Lattice (Tagged t a) where
Tagged a \/ Tagged b = Tagged $ a \/ b
Tagged a /\ Tagged b = Tagged $ a /\ b
instance BoundedJoinSemiLattice a => BoundedJoinSemiLattice (Tagged t a) where
bottom = Tagged bottom
instance BoundedMeetSemiLattice a => BoundedMeetSemiLattice (Tagged t a) where
top = Tagged top
instance Lattice (Proxy a) where
_ \/ _ = Proxy
_ /\ _ = Proxy
instance BoundedJoinSemiLattice (Proxy a) where
bottom = Proxy
instance BoundedMeetSemiLattice (Proxy a) where
top = Proxy
instance Lattice a => Lattice (Identity a) where
Identity a \/ Identity b = Identity (a \/ b)
Identity a /\ Identity b = Identity (a /\ b)
instance BoundedMeetSemiLattice a => BoundedMeetSemiLattice (Identity a) where
top = Identity top
instance BoundedJoinSemiLattice a => BoundedJoinSemiLattice (Identity a) where
bottom = Identity bottom
instance Lattice a => Lattice (Const a b) where
Const a \/ Const b = Const (a \/ b)
Const a /\ Const b = Const (a /\ b)
instance BoundedJoinSemiLattice a => BoundedJoinSemiLattice (Const a b) where
bottom = Const bottom
instance BoundedMeetSemiLattice a => BoundedMeetSemiLattice (Const a b) where
top = Const top
instance Lattice Void where
a \/ _ = a
a /\ _ = a
instance Lattice QC.Property where
(\/) = (QC..||.)
(/\) = (QC..&&.)
instance BoundedJoinSemiLattice QC.Property where bottom = QC.property False
instance BoundedMeetSemiLattice QC.Property where top = QC.property True
{-# INLINE unsafeLfp #-}
unsafeLfp :: (Eq a, BoundedJoinSemiLattice a) => (a -> a) -> a
unsafeLfp = PO.unsafeLfpFrom bottom
{-# INLINE lfp #-}
lfp :: (Eq a, BoundedJoinSemiLattice a) => (a -> a) -> a
lfp = lfpFrom bottom
{-# INLINE lfpFrom #-}
lfpFrom :: (Eq a, BoundedJoinSemiLattice a) => a -> (a -> a) -> a
lfpFrom init_x f = PO.unsafeLfpFrom init_x (\x -> f x \/ x)
{-# INLINE unsafeGfp #-}
unsafeGfp :: (Eq a, BoundedMeetSemiLattice a) => (a -> a) -> a
unsafeGfp = PO.unsafeGfpFrom top
{-# INLINE gfp #-}
gfp :: (Eq a, BoundedMeetSemiLattice a) => (a -> a) -> a
gfp = gfpFrom top
{-# INLINE gfpFrom #-}
gfpFrom :: (Eq a, BoundedMeetSemiLattice a) => a -> (a -> a) -> a
gfpFrom init_x f = PO.unsafeGfpFrom init_x (\x -> f x /\ x)