Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Documentation
class Endofunctor s m => Monad s m where Source #
Instances
Comonad s f => Monad (Dual s :: β -> β -> Type) (f :: β -> β) Source # | |
Monad m => Monad ((->) :: Type -> Type -> Type) (m :: Type -> Type) Source # | |
Monad ((->) :: Type -> Type -> Type) f => Monad ((->) :: Type -> Type -> Type) (IdentityT f :: Type -> Type) Source # | |
Monad ((->) :: Type -> Type -> Type) f => Monad ((->) :: Type -> Type -> Type) (WriterT Either w f :: Type -> Type) Source # | |
(Monoid w, Monad ((->) :: Type -> Type -> Type) f) => Monad ((->) :: Type -> Type -> Type) (WriterT (,) w f :: Type -> Type) Source # | |
Monad ((->) :: Type -> Type -> Type) f => Monad ((->) :: Type -> Type -> Type) (ReaderT ((->) :: Type -> Type -> Type) r f :: Type -> Type) Source # | |
(Category s, Comonad (NT s :: (k1 -> k2) -> (k1 -> k2) -> Type) f) => Monad (NT (Dual s) :: (k1 -> k2) -> (k1 -> k2) -> Type) (f :: (k1 -> k2) -> k1 -> k2) Source # | |
Monad (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
Monad ((->) :: Type -> Type -> Type) m => Monad (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
Comonad ((->) :: Type -> Type -> Type) ɯ => Monad (NT (Cokleisli ((->) :: Type -> Type -> Type) ɯ) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
Monad ((->) :: Type -> Type -> Type) (s r) => Monad (NT ((->) :: Type -> Type -> Type) :: (k1 -> Type) -> (k1 -> Type) -> Type) (ReaderT s r :: (k1 -> Type) -> k1 -> Type) Source # | |
newtype Kleisli s m a b Source #
Instances
Monad s m => Functor (Kleisli s m :: β -> β -> Type) (s :: β -> β -> Type) (m :: β -> β) Source # | |
Defined in Control.Categorical.Monad | |
Functor s t m => Functor (s :: k2 -> k2 -> Type) ((->) :: Type -> Type -> Type) (Kleisli t m a :: k2 -> Type) Source # | |
(Functor s (Kleisli ((->) :: Type -> Type -> Type) m) f, Endofunctor ((->) :: Type -> Type -> Type) m) => Functor (s :: k -> k -> Type) (Kleisli ((->) :: Type -> Type -> Type) m :: Type -> Type -> Type) (IdentityT f :: k -> Type) Source # | |
Category s => Functor (Dual s :: k2 -> k2 -> Type) (NT ((->) :: Type -> Type -> Type) :: (k1 -> Type) -> (k1 -> Type) -> Type) (Kleisli s m :: k2 -> k1 -> Type) Source # | |
Monad s m => Category (Kleisli s m :: k -> k -> Type) Source # | |
(Traversable f, Monad ((->) :: Type -> Type -> Type) m) => Functor (Kleisli ((->) :: Type -> Type -> Type) m :: Type -> Type -> Type) (Kleisli ((->) :: Type -> Type -> Type) m :: Type -> Type -> Type) (f :: Type -> Type) Source # | |
Monad ((->) :: Type -> Type -> Type) m => Functor (Kleisli ((->) :: Type -> Type -> Type) m :: Type -> Type -> Type) (Kleisli ((->) :: Type -> Type -> Type) m :: Type -> Type -> Type) ((,) a :: Type -> Type) Source # | |
Monad ((->) :: Type -> Type -> Type) m => Functor (Kleisli ((->) :: Type -> Type -> Type) m :: Type -> Type -> Type) (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (Type -> Type) -> (Type -> Type) -> Type) (,) Source # | |
Monad ((->) :: Type -> Type -> Type) m => Functor (Kleisli ((->) :: Type -> Type -> Type) m :: Type -> Type -> Type) (NT (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k2 -> Type) -> (k2 -> Type) -> Type) :: (k1 -> k2 -> Type) -> (k1 -> k2 -> Type) -> Type) (Const2 :: Type -> k1 -> k2 -> Type) Source # | |
Monad (Dual ((->) :: Type -> Type -> Type)) m => Functor (NT (Kleisli (Dual ((->) :: Type -> Type -> Type)) m) :: (k -> Type) -> (k -> Type) -> Type) (NT (Kleisli (Dual ((->) :: Type -> Type -> Type)) m) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
Monad ((->) :: Type -> Type -> Type) m => Functor (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k -> Type) -> (k -> Type) -> Type) (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
Monad ((->) :: Type -> Type -> Type) m => Comonad (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
Monad ((->) :: Type -> Type -> Type) m => Monad (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
class Endofunctor s ɯ => Comonad s ɯ where Source #
Instances
Comonad ((->) :: Type -> Type -> Type) Identity Source # | |
Comonad ((->) :: Type -> Type -> Type) NonEmpty Source # | |
Comonad ((->) :: Type -> Type -> Type) ((,) a :: Type -> Type) Source # | |
Comonad ((->) :: Type -> Type -> Type) (Arg a :: Type -> Type) Source # | |
Comonad ((->) :: Type -> Type -> Type) f => Comonad ((->) :: Type -> Type -> Type) (IdentityT f :: Type -> Type) Source # | |
Monoid m => Comonad ((->) :: Type -> Type -> Type) ((->) m :: Type -> Type) Source # | |
(Comonad ((->) :: Type -> Type -> Type) (p w), Comonad ((->) :: Type -> Type -> Type) f) => Comonad ((->) :: Type -> Type -> Type) (WriterT p w f :: Type -> Type) Source # | |
Comonad ((->) :: Type -> Type -> Type) ɯ => Comonad ((->) :: Type -> Type -> Type) (ReaderT (,) r ɯ :: Type -> Type) Source # | |
Monad ((->) :: Type -> Type -> Type) m => Comonad (NT (Kleisli ((->) :: Type -> Type -> Type) m) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
Comonad (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
Comonad ((->) :: Type -> Type -> Type) ɯ => Comonad (NT (Cokleisli ((->) :: Type -> Type -> Type) ɯ) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
Comonad ((->) :: Type -> Type -> Type) (s r) => Comonad (NT ((->) :: Type -> Type -> Type) :: (k1 -> Type) -> (k1 -> Type) -> Type) (ReaderT s r :: (k1 -> Type) -> k1 -> Type) Source # | |
newtype Cokleisli s ɯ a b Source #
Instances
Comonad s ɯ => Functor (Cokleisli s ɯ :: β -> β -> Type) (s :: β -> β -> Type) (ɯ :: β -> β) Source # | |
Defined in Control.Categorical.Monad | |
Category s => Functor (s :: k2 -> k2 -> Type) ((->) :: Type -> Type -> Type) (Cokleisli s ɯ a :: k2 -> Type) Source # | |
(Functor s (Cokleisli ((->) :: Type -> Type -> Type) ɯ) f, Endofunctor ((->) :: Type -> Type -> Type) ɯ) => Functor (s :: k -> k -> Type) (Cokleisli ((->) :: Type -> Type -> Type) ɯ :: Type -> Type -> Type) (IdentityT f :: k -> Type) Source # | |
Functor s t ɯ => Functor (Dual s :: k2 -> k2 -> Type) (NT ((->) :: Type -> Type -> Type) :: (k1 -> Type) -> (k1 -> Type) -> Type) (Cokleisli t ɯ :: k2 -> k1 -> Type) Source # | |
Comonad s ɯ => Category (Cokleisli s ɯ :: k -> k -> Type) Source # | |
Comonad ((->) :: Type -> Type -> Type) ɯ => Functor (NT (Cokleisli ((->) :: Type -> Type -> Type) ɯ) :: (k -> Type) -> (k -> Type) -> Type) (NT (Cokleisli ((->) :: Type -> Type -> Type) ɯ) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
Comonad ((->) :: Type -> Type -> Type) ɯ => Comonad (NT (Cokleisli ((->) :: Type -> Type -> Type) ɯ) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |
Comonad ((->) :: Type -> Type -> Type) ɯ => Monad (NT (Cokleisli ((->) :: Type -> Type -> Type) ɯ) :: (k -> Type) -> (k -> Type) -> Type) (IdentityT :: (k -> Type) -> k -> Type) Source # | |