type-level-sets: Type-level sets and finite maps (with value-level counterparts)
This is a package candidate release! Here you can preview how this package release will appear once published to the main package index (which can be accomplished via the 'maintain' link below). Please note that once a package has been published to the main package index it cannot be undone! Please consult the package uploading documentation for more information.
This package provides type-level sets (no duplicates, sorted to provide a normal form) via Set
and type-level
finite maps via Map
, with value-level counterparts.
Described in the paper "Embedding effect systems in Haskell" by Dominic Orchard and Tomas Petricek http://www.cl.cam.ac.uk/~dao29/publ/haskell14-effects.pdf (Haskell Symposium, 2014). This version now uses Quicksort to normalise the representation.
Here is a brief example for finite maps.:
import Data.Type.Map -- Specify how to combine duplicate key-value pairs for Int values type instance Combine Int Int = Int instance Combinable Int Int where combine x y = x + y foo :: Map '["x" :-> Int, "z" :-> Bool, "w" :-> Int] foo = Ext (Var :: (Var "x")) 2 $ Ext (Var :: (Var "z")) True $ Ext (Var :: (Var "w")) 5 $ Empty bar :: Map '["y" :-> Int, "w" :-> Int] bar = Ext (Var :: (Var "y")) 3 $ Ext (Var :: (Var "w")) 1 $ Empty -- foobar :: Map '["w" :-> Int, "x" :-> Int, "y" :-> Int, "z" :-> Bool] foobar = foo `union` bar
The Map
type for foobar
here shows the normalised form (sorted with no duplicates).
The type signatures is commented out as it can be infered. Running the example we get:
>>> foobar {w :-> 6, x :-> 2, y :-> 3, z :-> True}
Thus, we see that the values for "w" are added together. For sets, here is an example:
import GHC.TypeLits import Data.Type.Set type instance Cmp (Natural n) (Natural m) = CmpNat n m data Natural (a :: Nat) where Z :: Natural 0 S :: Natural n -> Natural (n + 1) -- foo :: Set '[Natural 0, Natural 1, Natural 3] foo = asSet $ Ext (S Z) (Ext (S (S (S Z))) (Ext Z Empty)) -- bar :: Set '[Natural 1, Natural 2] bar = asSet $ Ext (S (S Z)) (Ext (S Z) (Ext (S Z) Empty)) -- foobar :: Set '[Natural 0, Natural 1, Natural 2, Natural 3] foobar = foo `union` bar
Note the types here are all inferred.
Properties
Versions | 0.5, 0.6, 0.6.1, 0.7, 0.7, 0.8.0.0, 0.8.5.0, 0.8.6.0, 0.8.7.0, 0.8.9.0 |
---|---|
Change log | None available |
Dependencies | base (<5), ghc-prim [details] |
License | BSD-3-Clause |
Copyright | 2013-16 University of Cambridge |
Author | Dominic Orchard |
Maintainer | Dominic Orchard |
Category | Type System, Data Structures |
Source repo | head: git clone https://github.com/dorchard/type-level-sets |
Uploaded | by DominicOrchard at 2016-05-27T11:21:59Z |
Modules
[Index]
- Data
Downloads
- type-level-sets-0.7.tar.gz [browse] (Cabal source package)
- Package description (as included in the package)
Maintainer's Corner
Package maintainers
For package maintainers and hackage trustees