{-# LANGUAGE TypeFamilies, RankNTypes #-}
module Ideas.Common.Strategy.Abstract
(
Strategy
, LabeledStrategy, label, unlabel
, IsStrategy(..), liftS, liftS2, liftSn
, emptyPrefix, replayPath, replayPaths, replayStrategy
, rulesInStrategy, mapRules, mapRulesS
, cleanUpStrategy, cleanUpStrategyAfter
, derivationList
, toStrategyTree, onStrategyTree
, useDecl, decl0, decl1, decl2, declN
) where
import Data.Foldable (toList)
import Data.Maybe
import Ideas.Common.Classes
import Ideas.Common.Derivation
import Ideas.Common.Environment
import Ideas.Common.Id
import Ideas.Common.Rewriting (RewriteRule)
import Ideas.Common.Rule
import Ideas.Common.Strategy.Choice
import Ideas.Common.Strategy.CyclicTree hiding (label)
import Ideas.Common.Strategy.Prefix
import Ideas.Common.Strategy.Process
import Ideas.Common.Strategy.Sequence (Sequence(..), ready)
import Ideas.Common.Strategy.StrategyTree
import Ideas.Common.View
import Prelude hiding (sequence)
import qualified Ideas.Common.Strategy.CyclicTree as Tree
newtype Strategy a = S { unS :: StrategyTree a }
instance Show (Strategy a) where
show = show . unS
instance Apply Strategy where
applyAll = runProcess . getProcess
instance Choice (Strategy a) where
empty = decl0 ("fail" .=. Nullary empty)
s .|. t = choice [s, t]
s |> t = orelse [s, t]
s ./. t = preference [s, t]
choice = declN (associative ("choice" .=. Nary choice))
preference = declN (associative ("preference" .=. Nary preference))
orelse = declN (associative ("orelse" .=. Nary orelse))
instance Sequence (Strategy a) where
type Sym (Strategy a) = Rule a
done = decl0 ("succeed" .=. Nullary done)
a ~> s = sequence [toStrategy a, s]
s .*. t = sequence [s, t]
single = toStrategy
sequence = declN (associative ("sequence" .=. Nary sequence))
instance Fix (Strategy a) where
fix f = S (fix (unS . f . S))
class IsStrategy f where
toStrategy :: f a -> Strategy a
instance IsStrategy Strategy where
toStrategy = id
instance IsStrategy LabeledStrategy where
toStrategy (LS info (S t)) = S (Tree.label info t)
instance IsStrategy Rule where
toStrategy = S . leaf . LeafRule
instance IsStrategy RewriteRule where
toStrategy = toStrategy . ruleRewrite
instance IsStrategy Dynamic where
toStrategy = S . leaf . LeafDyn
liftS :: IsStrategy f => (Strategy a -> Strategy a) -> f a -> Strategy a
liftS f = f . toStrategy
liftS2 :: (IsStrategy f, IsStrategy g)
=> (Strategy a -> Strategy a -> Strategy a) -> f a -> g a -> Strategy a
liftS2 f = liftS . f . toStrategy
liftSn :: IsStrategy f => ([Strategy a] -> Strategy a) -> [f a] -> Strategy a
liftSn f = f . map toStrategy
data LabeledStrategy a = LS Id (Strategy a)
instance Show (LabeledStrategy a) where
show s = showId s ++ ": " ++ show (unlabel s)
instance Apply LabeledStrategy where
applyAll = applyAll . toStrategy
instance HasId (LabeledStrategy a) where
getId (LS l _) = l
changeId f (LS l s) = LS (changeId f l) s
label :: (IsId l, IsStrategy f) => l -> f a -> LabeledStrategy a
label l = LS (newId l) . toStrategy
unlabel :: LabeledStrategy a -> Strategy a
unlabel (LS _ s) = s
emptyPrefix :: IsStrategy f => f a -> a -> Prefix a
emptyPrefix = makePrefix . getProcess
replayPath :: IsStrategy f => Path -> f a -> a -> ([Rule a], Prefix a)
replayPath path s a =
let (xs, f) = replayProcess path (getProcess s)
in (xs, f a)
replayPaths :: IsStrategy f => [Path] -> f a -> a -> Prefix a
replayPaths paths s a = mconcat
[ snd (replayPath path s a) | path <- paths ]
replayStrategy :: (Monad m, IsStrategy f) => Path -> f a -> a -> m (a, Prefix a)
replayStrategy path s a =
let (xs, f) = replayProcess path (getProcess s)
in case applyList xs a of
Just b -> return (b, f b)
Nothing -> fail "Cannot replay strategy"
derivationList :: IsStrategy f => (Rule a -> Rule a -> Ordering) -> f a -> a -> [Derivation (Rule a, Environment) a]
derivationList cmpRule s a0 = rec a0 (toPrefix s)
where
toPrefix = majorPrefix . flip makePrefix a0 . getProcess
rec a prfx = (if ready prfx then (emptyDerivation a:) else id)
[ prepend (a, rEnv) d | (rEnv, b, new) <- firstsOrd prfx, d <- rec b new ]
firstsOrd = map f . firstsOrdered cmpRule
where
f ((stp, b, env), new) = ((stp, env), b, new)
rulesInStrategy :: IsStrategy f => f a -> [Rule a]
rulesInStrategy s = concatMap f (toList (toStrategyTree s))
where
f (LeafRule r) | isMajor r = [r]
f _ = []
instance LiftView LabeledStrategy where
liftViewIn v (LS n s) = LS n (liftViewIn v s)
instance LiftView Strategy where
liftViewIn v = S . fmap (liftViewIn v) . toStrategyTree
mapRules :: (Rule a -> Rule a) -> LabeledStrategy a -> LabeledStrategy a
mapRules f (LS n s) = LS n (mapRulesS f s)
mapRulesS :: (Rule a -> Rule a) -> Strategy a -> Strategy a
mapRulesS = onStrategyTree . mapRulesInTree
cleanUpStrategy :: (a -> a) -> LabeledStrategy a -> LabeledStrategy a
cleanUpStrategy f (LS n s) = cleanUpStrategyAfter f $
LS n (doAfter f (idRule ()) ~> s)
cleanUpStrategyAfter :: (a -> a) -> LabeledStrategy a -> LabeledStrategy a
cleanUpStrategyAfter f = mapRules $ \r ->
if isMajor r then doAfter f r else r
toStrategyTree :: IsStrategy f => f a -> StrategyTree a
toStrategyTree = unS . toStrategy
onStrategyTree :: IsStrategy f => (StrategyTree a -> StrategyTree a) -> f a -> Strategy a
onStrategyTree f = S . f . toStrategyTree
getProcess :: IsStrategy f => f a -> Process (Leaf a)
getProcess = treeToProcess . toStrategyTree
decl0 :: Decl Nullary -> Strategy a
decl0 = fromNullary . useDecl
decl1 :: IsStrategy f => Decl Unary -> f a -> Strategy a
decl1 = liftS . fromUnary . useDecl
decl2 :: (IsStrategy f, IsStrategy g) => Decl Binary -> f a -> g a -> Strategy a
decl2 = liftS2 . fromBinary . useDecl
declN :: IsStrategy f => Decl Nary -> [f a] -> Strategy a
declN = liftSn . fromNary . useDecl
useDecl :: Arity f => Decl f -> f (Strategy a)
useDecl = liftIso (S <-> unS) . applyDecl