Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Synopsis
- class Semigroup a where
- class Semigroup a => Monoid a where
- mempty :: a
- class Monoid a => Group a where
- invert :: a -> a
- class Semigroup a => Abelian a
- class Semigroup a => Idempotent a
- (+) :: Semigroup (Sum a) => a -> a -> a
- (-) :: Group (Sum a) => a -> a -> a
- (*) :: Semigroup (Product a) => a -> a -> a
- (/) :: (Semigroup (Product a), Group (Product a)) => a -> a -> a
- (×) :: Semigroup (Product a) => a -> a -> a
- commuteWith :: Group b => (a -> a -> b) -> a -> a -> b
Documentation
The class of semigroups (types with an associative binary operation).
Instances should satisfy the associativity law:
Since: base-4.9.0.0
(<>) :: a -> a -> a infixr 6 #
An associative operation.
Reduce a non-empty list with <>
The default definition should be sufficient, but this can be overridden for efficiency.
stimes :: Integral b => b -> a -> a #
Repeat a value n
times.
Given that this works on a Semigroup
it is allowed to fail if
you request 0 or fewer repetitions, and the default definition
will do so.
By making this a member of the class, idempotent semigroups
and monoids can upgrade this to execute in O(1) by
picking stimes =
or stimesIdempotent
stimes =
respectively.stimesIdempotentMonoid
Instances
Semigroup Ordering | Since: base-4.9.0.0 |
Semigroup () | Since: base-4.9.0.0 |
Semigroup All | Since: base-4.9.0.0 |
Semigroup Any | Since: base-4.9.0.0 |
Semigroup [a] | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
Semigroup p => Semigroup (Par1 p) | Since: base-4.12.0.0 |
Ord a => Semigroup (Min a) | Since: base-4.9.0.0 |
Ord a => Semigroup (Max a) | Since: base-4.9.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Monoid m => Semigroup (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup (<>) :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # sconcat :: NonEmpty (WrappedMonoid m) -> WrappedMonoid m # stimes :: Integral b => b -> WrappedMonoid m -> WrappedMonoid m # | |
Semigroup a => Semigroup (Option a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Identity a) | Since: base-4.9.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Dual a) | Since: base-4.9.0.0 |
Semigroup (Endo a) | Since: base-4.9.0.0 |
Num a => Semigroup (Sum a) | Since: base-4.9.0.0 |
Num a => Semigroup (Product a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
Ord a => Semigroup (Min a) Source # | |
Bits a => Semigroup (Min (BitSet a)) Source # | |
Ord a => Semigroup (Max a) Source # | |
Bits a => Semigroup (Max (BitSet a)) Source # | |
Semigroup a => Semigroup (Lexical a) Source # | |
Bits a => Semigroup (BitSet a) Source # | |
Semigroup b => Semigroup (a -> b) | Since: base-4.9.0.0 |
Semigroup (Either a b) | Since: base-4.9.0.0 |
Semigroup (V1 p) | Since: base-4.12.0.0 |
Semigroup (U1 p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b) => Semigroup (a, b) | Since: base-4.9.0.0 |
Semigroup (Proxy s) | Since: base-4.9.0.0 |
(Applicative p, Semigroup a) => Semigroup (Ap p a) | |
Semigroup (f p) => Semigroup (Rec1 f p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Semigroup a) => Semigroup (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Semigroup (Alt f a) | Since: base-4.9.0.0 |
Semigroup c => Semigroup (K1 i c p) | Since: base-4.12.0.0 |
(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) | Since: base-4.9.0.0 |
Semigroup (f p) => Semigroup (M1 i c f p) | Since: base-4.12.0.0 |
Semigroup (f (g p)) => Semigroup ((f :.: g) p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) | Since: base-4.9.0.0 |
Semigroup (k3 b a) => Semigroup (Dual k3 a b) | |
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:
x
<>
mempty
= xmempty
<>
x = xx
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)mconcat
=foldr
'(<>)'mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Instances
Monoid Ordering | Since: base-2.1 |
Monoid () | Since: base-2.1 |
Monoid All | Since: base-2.1 |
Monoid Any | Since: base-2.1 |
Monoid [a] | Since: base-2.1 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
(Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
(Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
Semigroup a => Monoid (Option a) | Since: base-4.9.0.0 |
Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
Monoid (First a) | Since: base-2.1 |
Monoid (Last a) | Since: base-2.1 |
Monoid a => Monoid (Dual a) | Since: base-2.1 |
Monoid (Endo a) | Since: base-2.1 |
Num a => Monoid (Sum a) | Since: base-2.1 |
Num a => Monoid (Product a) | Since: base-2.1 |
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
Bits a => Monoid (Min (BitSet a)) Source # | |
Bits a => Monoid (Max (BitSet a)) Source # | |
Monoid a => Monoid (Lexical a) Source # | |
Bits a => Monoid (BitSet a) Source # | |
Monoid b => Monoid (a -> b) | Since: base-2.1 |
Monoid (U1 p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
Monoid (Proxy s) | Since: base-4.7.0.0 |
(Applicative p, Semigroup a, Monoid a) => Monoid (Ap p a) | |
Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
Monoid (k3 b a) => Monoid (Dual k3 a b) | |
class Monoid a => Group a where Source #
Instances
Group () Source # | |
Group a => Group (Identity a) Source # | |
Group a => Group (Dual a) Source # | |
Num a => Group (Sum a) Source # | |
Fractional a => Group (Product a) Source # | |
Group a => Group (Lexical a) Source # | |
Bits a => Group (BitSet a) Source # | |
Group b => Group (a -> b) Source # | |
(Group a, Group b) => Group (a, b) Source # | |
Group (Proxy a) Source # | |
(Group a, Group b, Group c) => Group (a, b, c) Source # | |
Group a => Group (Const a b) Source # | |
(Group a, Group b, Group c, Group d) => Group (a, b, c, d) Source # | |
(Group a, Group b, Group c, Group d, Group e) => Group (a, b, c, d, e) Source # | |
Group (k3 b a) => Group (Dual k3 a b) Source # | |
class Semigroup a => Abelian a Source #
Instances
class Semigroup a => Idempotent a Source #
Instances
commuteWith :: Group b => (a -> a -> b) -> a -> a -> b Source #