units-2.4.1.5: A domain-specific type system for dimensional analysis
Copyright(C) 2013 Richard Eisenberg
LicenseBSD-style (see LICENSE)
MaintainerRichard Eisenberg (rae@cs.brynmawr.edu)
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Metrology.Z

Description

This module defines a datatype and operations to represent type-level integers. Though it's defined as part of the units package, it may be useful beyond dimensional analysis. If you have a compelling non-units use of this package, please let me (Richard, rae at cs.brynmawr.edu) know.

Synopsis

The Z datatype

data Z Source #

The datatype for type-level integers.

Constructors

Zero 
S Z 
P Z 

Instances

Instances details
Eq Z Source # 
Instance details

Defined in Data.Metrology.Z

Methods

(==) :: Z -> Z -> Bool #

(/=) :: Z -> Z -> Bool #

SEq Z => SEq Z Source # 
Instance details

Defined in Data.Metrology.Z

Methods

(%==) :: forall (a :: Z) (b :: Z). Sing a -> Sing b -> Sing (a == b) #

(%/=) :: forall (a :: Z) (b :: Z). Sing a -> Sing b -> Sing (a /= b) #

PEq Z Source # 
Instance details

Defined in Data.Metrology.Z

Associated Types

type x == y :: Bool #

type x /= y :: Bool #

SDecide Z => SDecide Z Source # 
Instance details

Defined in Data.Metrology.Z

Methods

(%~) :: forall (a :: Z) (b :: Z). Sing a -> Sing b -> Decision (a :~: b) #

SingKind Z Source # 
Instance details

Defined in Data.Metrology.Z

Associated Types

type Demote Z = (r :: Type) #

Methods

fromSing :: forall (a :: Z). Sing a -> Demote Z #

toSing :: Demote Z -> SomeSing Z #

SDecide Z => TestCoercion SZ Source # 
Instance details

Defined in Data.Metrology.Z

Methods

testCoercion :: forall (a :: k) (b :: k). SZ a -> SZ b -> Maybe (Coercion a b) #

SDecide Z => TestEquality SZ Source # 
Instance details

Defined in Data.Metrology.Z

Methods

testEquality :: forall (a :: k) (b :: k). SZ a -> SZ b -> Maybe (a :~: b) #

SingI 'Zero Source # 
Instance details

Defined in Data.Metrology.Z

Methods

sing :: Sing 'Zero #

SingI n => SingI ('S n :: Z) Source # 
Instance details

Defined in Data.Metrology.Z

Methods

sing :: Sing ('S n) #

SingI n => SingI ('P n :: Z) Source # 
Instance details

Defined in Data.Metrology.Z

Methods

sing :: Sing ('P n) #

SuppressUnusedWarnings PSym0 Source # 
Instance details

Defined in Data.Metrology.Z

SuppressUnusedWarnings SSym0 Source # 
Instance details

Defined in Data.Metrology.Z

SingI PSym0 Source # 
Instance details

Defined in Data.Metrology.Z

Methods

sing :: Sing PSym0 #

SingI SSym0 Source # 
Instance details

Defined in Data.Metrology.Z

Methods

sing :: Sing SSym0 #

type Sing Source # 
Instance details

Defined in Data.Metrology.Z

type Sing = SZ
type Demote Z Source # 
Instance details

Defined in Data.Metrology.Z

type Demote Z = Z
type (x :: Z) /= (y :: Z) Source # 
Instance details

Defined in Data.Metrology.Z

type (x :: Z) /= (y :: Z) = Not (x == y)
type (a :: Z) == (b :: Z) Source # 
Instance details

Defined in Data.Metrology.Z

type (a :: Z) == (b :: Z)
type Apply PSym0 (a6989586621679064021 :: Z) Source # 
Instance details

Defined in Data.Metrology.Z

type Apply PSym0 (a6989586621679064021 :: Z) = PSym1 a6989586621679064021
type Apply SSym0 (a6989586621679064019 :: Z) Source # 
Instance details

Defined in Data.Metrology.Z

type Apply SSym0 (a6989586621679064019 :: Z) = SSym1 a6989586621679064019

type family Sing :: k -> Type #

The singleton kind-indexed type family.

Instances

Instances details
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SBool
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing 
Instance details

Defined in Data.Singletons.TypeLits.Internal

type Sing = SNat
type Sing 
Instance details

Defined in Data.Singletons.TypeLits.Internal

type Sing = SSymbol
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Metrology.Z

type Sing = SZ
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SVoid
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SAll
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SAny
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SList :: [a] -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SMin :: Min a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SMax :: Max a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SFirst :: First a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SLast :: Last a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SOption :: Option a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Monoid

type Sing = SFirst :: First a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Monoid

type Sing = SLast :: Last a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SDual :: Dual a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SSum :: Sum a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SProduct :: Product a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Ord

type Sing = SDown :: Down a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Sing = SEndo :: Endo a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Sing = SMaxInternal :: MaxInternal a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Sing = SMinInternal :: MinInternal a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SEither :: Either a b -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type Sing = SArg :: Arg a b -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Proxy

type Sing = SProxy :: Proxy t -> Type
type Sing 
Instance details

Defined in Data.Singletons.Internal

type Sing 
Instance details

Defined in Data.Singletons.Internal

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sing = SStateL :: StateL s a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sing = SStateR :: StateR s a -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Const

type Sing = SConst :: Const a b -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SZ :: Z -> Type where Source #

Constructors

SZero :: SZ (Zero :: Z) 
SS :: forall (n :: Z). (Sing n) -> SZ (S n :: Z) 
SP :: forall (n :: Z). (Sing n) -> SZ (P n :: Z) 

Instances

Instances details
SDecide Z => TestCoercion SZ Source # 
Instance details

Defined in Data.Metrology.Z

Methods

testCoercion :: forall (a :: k) (b :: k). SZ a -> SZ b -> Maybe (Coercion a b) #

SDecide Z => TestEquality SZ Source # 
Instance details

Defined in Data.Metrology.Z

Methods

testEquality :: forall (a :: k) (b :: k). SZ a -> SZ b -> Maybe (a :~: b) #

Defunctionalization symbols (these can be ignored)

type ZeroSym0 = Zero :: Z Source #

data SSym0 a6989586621679064019 Source #

Instances

Instances details
SuppressUnusedWarnings SSym0 Source # 
Instance details

Defined in Data.Metrology.Z

SingI SSym0 Source # 
Instance details

Defined in Data.Metrology.Z

Methods

sing :: Sing SSym0 #

type Apply SSym0 (a6989586621679064019 :: Z) Source # 
Instance details

Defined in Data.Metrology.Z

type Apply SSym0 (a6989586621679064019 :: Z) = SSym1 a6989586621679064019

type SSym1 (a6989586621679064019 :: Z) = S a6989586621679064019 :: Z Source #

data PSym0 a6989586621679064021 Source #

Instances

Instances details
SuppressUnusedWarnings PSym0 Source # 
Instance details

Defined in Data.Metrology.Z

SingI PSym0 Source # 
Instance details

Defined in Data.Metrology.Z

Methods

sing :: Sing PSym0 #

type Apply PSym0 (a6989586621679064021 :: Z) Source # 
Instance details

Defined in Data.Metrology.Z

type Apply PSym0 (a6989586621679064021 :: Z) = PSym1 a6989586621679064021

type PSym1 (a6989586621679064021 :: Z) = P a6989586621679064021 :: Z Source #

Conversions

zToInt :: Z -> Int Source #

Convert a Z to an Int

szToInt :: Sing (z :: Z) -> Int Source #

Convert a singleton Z to an Int.

Type-level operations

Arithmetic

type family Succ (z :: Z) :: Z where ... Source #

Add one to an integer

Equations

Succ Zero = S Zero 
Succ (P z) = z 
Succ (S z) = S (S z) 

type family Pred (z :: Z) :: Z where ... Source #

Subtract one from an integer

Equations

Pred Zero = P Zero 
Pred (P z) = P (P z) 
Pred (S z) = z 

type family Negate (z :: Z) :: Z where ... Source #

Negate an integer

Equations

Negate Zero = Zero 
Negate (S z) = P (Negate z) 
Negate (P z) = S (Negate z) 

type family (a :: Z) #+ (b :: Z) :: Z where ... infixl 6 Source #

Add two integers

Equations

Zero #+ z = z 
(S z1) #+ (S z2) = S (S (z1 #+ z2)) 
(S z1) #+ Zero = S z1 
(S z1) #+ (P z2) = z1 #+ z2 
(P z1) #+ (S z2) = z1 #+ z2 
(P z1) #+ Zero = P z1 
(P z1) #+ (P z2) = P (P (z1 #+ z2)) 

type family (a :: Z) #- (b :: Z) :: Z where ... infixl 6 Source #

Subtract two integers

Equations

z #- Zero = z 
(S z1) #- (S z2) = z1 #- z2 
Zero #- (S z2) = P (Zero #- z2) 
(P z1) #- (S z2) = P (P (z1 #- z2)) 
(S z1) #- (P z2) = S (S (z1 #- z2)) 
Zero #- (P z2) = S (Zero #- z2) 
(P z1) #- (P z2) = z1 #- z2 

type family (a :: Z) #* (b :: Z) :: Z where ... infixl 7 Source #

Multiply two integers

Equations

Zero #* z = Zero 
(S z1) #* z2 = (z1 #* z2) #+ z2 
(P z1) #* z2 = (z1 #* z2) #- z2 

type family (a :: Z) #/ (b :: Z) :: Z where ... Source #

Divide two integers

Equations

Zero #/ b = Zero 
a #/ (P b') = Negate (a #/ Negate (P b')) 
a #/ b = ZDiv b b a 

sSucc :: Sing z -> Sing (Succ z) Source #

Add one to a singleton Z.

sPred :: Sing z -> Sing (Pred z) Source #

Subtract one from a singleton Z.

sNegate :: Sing z -> Sing (Negate z) Source #

Negate a singleton Z.

Comparisons

type family (a :: Z) < (b :: Z) :: Bool where ... Source #

Less-than comparison

Equations

Zero < Zero = False 
Zero < (S n) = True 
Zero < (P n) = False 
(S n) < Zero = False 
(S n) < (S n') = n < n' 
(S n) < (P n') = False 
(P n) < Zero = True 
(P n) < (S n') = True 
(P n) < (P n') = n < n' 

type family NonNegative z :: Constraint where ... Source #

Check if a type-level integer is in fact a natural number

Equations

NonNegative Zero = () 
NonNegative (S z) = () 

Synonyms for certain numbers

type One = S Zero Source #

type Two = S One Source #

type Three = S Two Source #

type Five = S Four Source #

type MOne = P Zero Source #

type MTwo = P MOne Source #

sZero :: SZ 'Zero Source #

This is the singleton value representing Zero at the term level and at the type level, simultaneously. Used for raising units to powers.

sOne :: SZ ('S 'Zero) Source #

sTwo :: SZ ('S ('S 'Zero)) Source #

sThree :: SZ ('S ('S ('S 'Zero))) Source #

sFour :: SZ ('S ('S ('S ('S 'Zero)))) Source #

sFive :: SZ ('S ('S ('S ('S ('S 'Zero))))) Source #

sMTwo :: SZ ('P ('P 'Zero)) Source #

sMThree :: SZ ('P ('P ('P 'Zero))) Source #

sMFour :: SZ ('P ('P ('P ('P 'Zero)))) Source #

sMFive :: SZ ('P ('P ('P ('P ('P 'Zero))))) Source #

Deprecated synonyms

pZero :: SZ 'Zero Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pOne :: SZ ('S 'Zero) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pTwo :: SZ ('S ('S 'Zero)) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pThree :: SZ ('S ('S ('S 'Zero))) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pFour :: SZ ('S ('S ('S ('S 'Zero)))) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pFive :: SZ ('S ('S ('S ('S ('S 'Zero))))) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pMOne :: SZ ('P 'Zero) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pMTwo :: SZ ('P ('P 'Zero)) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pMThree :: SZ ('P ('P ('P 'Zero))) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pMFour :: SZ ('P ('P ('P ('P 'Zero)))) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pMFive :: SZ ('P ('P ('P ('P ('P 'Zero))))) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pSucc :: forall (z :: Z). SZ z -> SZ (Succ z) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.

pPred :: forall (z :: Z). SZ z -> SZ (Pred z) Source #

Deprecated: The singleton prefix is changing from p to s. The p versions will be removed in a future release.