hall-symbols: Symmetry operations generater of Hall Symbols

[ bsd3, chemistry, library ] [ Propose Tags ] [ Report a vulnerability ]

Please see the README on GitHub at https://github.com/narumij/hall-symbols#readme


[Skip to Readme]

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

  • No Candidates
Versions [RSS] 0.1.0.2, 0.1.0.3, 0.1.0.4, 0.1.0.5, 0.1.0.6
Dependencies base (>=4.8 && <5), matrix (>=0.3.5 && <4), parsec (>=3.1 && <4) [details]
License BSD-3-Clause
Copyright Jun Narumi
Author Jun Narumi
Maintainer narumij@gmail.com
Category Chemistry
Home page https://github.com/narumij/hall-symbols#readme
Bug tracker https://github.com/narumij/hall-symbols/issues
Source repo head: git clone https://github.com/narumij/hall-symbols
Uploaded by narumij at 2020-07-21T07:27:29Z
Distributions LTSHaskell:0.1.0.6, Stackage:0.1.0.6
Reverse Dependencies 1 direct, 0 indirect [details]
Downloads 1721 total (27 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs available [build log]
Last success reported on 2020-07-21 [all 1 reports]

Readme for hall-symbols-0.1.0.6

[back to package description]

hall-symbols

Haskell Hall Symbols Library

Quickstart

Make new stack project and move to project directory.

% stack new hmRepl
% cd hmRepl

Edit extra-deps part of stack.yaml like below.

extra-deps:
- matrix-as-xyz-0.1.1.3
- symmetry-operations-symbols-0.0.1.2
- hall-symbols-0.1.0.6

Edit dependencies part of package.yaml like below.

dependencies:
- base >= 4.7 && < 5
- matrix-as-xyz
- symmetry-operations-symbols
- hall-symbols

Then start repl.

% stack repl

Setup packages and load modules.

repl> :m Data.Matrix.AsXYZ Data.Matrix.SymmetryOperationsSymbols Crystallography.HallSymbols

Use like below.

-- print General Positions.
repl> prettyXYZ <$> fromHallSymbols' "C -2yc"
 ["x,y,z","x+1/2,y+1/2,z","x,-y,z+1/2","x+1/2,-y+1/2,z+1/2"]

repl> fromHallSymbols' "C -2yc" >>= fromMatrix'
[" 1 "," c  x,0,z"," t (1/2,1/2,0) "," n (1/2,0,1/2) x,1/4,z"]

Or use like below.

-- print Generators
repl> prettyXYZ <$> generatorsOfHallSymbols "C -2yc"
["x,y,z","x+1/2,y+1/2,z","x,-y,z+1/2"]

repl> generatorsOfHallSymbols "C -2yc" >>= fromMatrix'
[" 1 "," t (1/2,1/2,0) "," c  x,0,z"]

References

  1. Concise Space-Group Symbols http://cci.lbl.gov/sginfo/hall_symbols.html , See also : https://github.com/rwgk/sginfo

  2. Space-Group Notation with an Explicit Origin S.R. Hall; Space-Group Notation with an Explicit Origin ; Acta Cryst. (1981). A37, 517-525

  3. ITVB 2001 Table A1.4.2.7 Hall symbols http://cci.lbl.gov/sginfo/itvb_2001_table_a1427_hall_symbols.html

License

See the LICENSE file in the repository.