tdigest: On-line accumulation of rank-based statistics

This is a package candidate release! Here you can preview how this package release will appear once published to the main package index (which can be accomplished via the 'maintain' link below). Please note that once a package has been published to the main package index it cannot be undone! Please consult the package uploading documentation for more information.

[maintain] [Publish]

A new data structure for accurate on-line accumulation of rank-based statistics such as quantiles and trimmed means.

See original paper: "Computing extremely accurate quantiles using t-digest" by Ted Dunning and Otmar Ertl for more details https://github.com/tdunning/t-digest/blob/07b8f2ca2be8d0a9f04df2feadad5ddc1bb73c88/docs/t-digest-paper/histo.pdf.


[Skip to Readme]

Properties

Versions 0, 0.1, 0.2, 0.2.1, 0.2.1, 0.2.1.1, 0.3, 0.3.1
Change log CHANGELOG.md
Dependencies base (>=4.7 && <4.12), base-compat (>=0.10.1 && <0.11), binary (>=0.7.1.0 && <0.10), deepseq (>=1.3.0.2 && <1.5), reducers (>=3.12.2 && <3.13), semigroupoids (>=5.2.2 && <5.4), semigroups (>=0.18.4 && <0.19), transformers (>=0.3 && <0.6), vector (>=0.12.0.1 && <0.13), vector-algorithms (>=0.7.0.1 && <0.8) [details]
License BSD-3-Clause
Author Oleg Grenrus <oleg.grenrus@iki.fi>
Maintainer Oleg Grenrus <oleg.grenrus@iki.fi>
Category Numeric
Home page https://github.com/futurice/haskell-tdigest#readme
Bug tracker https://github.com/futurice/haskell-tdigest/issues
Source repo head: git clone https://github.com/futurice/haskell-tdigest
Uploaded by phadej at 2018-07-05T16:11:21Z

Modules

[Index]

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees


Readme for tdigest-0.2.1

[back to package description]

tdigest

A new data structure for accurate on-line accumulation of rank-based statistics such as quantiles and trimmed means.

See original paper: "Computing extremely accurate quantiles using t-digest" by Ted Dunning and Otmar Ertl

Synopsis

λ *Data.TDigest > median (tdigest [1..1000] :: TDigest 3)
Just 499.0090729817737

Benchmarks

Using 50M exponentially distributed numbers:

Example histogram

tdigest-simple -m tdigest -d standard -s 100000 -c 10 -o output.svg -i 34
cp output.svg example.svg
inkscape --export-png=example.png --export-dpi=80 --export-background-opacity=0 --without-gui example.svg

Example