{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE Safe #-}
module Algebra.Heyting where
import Prelude ()
import Prelude.Compat
import Algebra.Lattice
import Control.Applicative (Const (..))
import Data.Functor.Identity (Identity (..))
import Data.Hashable (Hashable (..))
import Data.Proxy (Proxy (..))
import Data.Semigroup (All (..), Any (..), Endo (..))
import Data.Tagged (Tagged (..))
import Data.Universe.Class (Finite (..))
import qualified Data.HashSet as HS
import qualified Data.Set as Set
class BoundedLattice a => Heyting a where
(==>) :: a -> a -> a
neg :: a -> a
neg x = x ==> bottom
(<=>) :: a -> a -> a
x <=> y = (x ==> y) /\ (y ==> x)
infixr 5 ==>, <=>
instance Heyting () where
_ ==> _ = ()
neg _ = ()
_ <=> _ = ()
instance Heyting Bool where
False ==> _ = True
True ==> y = y
neg = not
(<=>) = (==)
instance Heyting a => Heyting (b -> a) where
f ==> g = \x -> f x ==> g x
f <=> g = \x -> f x <=> g x
neg f = neg . f
instance Heyting All where
All a ==> All b = All (a ==> b)
neg (All a) = All (neg a)
All a <=> All b = All (a <=> b)
instance Heyting Any where
Any a ==> Any b = Any (a ==> b)
neg (Any a) = Any (neg a)
Any a <=> Any b = Any (a <=> b)
instance Heyting a => Heyting (Endo a) where
Endo a ==> Endo b = Endo (a ==> b)
neg (Endo a) = Endo (neg a)
Endo a <=> Endo b = Endo (a <=> b)
instance Heyting (Proxy a) where
_ ==> _ = Proxy
neg _ = Proxy
_ <=> _ = Proxy
instance Heyting a => Heyting (Identity a) where
Identity a ==> Identity b = Identity (a ==> b)
neg (Identity a) = Identity (neg a)
Identity a <=> Identity b = Identity (a <=> b)
instance Heyting a => Heyting (Tagged b a) where
Tagged a ==> Tagged b = Tagged (a ==> b)
neg (Tagged a) = Tagged (neg a)
Tagged a <=> Tagged b = Tagged (a <=> b)
instance Heyting a => Heyting (Const a b) where
Const a ==> Const b = Const (a ==> b)
neg (Const a) = Const (neg a)
Const a <=> Const b = Const (a <=> b)
instance (Ord a, Finite a) => Heyting (Set.Set a) where
x ==> y = Set.union (neg x) y
neg xs = Set.fromList [ x | x <- universeF, Set.notMember x xs]
x <=> y = Set.fromList
[ z
| z <- universeF
, Set.member z x <=> Set.member z y
]
instance (Eq a, Hashable a, Finite a) => Heyting (HS.HashSet a) where
x ==> y = HS.union (neg x) y
neg xs = HS.fromList [ x | x <- universeF, not $ HS.member x xs]
x <=> y = HS.fromList
[ z
| z <- universeF
, HS.member z x <=> HS.member z y
]