category-0.2.5.0: Categorical types and classes

Safe HaskellSafe
LanguageHaskell2010

Control.Category.Const2

Synopsis

Documentation

newtype Const2 a b c Source #

Notes: Const2 '()' is the indiscrete category.

Constructors

Const2 

Fields

Instances
(Semigroup a, Monoid a) => Category (Const2 a :: k -> k -> Type) Source # 
Instance details

Defined in Control.Category.Const2

Methods

id :: Const2 a a0 a0 #

(.) :: Const2 a b c -> Const2 a a0 b -> Const2 a a0 c #

(Semigroup a, Group a) => Groupoid (Const2 a :: k -> k -> Type) Source # 
Instance details

Defined in Control.Category.Const2

Methods

invert :: Const2 a a0 b -> Const2 a b a0 Source #

Functor ((->) :: Type -> Type -> Type) (NT (NT ((->) :: Type -> Type -> Type) :: (k2 -> Type) -> (k2 -> Type) -> Type) :: (k1 -> k2 -> Type) -> (k1 -> k2 -> Type) -> Type) (Const2 :: Type -> k1 -> k2 -> Type) Source # 
Instance details

Defined in Control.Category.Const2

Methods

map :: (a -> b) -> NT (NT (->)) (Const2 a) (Const2 b) Source #

Monad ((->) :: Type -> Type -> Type) m => Functor (Kleisli ((->) :: Type -> Type -> Type) m :: Type -> Type -> Type) (NT (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k2 -> Type) -> (k2 -> Type) -> Type) :: (k1 -> k2 -> Type) -> (k1 -> k2 -> Type) -> Type) (Const2 :: Type -> k1 -> k2 -> Type) Source # 
Instance details

Defined in Control.Category.Const2

Methods

map :: Kleisli (->) m a b -> NT (NT (Kleisli (->) m)) (Const2 a) (Const2 b) Source #

Semigroup a => Semigroup (Const2 a b c) Source # 
Instance details

Defined in Control.Category.Const2

Methods

(<>) :: Const2 a b c -> Const2 a b c -> Const2 a b c #

sconcat :: NonEmpty (Const2 a b c) -> Const2 a b c #

stimes :: Integral b0 => b0 -> Const2 a b c -> Const2 a b c #

Monoid a => Monoid (Const2 a b c) Source # 
Instance details

Defined in Control.Category.Const2

Methods

mempty :: Const2 a b c #

mappend :: Const2 a b c -> Const2 a b c -> Const2 a b c #

mconcat :: [Const2 a b c] -> Const2 a b c #

Preord a => Preord (Const2 a b c) Source # 
Instance details

Defined in Control.Category.Const2

Methods

(≤) :: Const2 a b c -> Const2 a b c -> Bool #

(≥) :: Const2 a b c -> Const2 a b c -> Bool #

(<) :: Const2 a b c -> Const2 a b c -> Bool #

(>) :: Const2 a b c -> Const2 a b c -> Bool #

PartialEq a => PartialEq (Const2 a b c) Source # 
Instance details

Defined in Control.Category.Const2

Methods

(≡) :: Const2 a b c -> Const2 a b c -> Bool #

(≢) :: Const2 a b c -> Const2 a b c -> Bool #

(Preord a, PartialEq a) => Eq (Const2 a b c) Source # 
Instance details

Defined in Control.Category.Const2

PartialOrd a => PartialOrd (Const2 a b c) Source # 
Instance details

Defined in Control.Category.Const2

Methods

tryCompare :: Const2 a b c -> Const2 a b c -> Maybe Ordering #

Ord a => Ord (Const2 a b c) Source # 
Instance details

Defined in Control.Category.Const2

Methods

compare :: Const2 a b c -> Const2 a b c -> Ordering #

Group a => Group (Const2 a b c) Source # 
Instance details

Defined in Control.Category.Const2

Methods

invert :: Const2 a b c -> Const2 a b c #