-- |
-- Module      : Streamly.Internal.Data.Stream.StreamD.Nesting
-- Copyright   : (c) 2018 Composewell Technologies
--               (c) Roman Leshchinskiy 2008-2010
-- License     : BSD-3-Clause
-- Maintainer  : streamly@composewell.com
-- Stability   : experimental
-- Portability : GHC
--
-- This module contains transformations involving multiple streams, unfolds or
-- folds. There are two types of transformations generational or eliminational.
-- Generational transformations are like the "Generate" module but they
-- generate a stream by combining streams instead of elements. Eliminational
-- transformations are like the "Eliminate" module but they transform a stream
-- by eliminating parts of the stream instead of eliminating the whole stream.
--
-- These combinators involve transformation, generation, elimination so can be
-- classified under any of those.
--
-- Ultimately these operations should be supported by Unfolds, Pipes and Folds,
-- and this module may become redundant.

-- The zipWithM combinator in this module has been adapted from the vector
-- package (c) Roman Leshchinskiy.
--
module Streamly.Internal.Data.Stream.StreamD.Nesting
    (
    -- * Generate
    -- | Combining streams to generate streams.

    -- ** Combine Two Streams
    -- | Functions ending in the shape:
    --
    -- @t m a -> t m a -> t m a@.

    -- *** Appending
    -- | Append a stream after another. A special case of concatMap or
    -- unfoldMany.
      AppendState(..)
    , append

    -- *** Interleaving
    -- | Interleave elements from two streams alternately. A special case of
    -- unfoldManyInterleave.
    , InterleaveState(..)
    , interleave
    , interleaveMin
    , interleaveSuffix
    , interleaveInfix

    -- *** Scheduling
    -- | Execute streams alternately irrespective of whether they generate
    -- elements or not. Note 'interleave' would execute a stream until it
    -- yields an element. A special case of unfoldManyRoundRobin.
    , roundRobin -- interleaveFair?/ParallelFair

    -- *** Zipping
    -- | Zip corresponding elements of two streams.
    , zipWith
    , zipWithM

    -- *** Merging
    -- | Interleave elements from two streams based on a condition.
    , mergeBy
    , mergeByM

    -- ** Combine N Streams
    -- | Functions generally ending in these shapes:
    --
    -- @
    -- concat: f (t m a) -> t m a
    -- concatMap: (a -> t m b) -> t m a -> t m b
    -- unfoldMany: Unfold m a b -> t m a -> t m b
    -- @

    -- *** ConcatMap
    -- | Generate streams by mapping a stream generator on each element of an
    -- input stream, append the resulting streams and flatten.
    , concatMap
    , concatMapM

    -- *** ConcatUnfold
    -- | Generate streams by using an unfold on each element of an input
    -- stream, append the resulting streams and flatten. A special case of
    -- gintercalate.
    , unfoldMany
    , ConcatUnfoldInterleaveState (..)
    , unfoldManyInterleave
    , unfoldManyRoundRobin

    -- *** Interpose
    -- | Like unfoldMany but intersperses an effect between the streams. A
    -- special case of gintercalate.
    , interpose
    , interposeSuffix

    -- *** Intercalate
    -- | Like unfoldMany but intersperses streams from another source between
    -- the streams from the first source.
    , gintercalate
    , gintercalateSuffix

    -- * Eliminate
    -- | Folding and Parsing chunks of streams to eliminate nested streams.
    -- Functions generally ending in these shapes:
    --
    -- @
    -- f (Fold m a b) -> t m a -> t m b
    -- f (Parser m a b) -> t m a -> t m b
    -- @

    -- ** Folding
    -- | Apply folds on a stream.
    , foldMany
    , refoldMany
    , foldIterateM
    , refoldIterateM

    -- ** Parsing
    -- | Parsing is opposite to flattening. 'parseMany' is dual to concatMap or
    -- unfoldMany. concatMap generates a stream from single values in a
    -- stream and flattens, parseMany does the opposite of flattening by
    -- splitting the stream and then folds each such split to single value in
    -- the output stream.
    , parseMany
    , parseIterate

    -- ** Grouping
    -- | Group segments of a stream and fold. Special case of parsing.
    , chunksOf
    , groupsBy
    , groupsRollingBy

    -- ** Splitting
    -- | A special case of parsing.
    , wordsBy
    , splitOnSeq
    , splitOnSuffixSeq
    , sliceOnSuffix

    -- * Transform (Nested Containers)
    -- | Opposite to compact in ArrayStream
    , splitInnerBy
    , splitInnerBySuffix
    )
where

#include "inline.hs"

import Control.Exception (assert)
import Control.Monad.Catch (MonadThrow, throwM)
import Control.Monad.IO.Class (MonadIO(..))
import Data.Bits (shiftR, shiftL, (.|.), (.&.))
#if __GLASGOW_HASKELL__ >= 801
import Data.Functor.Identity ( Identity )
#endif
import Data.Word (Word32)
import Foreign.Storable (Storable(..))
import Fusion.Plugin.Types (Fuse(..))
import GHC.Types (SPEC(..))

import Streamly.Internal.Data.Array.Foreign.Type (Array(..))
import Streamly.Internal.Data.Fold.Step (Step(..))
import Streamly.Internal.Data.Fold.Type (Fold(..))
import Streamly.Internal.Data.Parser (ParseError(..))
import Streamly.Internal.Data.Refold.Type (Refold(..))
import Streamly.Internal.Data.SVar.Type (adaptState)
import Streamly.Internal.Data.Tuple.Strict (Tuple'(..))
import Streamly.Internal.Data.Unfold.Type (Unfold(..))

import qualified Streamly.Internal.Data.Array.Foreign.Type as A
import qualified Streamly.Internal.Data.Fold as FL
import qualified Streamly.Internal.Data.Parser as PR
import qualified Streamly.Internal.Data.Parser.ParserD as PRD
import qualified Streamly.Internal.Ring.Foreign as RB

import Streamly.Internal.Data.Stream.StreamD.Type

import Prelude hiding (concatMap, mapM, zipWith)

------------------------------------------------------------------------------
-- Appending
------------------------------------------------------------------------------

data AppendState s1 s2 = AppendFirst s1 | AppendSecond s2

-- Note that this could be much faster compared to the CPS stream. However, as
-- the number of streams being composed increases this may become expensive.
-- Need to see where the breaking point is between the two.
--
{-# INLINE_NORMAL append #-}
append :: Monad m => Stream m a -> Stream m a -> Stream m a
append :: Stream m a -> Stream m a -> Stream m a
append (Stream State Stream m a -> s -> m (Step s a)
step1 s
state1) (Stream State Stream m a -> s -> m (Step s a)
step2 s
state2) =
    (State Stream m a
 -> AppendState s s -> m (Step (AppendState s s) a))
-> AppendState s s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a -> AppendState s s -> m (Step (AppendState s s) a)
step (s -> AppendState s s
forall s1 s2. s1 -> AppendState s1 s2
AppendFirst s
state1)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m a -> AppendState s s -> m (Step (AppendState s s) a)
step State Stream m a
gst (AppendFirst s
st) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
gst s
st
        Step (AppendState s s) a -> m (Step (AppendState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (AppendState s s) a -> m (Step (AppendState s s) a))
-> Step (AppendState s s) a -> m (Step (AppendState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> AppendState s s -> Step (AppendState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> AppendState s s
forall s1 s2. s1 -> AppendState s1 s2
AppendFirst s
s)
            Skip s
s -> AppendState s s -> Step (AppendState s s) a
forall s a. s -> Step s a
Skip (s -> AppendState s s
forall s1 s2. s1 -> AppendState s1 s2
AppendFirst s
s)
            Step s a
Stop -> AppendState s s -> Step (AppendState s s) a
forall s a. s -> Step s a
Skip (s -> AppendState s s
forall s1 s2. s2 -> AppendState s1 s2
AppendSecond s
state2)

    step State Stream m a
gst (AppendSecond s
st) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step2 State Stream m a
gst s
st
        Step (AppendState s s) a -> m (Step (AppendState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (AppendState s s) a -> m (Step (AppendState s s) a))
-> Step (AppendState s s) a -> m (Step (AppendState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> AppendState s s -> Step (AppendState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> AppendState s s
forall s1 s2. s2 -> AppendState s1 s2
AppendSecond s
s)
            Skip s
s -> AppendState s s -> Step (AppendState s s) a
forall s a. s -> Step s a
Skip (s -> AppendState s s
forall s1 s2. s2 -> AppendState s1 s2
AppendSecond s
s)
            Step s a
Stop -> Step (AppendState s s) a
forall s a. Step s a
Stop

------------------------------------------------------------------------------
-- Interleaving
------------------------------------------------------------------------------

data InterleaveState s1 s2 = InterleaveFirst s1 s2 | InterleaveSecond s1 s2
    | InterleaveSecondOnly s2 | InterleaveFirstOnly s1

{-# INLINE_NORMAL interleave #-}
interleave :: Monad m => Stream m a -> Stream m a -> Stream m a
interleave :: Stream m a -> Stream m a -> Stream m a
interleave (Stream State Stream m a -> s -> m (Step s a)
step1 s
state1) (Stream State Stream m a -> s -> m (Step s a)
step2 s
state2) =
    (State Stream m a
 -> InterleaveState s s -> m (Step (InterleaveState s s) a))
-> InterleaveState s s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a
-> InterleaveState s s -> m (Step (InterleaveState s s) a)
step (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
state1 s
state2)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m a
-> InterleaveState s s -> m (Step (InterleaveState s s) a)
step State Stream m a
gst (InterleaveFirst s
st1 s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
gst s
st1
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveSecond s
s s
st2)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
s s
st2)
            Step s a
Stop -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> InterleaveState s s
forall s1 s2. s2 -> InterleaveState s1 s2
InterleaveSecondOnly s
st2)

    step State Stream m a
gst (InterleaveSecond s
st1 s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step2 State Stream m a
gst s
st2
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
st1 s
s)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveSecond s
st1 s
s)
            Step s a
Stop -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> InterleaveState s s
forall s1 s2. s1 -> InterleaveState s1 s2
InterleaveFirstOnly s
st1)

    step State Stream m a
gst (InterleaveFirstOnly s
st1) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
gst s
st1
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> InterleaveState s s
forall s1 s2. s1 -> InterleaveState s1 s2
InterleaveFirstOnly s
s)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> InterleaveState s s
forall s1 s2. s1 -> InterleaveState s1 s2
InterleaveFirstOnly s
s)
            Step s a
Stop -> Step (InterleaveState s s) a
forall s a. Step s a
Stop

    step State Stream m a
gst (InterleaveSecondOnly s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step2 State Stream m a
gst s
st2
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> InterleaveState s s
forall s1 s2. s2 -> InterleaveState s1 s2
InterleaveSecondOnly s
s)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> InterleaveState s s
forall s1 s2. s2 -> InterleaveState s1 s2
InterleaveSecondOnly s
s)
            Step s a
Stop -> Step (InterleaveState s s) a
forall s a. Step s a
Stop

{-# INLINE_NORMAL interleaveMin #-}
interleaveMin :: Monad m => Stream m a -> Stream m a -> Stream m a
interleaveMin :: Stream m a -> Stream m a -> Stream m a
interleaveMin (Stream State Stream m a -> s -> m (Step s a)
step1 s
state1) (Stream State Stream m a -> s -> m (Step s a)
step2 s
state2) =
    (State Stream m a
 -> InterleaveState s s -> m (Step (InterleaveState s s) a))
-> InterleaveState s s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a
-> InterleaveState s s -> m (Step (InterleaveState s s) a)
step (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
state1 s
state2)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m a
-> InterleaveState s s -> m (Step (InterleaveState s s) a)
step State Stream m a
gst (InterleaveFirst s
st1 s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
gst s
st1
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveSecond s
s s
st2)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
s s
st2)
            Step s a
Stop -> Step (InterleaveState s s) a
forall s a. Step s a
Stop

    step State Stream m a
gst (InterleaveSecond s
st1 s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step2 State Stream m a
gst s
st2
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
st1 s
s)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveSecond s
st1 s
s)
            Step s a
Stop -> Step (InterleaveState s s) a
forall s a. Step s a
Stop

    step State Stream m a
_ (InterleaveFirstOnly s
_) =  m (Step (InterleaveState s s) a)
forall a. HasCallStack => a
undefined
    step State Stream m a
_ (InterleaveSecondOnly s
_) =  m (Step (InterleaveState s s) a)
forall a. HasCallStack => a
undefined

{-# INLINE_NORMAL interleaveSuffix #-}
interleaveSuffix :: Monad m => Stream m a -> Stream m a -> Stream m a
interleaveSuffix :: Stream m a -> Stream m a -> Stream m a
interleaveSuffix (Stream State Stream m a -> s -> m (Step s a)
step1 s
state1) (Stream State Stream m a -> s -> m (Step s a)
step2 s
state2) =
    (State Stream m a
 -> InterleaveState s s -> m (Step (InterleaveState s s) a))
-> InterleaveState s s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a
-> InterleaveState s s -> m (Step (InterleaveState s s) a)
step (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
state1 s
state2)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m a
-> InterleaveState s s -> m (Step (InterleaveState s s) a)
step State Stream m a
gst (InterleaveFirst s
st1 s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
gst s
st1
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveSecond s
s s
st2)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
s s
st2)
            Step s a
Stop -> Step (InterleaveState s s) a
forall s a. Step s a
Stop

    step State Stream m a
gst (InterleaveSecond s
st1 s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step2 State Stream m a
gst s
st2
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
st1 s
s)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveSecond s
st1 s
s)
            Step s a
Stop -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> InterleaveState s s
forall s1 s2. s1 -> InterleaveState s1 s2
InterleaveFirstOnly s
st1)

    step State Stream m a
gst (InterleaveFirstOnly s
st1) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
gst s
st1
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> InterleaveState s s
forall s1 s2. s1 -> InterleaveState s1 s2
InterleaveFirstOnly s
s)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> InterleaveState s s
forall s1 s2. s1 -> InterleaveState s1 s2
InterleaveFirstOnly s
s)
            Step s a
Stop -> Step (InterleaveState s s) a
forall s a. Step s a
Stop

    step State Stream m a
_ (InterleaveSecondOnly s
_) =  m (Step (InterleaveState s s) a)
forall a. HasCallStack => a
undefined

data InterleaveInfixState s1 s2 a
    = InterleaveInfixFirst s1 s2
    | InterleaveInfixSecondBuf s1 s2
    | InterleaveInfixSecondYield s1 s2 a
    | InterleaveInfixFirstYield s1 s2 a
    | InterleaveInfixFirstOnly s1

{-# INLINE_NORMAL interleaveInfix #-}
interleaveInfix :: Monad m => Stream m a -> Stream m a -> Stream m a
interleaveInfix :: Stream m a -> Stream m a -> Stream m a
interleaveInfix (Stream State Stream m a -> s -> m (Step s a)
step1 s
state1) (Stream State Stream m a -> s -> m (Step s a)
step2 s
state2) =
    (State Stream m a
 -> InterleaveInfixState s s a
 -> m (Step (InterleaveInfixState s s a) a))
-> InterleaveInfixState s s a -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a
-> InterleaveInfixState s s a
-> m (Step (InterleaveInfixState s s a) a)
step (s -> s -> InterleaveInfixState s s a
forall s1 s2 a. s1 -> s2 -> InterleaveInfixState s1 s2 a
InterleaveInfixFirst s
state1 s
state2)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m a
-> InterleaveInfixState s s a
-> m (Step (InterleaveInfixState s s a) a)
step State Stream m a
gst (InterleaveInfixFirst s
st1 s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
gst s
st1
        Step (InterleaveInfixState s s a) a
-> m (Step (InterleaveInfixState s s a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveInfixState s s a) a
 -> m (Step (InterleaveInfixState s s a) a))
-> Step (InterleaveInfixState s s a) a
-> m (Step (InterleaveInfixState s s a) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a
-> InterleaveInfixState s s a
-> Step (InterleaveInfixState s s a) a
forall s a. a -> s -> Step s a
Yield a
a (s -> s -> InterleaveInfixState s s a
forall s1 s2 a. s1 -> s2 -> InterleaveInfixState s1 s2 a
InterleaveInfixSecondBuf s
s s
st2)
            Skip s
s -> InterleaveInfixState s s a -> Step (InterleaveInfixState s s a) a
forall s a. s -> Step s a
Skip (s -> s -> InterleaveInfixState s s a
forall s1 s2 a. s1 -> s2 -> InterleaveInfixState s1 s2 a
InterleaveInfixFirst s
s s
st2)
            Step s a
Stop -> Step (InterleaveInfixState s s a) a
forall s a. Step s a
Stop

    step State Stream m a
gst (InterleaveInfixSecondBuf s
st1 s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step2 State Stream m a
gst s
st2
        Step (InterleaveInfixState s s a) a
-> m (Step (InterleaveInfixState s s a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveInfixState s s a) a
 -> m (Step (InterleaveInfixState s s a) a))
-> Step (InterleaveInfixState s s a) a
-> m (Step (InterleaveInfixState s s a) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> InterleaveInfixState s s a -> Step (InterleaveInfixState s s a) a
forall s a. s -> Step s a
Skip (s -> s -> a -> InterleaveInfixState s s a
forall s1 s2 a. s1 -> s2 -> a -> InterleaveInfixState s1 s2 a
InterleaveInfixSecondYield s
st1 s
s a
a)
            Skip s
s -> InterleaveInfixState s s a -> Step (InterleaveInfixState s s a) a
forall s a. s -> Step s a
Skip (s -> s -> InterleaveInfixState s s a
forall s1 s2 a. s1 -> s2 -> InterleaveInfixState s1 s2 a
InterleaveInfixSecondBuf s
st1 s
s)
            Step s a
Stop -> InterleaveInfixState s s a -> Step (InterleaveInfixState s s a) a
forall s a. s -> Step s a
Skip (s -> InterleaveInfixState s s a
forall s1 s2 a. s1 -> InterleaveInfixState s1 s2 a
InterleaveInfixFirstOnly s
st1)

    step State Stream m a
gst (InterleaveInfixSecondYield s
st1 s
st2 a
x) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
gst s
st1
        Step (InterleaveInfixState s s a) a
-> m (Step (InterleaveInfixState s s a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveInfixState s s a) a
 -> m (Step (InterleaveInfixState s s a) a))
-> Step (InterleaveInfixState s s a) a
-> m (Step (InterleaveInfixState s s a) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a
-> InterleaveInfixState s s a
-> Step (InterleaveInfixState s s a) a
forall s a. a -> s -> Step s a
Yield a
x (s -> s -> a -> InterleaveInfixState s s a
forall s1 s2 a. s1 -> s2 -> a -> InterleaveInfixState s1 s2 a
InterleaveInfixFirstYield s
s s
st2 a
a)
            Skip s
s -> InterleaveInfixState s s a -> Step (InterleaveInfixState s s a) a
forall s a. s -> Step s a
Skip (s -> s -> a -> InterleaveInfixState s s a
forall s1 s2 a. s1 -> s2 -> a -> InterleaveInfixState s1 s2 a
InterleaveInfixSecondYield s
s s
st2 a
x)
            Step s a
Stop -> Step (InterleaveInfixState s s a) a
forall s a. Step s a
Stop

    step State Stream m a
_ (InterleaveInfixFirstYield s
st1 s
st2 a
x) = do
        Step (InterleaveInfixState s s a) a
-> m (Step (InterleaveInfixState s s a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveInfixState s s a) a
 -> m (Step (InterleaveInfixState s s a) a))
-> Step (InterleaveInfixState s s a) a
-> m (Step (InterleaveInfixState s s a) a)
forall a b. (a -> b) -> a -> b
$ a
-> InterleaveInfixState s s a
-> Step (InterleaveInfixState s s a) a
forall s a. a -> s -> Step s a
Yield a
x (s -> s -> InterleaveInfixState s s a
forall s1 s2 a. s1 -> s2 -> InterleaveInfixState s1 s2 a
InterleaveInfixSecondBuf s
st1 s
st2)

    step State Stream m a
gst (InterleaveInfixFirstOnly s
st1) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
gst s
st1
        Step (InterleaveInfixState s s a) a
-> m (Step (InterleaveInfixState s s a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveInfixState s s a) a
 -> m (Step (InterleaveInfixState s s a) a))
-> Step (InterleaveInfixState s s a) a
-> m (Step (InterleaveInfixState s s a) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a
-> InterleaveInfixState s s a
-> Step (InterleaveInfixState s s a) a
forall s a. a -> s -> Step s a
Yield a
a (s -> InterleaveInfixState s s a
forall s1 s2 a. s1 -> InterleaveInfixState s1 s2 a
InterleaveInfixFirstOnly s
s)
            Skip s
s -> InterleaveInfixState s s a -> Step (InterleaveInfixState s s a) a
forall s a. s -> Step s a
Skip (s -> InterleaveInfixState s s a
forall s1 s2 a. s1 -> InterleaveInfixState s1 s2 a
InterleaveInfixFirstOnly s
s)
            Step s a
Stop -> Step (InterleaveInfixState s s a) a
forall s a. Step s a
Stop

------------------------------------------------------------------------------
-- Scheduling
------------------------------------------------------------------------------

{-# INLINE_NORMAL roundRobin #-}
roundRobin :: Monad m => Stream m a -> Stream m a -> Stream m a
roundRobin :: Stream m a -> Stream m a -> Stream m a
roundRobin (Stream State Stream m a -> s -> m (Step s a)
step1 s
state1) (Stream State Stream m a -> s -> m (Step s a)
step2 s
state2) =
    (State Stream m a
 -> InterleaveState s s -> m (Step (InterleaveState s s) a))
-> InterleaveState s s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a
-> InterleaveState s s -> m (Step (InterleaveState s s) a)
step (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
state1 s
state2)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m a
-> InterleaveState s s -> m (Step (InterleaveState s s) a)
step State Stream m a
gst (InterleaveFirst s
st1 s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
gst s
st1
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveSecond s
s s
st2)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveSecond s
s s
st2)
            Step s a
Stop -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> InterleaveState s s
forall s1 s2. s2 -> InterleaveState s1 s2
InterleaveSecondOnly s
st2)

    step State Stream m a
gst (InterleaveSecond s
st1 s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step2 State Stream m a
gst s
st2
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
st1 s
s)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> s -> InterleaveState s s
forall s1 s2. s1 -> s2 -> InterleaveState s1 s2
InterleaveFirst s
st1 s
s)
            Step s a
Stop -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> InterleaveState s s
forall s1 s2. s1 -> InterleaveState s1 s2
InterleaveFirstOnly s
st1)

    step State Stream m a
gst (InterleaveSecondOnly s
st2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step2 State Stream m a
gst s
st2
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> InterleaveState s s
forall s1 s2. s2 -> InterleaveState s1 s2
InterleaveSecondOnly s
s)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> InterleaveState s s
forall s1 s2. s2 -> InterleaveState s1 s2
InterleaveSecondOnly s
s)
            Step s a
Stop -> Step (InterleaveState s s) a
forall s a. Step s a
Stop

    step State Stream m a
gst (InterleaveFirstOnly s
st1) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
gst s
st1
        Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a))
-> Step (InterleaveState s s) a -> m (Step (InterleaveState s s) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
s -> a -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> InterleaveState s s
forall s1 s2. s1 -> InterleaveState s1 s2
InterleaveFirstOnly s
s)
            Skip s
s -> InterleaveState s s -> Step (InterleaveState s s) a
forall s a. s -> Step s a
Skip (s -> InterleaveState s s
forall s1 s2. s1 -> InterleaveState s1 s2
InterleaveFirstOnly s
s)
            Step s a
Stop -> Step (InterleaveState s s) a
forall s a. Step s a
Stop

------------------------------------------------------------------------------
-- Zipping
------------------------------------------------------------------------------

{-# INLINE_NORMAL zipWithM #-}
zipWithM :: Monad m
    => (a -> b -> m c) -> Stream m a -> Stream m b -> Stream m c
zipWithM :: (a -> b -> m c) -> Stream m a -> Stream m b -> Stream m c
zipWithM a -> b -> m c
f (Stream State Stream m a -> s -> m (Step s a)
stepa s
ta) (Stream State Stream m b -> s -> m (Step s b)
stepb s
tb) = (State Stream m c -> (s, s, Maybe a) -> m (Step (s, s, Maybe a) c))
-> (s, s, Maybe a) -> Stream m c
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m c -> (s, s, Maybe a) -> m (Step (s, s, Maybe a) c)
forall (m :: * -> *) a.
State Stream m a -> (s, s, Maybe a) -> m (Step (s, s, Maybe a) c)
step (s
ta, s
tb, Maybe a
forall a. Maybe a
Nothing)
  where
    {-# INLINE_LATE step #-}
    step :: State Stream m a -> (s, s, Maybe a) -> m (Step (s, s, Maybe a) c)
step State Stream m a
gst (s
sa, s
sb, Maybe a
Nothing) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
stepa (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
sa
        Step (s, s, Maybe a) c -> m (Step (s, s, Maybe a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (s, s, Maybe a) c -> m (Step (s, s, Maybe a) c))
-> Step (s, s, Maybe a) c -> m (Step (s, s, Maybe a) c)
forall a b. (a -> b) -> a -> b
$
          case Step s a
r of
            Yield a
x s
sa' -> (s, s, Maybe a) -> Step (s, s, Maybe a) c
forall s a. s -> Step s a
Skip (s
sa', s
sb, a -> Maybe a
forall a. a -> Maybe a
Just a
x)
            Skip s
sa'    -> (s, s, Maybe a) -> Step (s, s, Maybe a) c
forall s a. s -> Step s a
Skip (s
sa', s
sb, Maybe a
forall a. Maybe a
Nothing)
            Step s a
Stop        -> Step (s, s, Maybe a) c
forall s a. Step s a
Stop

    step State Stream m a
gst (s
sa, s
sb, Just a
x) = do
        Step s b
r <- State Stream m b -> s -> m (Step s b)
stepb (State Stream m a -> State Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
sb
        case Step s b
r of
            Yield b
y s
sb' -> do
                c
z <- a -> b -> m c
f a
x b
y
                Step (s, s, Maybe a) c -> m (Step (s, s, Maybe a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (s, s, Maybe a) c -> m (Step (s, s, Maybe a) c))
-> Step (s, s, Maybe a) c -> m (Step (s, s, Maybe a) c)
forall a b. (a -> b) -> a -> b
$ c -> (s, s, Maybe a) -> Step (s, s, Maybe a) c
forall s a. a -> s -> Step s a
Yield c
z (s
sa, s
sb', Maybe a
forall a. Maybe a
Nothing)
            Skip s
sb' -> Step (s, s, Maybe a) c -> m (Step (s, s, Maybe a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (s, s, Maybe a) c -> m (Step (s, s, Maybe a) c))
-> Step (s, s, Maybe a) c -> m (Step (s, s, Maybe a) c)
forall a b. (a -> b) -> a -> b
$ (s, s, Maybe a) -> Step (s, s, Maybe a) c
forall s a. s -> Step s a
Skip (s
sa, s
sb', a -> Maybe a
forall a. a -> Maybe a
Just a
x)
            Step s b
Stop     -> Step (s, s, Maybe a) c -> m (Step (s, s, Maybe a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (s, s, Maybe a) c
forall s a. Step s a
Stop

#if __GLASGOW_HASKELL__ >= 801
{-# RULES "zipWithM xs xs"
    forall f xs. zipWithM @Identity f xs xs = mapM (\x -> f x x) xs #-}
#endif

{-# INLINE zipWith #-}
zipWith :: Monad m => (a -> b -> c) -> Stream m a -> Stream m b -> Stream m c
zipWith :: (a -> b -> c) -> Stream m a -> Stream m b -> Stream m c
zipWith a -> b -> c
f = (a -> b -> m c) -> Stream m a -> Stream m b -> Stream m c
forall (m :: * -> *) a b c.
Monad m =>
(a -> b -> m c) -> Stream m a -> Stream m b -> Stream m c
zipWithM (\a
a b
b -> c -> m c
forall (m :: * -> *) a. Monad m => a -> m a
return (a -> b -> c
f a
a b
b))

------------------------------------------------------------------------------
-- Merging
------------------------------------------------------------------------------

{-# INLINE_NORMAL mergeByM #-}
mergeByM
    :: (Monad m)
    => (a -> a -> m Ordering) -> Stream m a -> Stream m a -> Stream m a
mergeByM :: (a -> a -> m Ordering) -> Stream m a -> Stream m a -> Stream m a
mergeByM a -> a -> m Ordering
cmp (Stream State Stream m a -> s -> m (Step s a)
stepa s
ta) (Stream State Stream m a -> s -> m (Step s a)
stepb s
tb) =
    (State Stream m a
 -> (Maybe s, Maybe s, Maybe a, Maybe a)
 -> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a))
-> (Maybe s, Maybe s, Maybe a, Maybe a) -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a
-> (Maybe s, Maybe s, Maybe a, Maybe a)
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
step (s -> Maybe s
forall a. a -> Maybe a
Just s
ta, s -> Maybe s
forall a. a -> Maybe a
Just s
tb, Maybe a
forall a. Maybe a
Nothing, Maybe a
forall a. Maybe a
Nothing)
  where
    {-# INLINE_LATE step #-}

    -- one of the values is missing, and the corresponding stream is running
    step :: State Stream m a
-> (Maybe s, Maybe s, Maybe a, Maybe a)
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
step State Stream m a
gst (Just s
sa, Maybe s
sb, Maybe a
Nothing, Maybe a
b) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
stepa State Stream m a
gst s
sa
        Step (Maybe s, Maybe s, Maybe a, Maybe a) a
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe s, Maybe s, Maybe a, Maybe a) a
 -> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a))
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
a s
sa' -> (Maybe s, Maybe s, Maybe a, Maybe a)
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
forall s a. s -> Step s a
Skip (s -> Maybe s
forall a. a -> Maybe a
Just s
sa', Maybe s
sb, a -> Maybe a
forall a. a -> Maybe a
Just a
a, Maybe a
b)
            Skip s
sa'    -> (Maybe s, Maybe s, Maybe a, Maybe a)
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
forall s a. s -> Step s a
Skip (s -> Maybe s
forall a. a -> Maybe a
Just s
sa', Maybe s
sb, Maybe a
forall a. Maybe a
Nothing, Maybe a
b)
            Step s a
Stop        -> (Maybe s, Maybe s, Maybe a, Maybe a)
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
forall s a. s -> Step s a
Skip (Maybe s
forall a. Maybe a
Nothing, Maybe s
sb, Maybe a
forall a. Maybe a
Nothing, Maybe a
b)

    step State Stream m a
gst (Maybe s
sa, Just s
sb, Maybe a
a, Maybe a
Nothing) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
stepb State Stream m a
gst s
sb
        Step (Maybe s, Maybe s, Maybe a, Maybe a) a
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe s, Maybe s, Maybe a, Maybe a) a
 -> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a))
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
forall a b. (a -> b) -> a -> b
$ case Step s a
r of
            Yield a
b s
sb' -> (Maybe s, Maybe s, Maybe a, Maybe a)
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
forall s a. s -> Step s a
Skip (Maybe s
sa, s -> Maybe s
forall a. a -> Maybe a
Just s
sb', Maybe a
a, a -> Maybe a
forall a. a -> Maybe a
Just a
b)
            Skip s
sb'    -> (Maybe s, Maybe s, Maybe a, Maybe a)
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
forall s a. s -> Step s a
Skip (Maybe s
sa, s -> Maybe s
forall a. a -> Maybe a
Just s
sb', Maybe a
a, Maybe a
forall a. Maybe a
Nothing)
            Step s a
Stop        -> (Maybe s, Maybe s, Maybe a, Maybe a)
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
forall s a. s -> Step s a
Skip (Maybe s
sa, Maybe s
forall a. Maybe a
Nothing, Maybe a
a, Maybe a
forall a. Maybe a
Nothing)

    -- both the values are available
    step State Stream m a
_ (Maybe s
sa, Maybe s
sb, Just a
a, Just a
b) = do
        Ordering
res <- a -> a -> m Ordering
cmp a
a a
b
        Step (Maybe s, Maybe s, Maybe a, Maybe a) a
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe s, Maybe s, Maybe a, Maybe a) a
 -> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a))
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
forall a b. (a -> b) -> a -> b
$ case Ordering
res of
            Ordering
GT -> a
-> (Maybe s, Maybe s, Maybe a, Maybe a)
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
forall s a. a -> s -> Step s a
Yield a
b (Maybe s
sa, Maybe s
sb, a -> Maybe a
forall a. a -> Maybe a
Just a
a, Maybe a
forall a. Maybe a
Nothing)
            Ordering
_  -> a
-> (Maybe s, Maybe s, Maybe a, Maybe a)
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
forall s a. a -> s -> Step s a
Yield a
a (Maybe s
sa, Maybe s
sb, Maybe a
forall a. Maybe a
Nothing, a -> Maybe a
forall a. a -> Maybe a
Just a
b)

    -- one of the values is missing, corresponding stream is done
    step State Stream m a
_ (Maybe s
Nothing, Maybe s
sb, Maybe a
Nothing, Just a
b) =
            Step (Maybe s, Maybe s, Maybe a, Maybe a) a
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe s, Maybe s, Maybe a, Maybe a) a
 -> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a))
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
forall a b. (a -> b) -> a -> b
$ a
-> (Maybe s, Maybe s, Maybe a, Maybe a)
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
forall s a. a -> s -> Step s a
Yield a
b (Maybe s
forall a. Maybe a
Nothing, Maybe s
sb, Maybe a
forall a. Maybe a
Nothing, Maybe a
forall a. Maybe a
Nothing)

    step State Stream m a
_ (Maybe s
sa, Maybe s
Nothing, Just a
a, Maybe a
Nothing) =
            Step (Maybe s, Maybe s, Maybe a, Maybe a) a
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe s, Maybe s, Maybe a, Maybe a) a
 -> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a))
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
forall a b. (a -> b) -> a -> b
$ a
-> (Maybe s, Maybe s, Maybe a, Maybe a)
-> Step (Maybe s, Maybe s, Maybe a, Maybe a) a
forall s a. a -> s -> Step s a
Yield a
a (Maybe s
sa, Maybe s
forall a. Maybe a
Nothing, Maybe a
forall a. Maybe a
Nothing, Maybe a
forall a. Maybe a
Nothing)

    step State Stream m a
_ (Maybe s
Nothing, Maybe s
Nothing, Maybe a
Nothing, Maybe a
Nothing) = Step (Maybe s, Maybe s, Maybe a, Maybe a) a
-> m (Step (Maybe s, Maybe s, Maybe a, Maybe a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (Maybe s, Maybe s, Maybe a, Maybe a) a
forall s a. Step s a
Stop

{-# INLINE mergeBy #-}
mergeBy
    :: (Monad m)
    => (a -> a -> Ordering) -> Stream m a -> Stream m a -> Stream m a
mergeBy :: (a -> a -> Ordering) -> Stream m a -> Stream m a -> Stream m a
mergeBy a -> a -> Ordering
cmp = (a -> a -> m Ordering) -> Stream m a -> Stream m a -> Stream m a
forall (m :: * -> *) a.
Monad m =>
(a -> a -> m Ordering) -> Stream m a -> Stream m a -> Stream m a
mergeByM (\a
a a
b -> Ordering -> m Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return (Ordering -> m Ordering) -> Ordering -> m Ordering
forall a b. (a -> b) -> a -> b
$ a -> a -> Ordering
cmp a
a a
b)

------------------------------------------------------------------------------
-- Combine N Streams - unfoldMany
------------------------------------------------------------------------------

data ConcatUnfoldInterleaveState o i =
      ConcatUnfoldInterleaveOuter o [i]
    | ConcatUnfoldInterleaveInner o [i]
    | ConcatUnfoldInterleaveInnerL [i] [i]
    | ConcatUnfoldInterleaveInnerR [i] [i]

-- XXX use arrays to store state instead of lists?
--
-- XXX In general we can use different scheduling strategies e.g. how to
-- schedule the outer vs inner loop or assigning weights to different streams
-- or outer and inner loops.

-- After a yield, switch to the next stream. Do not switch streams on Skip.
-- Yield from outer stream switches to the inner stream.
--
-- There are two choices here, (1) exhaust the outer stream first and then
-- start yielding from the inner streams, this is much simpler to implement,
-- (2) yield at least one element from an inner stream before going back to
-- outer stream and opening the next stream from it.
--
-- Ideally, we need some scheduling bias to inner streams vs outer stream.
-- Maybe we can configure the behavior.
--
-- XXX Instead of using "concatPairsWith wSerial" we can implement an N-way
-- interleaving CPS combinator which behaves like unfoldManyInterleave. Intead
-- of pairing up the streams We just need to go yielding one element from each
-- stream and storing the remaining streams and then keep doing rounds through
-- those in a round robin fashion. This would be much like wAsync.
--
-- | This does not pair streams like concatPairsWith, instead, it goes through
-- each stream one by one and yields one element from each stream. After it
-- goes to the last stream it reverses the traversal to come back to the first
-- stream yielding elements from each stream on its way back to the first
-- stream and so on.
--
-- >>> input = Stream.fromList [[1,1],[2,2],[3,3],[4,4],[5,5]]
-- >>> Stream.toList $ Stream.unfoldManyInterleave Unfold.fromList input
-- [1,2,3,4,5,5,4,3,2,1]
--
-- Note that this is order of magnitude more efficient than "concatPairsWith
-- wSerial"
{-# INLINE_NORMAL unfoldManyInterleave #-}
unfoldManyInterleave :: Monad m => Unfold m a b -> Stream m a -> Stream m b
unfoldManyInterleave :: Unfold m a b -> Stream m a -> Stream m b
unfoldManyInterleave (Unfold s -> m (Step s b)
istep a -> m s
inject) (Stream State Stream m a -> s -> m (Step s a)
ostep s
ost) =
    (State Stream m b
 -> ConcatUnfoldInterleaveState s s
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> ConcatUnfoldInterleaveState s s -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> ConcatUnfoldInterleaveState s s
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a.
State Stream m a
-> ConcatUnfoldInterleaveState s s
-> m (Step (ConcatUnfoldInterleaveState s s) b)
step (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveOuter s
ost [])

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m a
-> ConcatUnfoldInterleaveState s s
-> m (Step (ConcatUnfoldInterleaveState s s) b)
step State Stream m a
gst (ConcatUnfoldInterleaveOuter s
o [s]
ls) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
ostep (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
o
        case Step s a
r of
            Yield a
a s
o' -> do
                s
i <- a -> m s
inject a
a
                s
i s
-> m (Step (ConcatUnfoldInterleaveState s s) b)
-> m (Step (ConcatUnfoldInterleaveState s s) b)
`seq` Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInner s
o' (s
i s -> [s] -> [s]
forall a. a -> [a] -> [a]
: [s]
ls)))
            Skip s
o' -> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveOuter s
o' [s]
ls)
            Step s a
Stop -> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerL [s]
ls [])

    step State Stream m a
_ (ConcatUnfoldInterleaveInner s
_ []) = m (Step (ConcatUnfoldInterleaveState s s) b)
forall a. HasCallStack => a
undefined
    step State Stream m a
_ (ConcatUnfoldInterleaveInner s
o (s
st:[s]
ls)) = do
        Step s b
r <- s -> m (Step s b)
istep s
st
        Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
            Yield b
x s
s -> b
-> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. a -> s -> Step s a
Yield b
x (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveOuter s
o (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
ls))
            Skip s
s    -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInner s
o (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
ls))
            Step s b
Stop      -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveOuter s
o [s]
ls)

    step State Stream m a
_ (ConcatUnfoldInterleaveInnerL [] []) = Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ConcatUnfoldInterleaveState s s) b
forall s a. Step s a
Stop
    step State Stream m a
_ (ConcatUnfoldInterleaveInnerL [] [s]
rs) =
        Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerR [] [s]
rs)

    step State Stream m a
_ (ConcatUnfoldInterleaveInnerL (s
st:[s]
ls) [s]
rs) = do
        Step s b
r <- s -> m (Step s b)
istep s
st
        Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
            Yield b
x s
s -> b
-> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. a -> s -> Step s a
Yield b
x ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerL [s]
ls (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
rs))
            Skip s
s    -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerL (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
ls) [s]
rs)
            Step s b
Stop      -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerL [s]
ls [s]
rs)

    step State Stream m a
_ (ConcatUnfoldInterleaveInnerR [] []) = Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ConcatUnfoldInterleaveState s s) b
forall s a. Step s a
Stop
    step State Stream m a
_ (ConcatUnfoldInterleaveInnerR [s]
ls []) =
        Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerL [s]
ls [])

    step State Stream m a
_ (ConcatUnfoldInterleaveInnerR [s]
ls (s
st:[s]
rs)) = do
        Step s b
r <- s -> m (Step s b)
istep s
st
        Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
            Yield b
x s
s -> b
-> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. a -> s -> Step s a
Yield b
x ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerR (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
ls) [s]
rs)
            Skip s
s    -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerR [s]
ls (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
rs))
            Step s b
Stop      -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerR [s]
ls [s]
rs)

-- XXX In general we can use different scheduling strategies e.g. how to
-- schedule the outer vs inner loop or assigning weights to different streams
-- or outer and inner loops.
--
-- This could be inefficient if the tasks are too small.
--
-- Compared to unfoldManyInterleave this one switches streams on Skips.
--
{-# INLINE_NORMAL unfoldManyRoundRobin #-}
unfoldManyRoundRobin :: Monad m => Unfold m a b -> Stream m a -> Stream m b
unfoldManyRoundRobin :: Unfold m a b -> Stream m a -> Stream m b
unfoldManyRoundRobin (Unfold s -> m (Step s b)
istep a -> m s
inject) (Stream State Stream m a -> s -> m (Step s a)
ostep s
ost) =
    (State Stream m b
 -> ConcatUnfoldInterleaveState s s
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> ConcatUnfoldInterleaveState s s -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> ConcatUnfoldInterleaveState s s
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a.
State Stream m a
-> ConcatUnfoldInterleaveState s s
-> m (Step (ConcatUnfoldInterleaveState s s) b)
step (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveOuter s
ost [])
  where
    {-# INLINE_LATE step #-}
    step :: State Stream m a
-> ConcatUnfoldInterleaveState s s
-> m (Step (ConcatUnfoldInterleaveState s s) b)
step State Stream m a
gst (ConcatUnfoldInterleaveOuter s
o [s]
ls) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
ostep (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
o
        case Step s a
r of
            Yield a
a s
o' -> do
                s
i <- a -> m s
inject a
a
                s
i s
-> m (Step (ConcatUnfoldInterleaveState s s) b)
-> m (Step (ConcatUnfoldInterleaveState s s) b)
`seq` Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInner s
o' (s
i s -> [s] -> [s]
forall a. a -> [a] -> [a]
: [s]
ls)))
            Skip s
o' -> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInner s
o' [s]
ls)
            Step s a
Stop -> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerL [s]
ls [])

    step State Stream m a
_ (ConcatUnfoldInterleaveInner s
o []) =
            Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveOuter s
o [])

    step State Stream m a
_ (ConcatUnfoldInterleaveInner s
o (s
st:[s]
ls)) = do
        Step s b
r <- s -> m (Step s b)
istep s
st
        Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
            Yield b
x s
s -> b
-> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. a -> s -> Step s a
Yield b
x (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveOuter s
o (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
ls))
            Skip s
s    -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveOuter s
o (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
ls))
            Step s b
Stop      -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip (s -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. o -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveOuter s
o [s]
ls)

    step State Stream m a
_ (ConcatUnfoldInterleaveInnerL [] []) = Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ConcatUnfoldInterleaveState s s) b
forall s a. Step s a
Stop
    step State Stream m a
_ (ConcatUnfoldInterleaveInnerL [] [s]
rs) =
        Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerR [] [s]
rs)

    step State Stream m a
_ (ConcatUnfoldInterleaveInnerL (s
st:[s]
ls) [s]
rs) = do
        Step s b
r <- s -> m (Step s b)
istep s
st
        Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
            Yield b
x s
s -> b
-> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. a -> s -> Step s a
Yield b
x ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerL [s]
ls (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
rs))
            Skip s
s    -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerL [s]
ls (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
rs))
            Step s b
Stop      -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerL [s]
ls [s]
rs)

    step State Stream m a
_ (ConcatUnfoldInterleaveInnerR [] []) = Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ConcatUnfoldInterleaveState s s) b
forall s a. Step s a
Stop
    step State Stream m a
_ (ConcatUnfoldInterleaveInnerR [s]
ls []) =
        Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerL [s]
ls [])

    step State Stream m a
_ (ConcatUnfoldInterleaveInnerR [s]
ls (s
st:[s]
rs)) = do
        Step s b
r <- s -> m (Step s b)
istep s
st
        Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatUnfoldInterleaveState s s) b
 -> m (Step (ConcatUnfoldInterleaveState s s) b))
-> Step (ConcatUnfoldInterleaveState s s) b
-> m (Step (ConcatUnfoldInterleaveState s s) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
            Yield b
x s
s -> b
-> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. a -> s -> Step s a
Yield b
x ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerR (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
ls) [s]
rs)
            Skip s
s    -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerR (s
ss -> [s] -> [s]
forall a. a -> [a] -> [a]
:[s]
ls) [s]
rs)
            Step s b
Stop      -> ConcatUnfoldInterleaveState s s
-> Step (ConcatUnfoldInterleaveState s s) b
forall s a. s -> Step s a
Skip ([s] -> [s] -> ConcatUnfoldInterleaveState s s
forall o i. [i] -> [i] -> ConcatUnfoldInterleaveState o i
ConcatUnfoldInterleaveInnerR [s]
ls [s]
rs)

------------------------------------------------------------------------------
-- Combine N Streams - interpose
------------------------------------------------------------------------------

{-# ANN type InterposeSuffixState Fuse #-}
data InterposeSuffixState s1 i1 =
      InterposeSuffixFirst s1
    -- | InterposeSuffixFirstYield s1 i1
    | InterposeSuffixFirstInner s1 i1
    | InterposeSuffixSecond s1

-- Note that if an unfolded layer turns out to be nil we still emit the
-- separator effect. An alternate behavior could be to emit the separator
-- effect only if at least one element has been yielded by the unfolding.
-- However, that becomes a bit complicated, so we have chosen the former
-- behvaior for now.
{-# INLINE_NORMAL interposeSuffix #-}
interposeSuffix
    :: Monad m
    => m c -> Unfold m b c -> Stream m b -> Stream m c
interposeSuffix :: m c -> Unfold m b c -> Stream m b -> Stream m c
interposeSuffix
    m c
action
    (Unfold s -> m (Step s c)
istep1 b -> m s
inject1) (Stream State Stream m b -> s -> m (Step s b)
step1 s
state1) =
    (State Stream m c
 -> InterposeSuffixState s s
 -> m (Step (InterposeSuffixState s s) c))
-> InterposeSuffixState s s -> Stream m c
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m c
-> InterposeSuffixState s s
-> m (Step (InterposeSuffixState s s) c)
forall (m :: * -> *) a.
State Stream m a
-> InterposeSuffixState s s
-> m (Step (InterposeSuffixState s s) c)
step (s -> InterposeSuffixState s s
forall s1 i1. s1 -> InterposeSuffixState s1 i1
InterposeSuffixFirst s
state1)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m a
-> InterposeSuffixState s s
-> m (Step (InterposeSuffixState s s) c)
step State Stream m a
gst (InterposeSuffixFirst s
s1) = do
        Step s b
r <- State Stream m b -> s -> m (Step s b)
step1 (State Stream m a -> State Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
s1
        case Step s b
r of
            Yield b
a s
s -> do
                s
i <- b -> m s
inject1 b
a
                s
i s
-> m (Step (InterposeSuffixState s s) c)
-> m (Step (InterposeSuffixState s s) c)
`seq` Step (InterposeSuffixState s s) c
-> m (Step (InterposeSuffixState s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (InterposeSuffixState s s -> Step (InterposeSuffixState s s) c
forall s a. s -> Step s a
Skip (s -> s -> InterposeSuffixState s s
forall s1 i1. s1 -> i1 -> InterposeSuffixState s1 i1
InterposeSuffixFirstInner s
s s
i))
                -- i `seq` return (Skip (InterposeSuffixFirstYield s i))
            Skip s
s -> Step (InterposeSuffixState s s) c
-> m (Step (InterposeSuffixState s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterposeSuffixState s s) c
 -> m (Step (InterposeSuffixState s s) c))
-> Step (InterposeSuffixState s s) c
-> m (Step (InterposeSuffixState s s) c)
forall a b. (a -> b) -> a -> b
$ InterposeSuffixState s s -> Step (InterposeSuffixState s s) c
forall s a. s -> Step s a
Skip (s -> InterposeSuffixState s s
forall s1 i1. s1 -> InterposeSuffixState s1 i1
InterposeSuffixFirst s
s)
            Step s b
Stop -> Step (InterposeSuffixState s s) c
-> m (Step (InterposeSuffixState s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (InterposeSuffixState s s) c
forall s a. Step s a
Stop

    {-
    step _ (InterposeSuffixFirstYield s1 i1) = do
        r <- istep1 i1
        return $ case r of
            Yield x i' -> Yield x (InterposeSuffixFirstInner s1 i')
            Skip i'    -> Skip (InterposeSuffixFirstYield s1 i')
            Stop       -> Skip (InterposeSuffixFirst s1)
    -}

    step State Stream m a
_ (InterposeSuffixFirstInner s
s1 s
i1) = do
        Step s c
r <- s -> m (Step s c)
istep1 s
i1
        Step (InterposeSuffixState s s) c
-> m (Step (InterposeSuffixState s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterposeSuffixState s s) c
 -> m (Step (InterposeSuffixState s s) c))
-> Step (InterposeSuffixState s s) c
-> m (Step (InterposeSuffixState s s) c)
forall a b. (a -> b) -> a -> b
$ case Step s c
r of
            Yield c
x s
i' -> c -> InterposeSuffixState s s -> Step (InterposeSuffixState s s) c
forall s a. a -> s -> Step s a
Yield c
x (s -> s -> InterposeSuffixState s s
forall s1 i1. s1 -> i1 -> InterposeSuffixState s1 i1
InterposeSuffixFirstInner s
s1 s
i')
            Skip s
i'    -> InterposeSuffixState s s -> Step (InterposeSuffixState s s) c
forall s a. s -> Step s a
Skip (s -> s -> InterposeSuffixState s s
forall s1 i1. s1 -> i1 -> InterposeSuffixState s1 i1
InterposeSuffixFirstInner s
s1 s
i')
            Step s c
Stop       -> InterposeSuffixState s s -> Step (InterposeSuffixState s s) c
forall s a. s -> Step s a
Skip (s -> InterposeSuffixState s s
forall s1 i1. s1 -> InterposeSuffixState s1 i1
InterposeSuffixSecond s
s1)

    step State Stream m a
_ (InterposeSuffixSecond s
s1) = do
        c
r <- m c
action
        Step (InterposeSuffixState s s) c
-> m (Step (InterposeSuffixState s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterposeSuffixState s s) c
 -> m (Step (InterposeSuffixState s s) c))
-> Step (InterposeSuffixState s s) c
-> m (Step (InterposeSuffixState s s) c)
forall a b. (a -> b) -> a -> b
$ c -> InterposeSuffixState s s -> Step (InterposeSuffixState s s) c
forall s a. a -> s -> Step s a
Yield c
r (s -> InterposeSuffixState s s
forall s1 i1. s1 -> InterposeSuffixState s1 i1
InterposeSuffixFirst s
s1)

{-# ANN type InterposeState Fuse #-}
data InterposeState s1 i1 a =
      InterposeFirst s1
    -- | InterposeFirstYield s1 i1
    | InterposeFirstInner s1 i1
    | InterposeFirstInject s1
    -- | InterposeFirstBuf s1 i1
    | InterposeSecondYield s1 i1
    -- -- | InterposeSecondYield s1 i1 a
    -- -- | InterposeFirstResume s1 i1 a

-- Note that this only interposes the pure values, we may run many effects to
-- generate those values as some effects may not generate anything (Skip).
{-# INLINE_NORMAL interpose #-}
interpose :: Monad m => m c -> Unfold m b c -> Stream m b -> Stream m c
interpose :: m c -> Unfold m b c -> Stream m b -> Stream m c
interpose
    m c
action
    (Unfold s -> m (Step s c)
istep1 b -> m s
inject1) (Stream State Stream m b -> s -> m (Step s b)
step1 s
state1) =
    (State Stream m c
 -> InterposeState s s Any -> m (Step (InterposeState s s Any) c))
-> InterposeState s s Any -> Stream m c
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m c
-> InterposeState s s Any -> m (Step (InterposeState s s Any) c)
forall (m :: * -> *) a a a.
State Stream m a
-> InterposeState s s a -> m (Step (InterposeState s s a) c)
step (s -> InterposeState s s Any
forall s1 i1 a. s1 -> InterposeState s1 i1 a
InterposeFirst s
state1)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m a
-> InterposeState s s a -> m (Step (InterposeState s s a) c)
step State Stream m a
gst (InterposeFirst s
s1) = do
        Step s b
r <- State Stream m b -> s -> m (Step s b)
step1 (State Stream m a -> State Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
s1
        case Step s b
r of
            Yield b
a s
s -> do
                s
i <- b -> m s
inject1 b
a
                s
i s
-> m (Step (InterposeState s s a) c)
-> m (Step (InterposeState s s a) c)
`seq` Step (InterposeState s s a) c -> m (Step (InterposeState s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (InterposeState s s a -> Step (InterposeState s s a) c
forall s a. s -> Step s a
Skip (s -> s -> InterposeState s s a
forall s1 i1 a. s1 -> i1 -> InterposeState s1 i1 a
InterposeFirstInner s
s s
i))
                -- i `seq` return (Skip (InterposeFirstYield s i))
            Skip s
s -> Step (InterposeState s s a) c -> m (Step (InterposeState s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterposeState s s a) c
 -> m (Step (InterposeState s s a) c))
-> Step (InterposeState s s a) c
-> m (Step (InterposeState s s a) c)
forall a b. (a -> b) -> a -> b
$ InterposeState s s a -> Step (InterposeState s s a) c
forall s a. s -> Step s a
Skip (s -> InterposeState s s a
forall s1 i1 a. s1 -> InterposeState s1 i1 a
InterposeFirst s
s)
            Step s b
Stop -> Step (InterposeState s s a) c -> m (Step (InterposeState s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (InterposeState s s a) c
forall s a. Step s a
Stop

    {-
    step _ (InterposeFirstYield s1 i1) = do
        r <- istep1 i1
        return $ case r of
            Yield x i' -> Yield x (InterposeFirstInner s1 i')
            Skip i'    -> Skip (InterposeFirstYield s1 i')
            Stop       -> Skip (InterposeFirst s1)
    -}

    step State Stream m a
_ (InterposeFirstInner s
s1 s
i1) = do
        Step s c
r <- s -> m (Step s c)
istep1 s
i1
        Step (InterposeState s s a) c -> m (Step (InterposeState s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterposeState s s a) c
 -> m (Step (InterposeState s s a) c))
-> Step (InterposeState s s a) c
-> m (Step (InterposeState s s a) c)
forall a b. (a -> b) -> a -> b
$ case Step s c
r of
            Yield c
x s
i' -> c -> InterposeState s s a -> Step (InterposeState s s a) c
forall s a. a -> s -> Step s a
Yield c
x (s -> s -> InterposeState s s a
forall s1 i1 a. s1 -> i1 -> InterposeState s1 i1 a
InterposeFirstInner s
s1 s
i')
            Skip s
i'    -> InterposeState s s a -> Step (InterposeState s s a) c
forall s a. s -> Step s a
Skip (s -> s -> InterposeState s s a
forall s1 i1 a. s1 -> i1 -> InterposeState s1 i1 a
InterposeFirstInner s
s1 s
i')
            Step s c
Stop       -> InterposeState s s a -> Step (InterposeState s s a) c
forall s a. s -> Step s a
Skip (s -> InterposeState s s a
forall s1 i1 a. s1 -> InterposeState s1 i1 a
InterposeFirstInject s
s1)

    step State Stream m a
gst (InterposeFirstInject s
s1) = do
        Step s b
r <- State Stream m b -> s -> m (Step s b)
step1 (State Stream m a -> State Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
s1
        case Step s b
r of
            Yield b
a s
s -> do
                s
i <- b -> m s
inject1 b
a
                -- i `seq` return (Skip (InterposeFirstBuf s i))
                s
i s
-> m (Step (InterposeState s s a) c)
-> m (Step (InterposeState s s a) c)
`seq` Step (InterposeState s s a) c -> m (Step (InterposeState s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (InterposeState s s a -> Step (InterposeState s s a) c
forall s a. s -> Step s a
Skip (s -> s -> InterposeState s s a
forall s1 i1 a. s1 -> i1 -> InterposeState s1 i1 a
InterposeSecondYield s
s s
i))
            Skip s
s -> Step (InterposeState s s a) c -> m (Step (InterposeState s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterposeState s s a) c
 -> m (Step (InterposeState s s a) c))
-> Step (InterposeState s s a) c
-> m (Step (InterposeState s s a) c)
forall a b. (a -> b) -> a -> b
$ InterposeState s s a -> Step (InterposeState s s a) c
forall s a. s -> Step s a
Skip (s -> InterposeState s s a
forall s1 i1 a. s1 -> InterposeState s1 i1 a
InterposeFirstInject s
s)
            Step s b
Stop -> Step (InterposeState s s a) c -> m (Step (InterposeState s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (InterposeState s s a) c
forall s a. Step s a
Stop

    {-
    step _ (InterposeFirstBuf s1 i1) = do
        r <- istep1 i1
        return $ case r of
            Yield x i' -> Skip (InterposeSecondYield s1 i' x)
            Skip i'    -> Skip (InterposeFirstBuf s1 i')
            Stop       -> Stop
    -}

    {-
    step _ (InterposeSecondYield s1 i1 v) = do
        r <- action
        return $ Yield r (InterposeFirstResume s1 i1 v)
    -}
    step State Stream m a
_ (InterposeSecondYield s
s1 s
i1) = do
        c
r <- m c
action
        Step (InterposeState s s a) c -> m (Step (InterposeState s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (InterposeState s s a) c
 -> m (Step (InterposeState s s a) c))
-> Step (InterposeState s s a) c
-> m (Step (InterposeState s s a) c)
forall a b. (a -> b) -> a -> b
$ c -> InterposeState s s a -> Step (InterposeState s s a) c
forall s a. a -> s -> Step s a
Yield c
r (s -> s -> InterposeState s s a
forall s1 i1 a. s1 -> i1 -> InterposeState s1 i1 a
InterposeFirstInner s
s1 s
i1)

    {-
    step _ (InterposeFirstResume s1 i1 v) = do
        return $ Yield v (InterposeFirstInner s1 i1)
    -}

------------------------------------------------------------------------------
-- Combine N Streams - intercalate
------------------------------------------------------------------------------

data ICUState s1 s2 i1 i2 =
      ICUFirst s1 s2
    | ICUSecond s1 s2
    | ICUSecondOnly s2
    | ICUFirstOnly s1
    | ICUFirstInner s1 s2 i1
    | ICUSecondInner s1 s2 i2
    | ICUFirstOnlyInner s1 i1
    | ICUSecondOnlyInner s2 i2

-- | Interleave streams (full streams, not the elements) unfolded from two
-- input streams and concat. Stop when the first stream stops. If the second
-- stream ends before the first one then first stream still keeps running alone
-- without any interleaving with the second stream.
--
--    [a1, a2, ... an]                   [b1, b2 ...]
-- => [streamA1, streamA2, ... streamAn] [streamB1, streamB2, ...]
-- => [streamA1, streamB1, streamA2...StreamAn, streamBn]
-- => [a11, a12, ...a1j, b11, b12, ...b1k, a21, a22, ...]
--
{-# INLINE_NORMAL gintercalateSuffix #-}
gintercalateSuffix
    :: Monad m
    => Unfold m a c -> Stream m a -> Unfold m b c -> Stream m b -> Stream m c
gintercalateSuffix :: Unfold m a c
-> Stream m a -> Unfold m b c -> Stream m b -> Stream m c
gintercalateSuffix
    (Unfold s -> m (Step s c)
istep1 a -> m s
inject1) (Stream State Stream m a -> s -> m (Step s a)
step1 s
state1)
    (Unfold s -> m (Step s c)
istep2 b -> m s
inject2) (Stream State Stream m b -> s -> m (Step s b)
step2 s
state2) =
    (State Stream m c
 -> ICUState s s s s -> m (Step (ICUState s s s s) c))
-> ICUState s s s s -> Stream m c
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m c
-> ICUState s s s s -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a.
State Stream m a
-> ICUState s s s s -> m (Step (ICUState s s s s) c)
step (s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> s2 -> ICUState s1 s2 i1 i2
ICUFirst s
state1 s
state2)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m a
-> ICUState s s s s -> m (Step (ICUState s s s s) c)
step State Stream m a
gst (ICUFirst s
s1 s
s2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
s1
        case Step s a
r of
            Yield a
a s
s -> do
                s
i <- a -> m s
inject1 a
a
                s
i s -> m (Step (ICUState s s s s) c) -> m (Step (ICUState s s s s) c)
`seq` Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> s2 -> i1 -> ICUState s1 s2 i1 i2
ICUFirstInner s
s s
s2 s
i))
            Skip s
s -> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c))
-> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall a b. (a -> b) -> a -> b
$ ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> s2 -> ICUState s1 s2 i1 i2
ICUFirst s
s s
s2)
            Step s a
Stop -> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ICUState s s s s) c
forall s a. Step s a
Stop

    step State Stream m a
gst (ICUFirstOnly s
s1) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
s1
        case Step s a
r of
            Yield a
a s
s -> do
                s
i <- a -> m s
inject1 a
a
                s
i s -> m (Step (ICUState s s s s) c) -> m (Step (ICUState s s s s) c)
`seq` Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> i1 -> ICUState s1 s2 i1 i2
ICUFirstOnlyInner s
s s
i))
            Skip s
s -> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c))
-> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall a b. (a -> b) -> a -> b
$ ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> ICUState s1 s2 i1 i2
ICUFirstOnly s
s)
            Step s a
Stop -> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ICUState s s s s) c
forall s a. Step s a
Stop

    step State Stream m a
_ (ICUFirstInner s
s1 s
s2 s
i1) = do
        Step s c
r <- s -> m (Step s c)
istep1 s
i1
        Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c))
-> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall a b. (a -> b) -> a -> b
$ case Step s c
r of
            Yield c
x s
i' -> c -> ICUState s s s s -> Step (ICUState s s s s) c
forall s a. a -> s -> Step s a
Yield c
x (s -> s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> s2 -> i1 -> ICUState s1 s2 i1 i2
ICUFirstInner s
s1 s
s2 s
i')
            Skip s
i'    -> ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> s2 -> i1 -> ICUState s1 s2 i1 i2
ICUFirstInner s
s1 s
s2 s
i')
            Step s c
Stop       -> ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> s2 -> ICUState s1 s2 i1 i2
ICUSecond s
s1 s
s2)

    step State Stream m a
_ (ICUFirstOnlyInner s
s1 s
i1) = do
        Step s c
r <- s -> m (Step s c)
istep1 s
i1
        Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c))
-> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall a b. (a -> b) -> a -> b
$ case Step s c
r of
            Yield c
x s
i' -> c -> ICUState s s s s -> Step (ICUState s s s s) c
forall s a. a -> s -> Step s a
Yield c
x (s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> i1 -> ICUState s1 s2 i1 i2
ICUFirstOnlyInner s
s1 s
i')
            Skip s
i'    -> ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> i1 -> ICUState s1 s2 i1 i2
ICUFirstOnlyInner s
s1 s
i')
            Step s c
Stop       -> ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> ICUState s1 s2 i1 i2
ICUFirstOnly s
s1)

    step State Stream m a
gst (ICUSecond s
s1 s
s2) = do
        Step s b
r <- State Stream m b -> s -> m (Step s b)
step2 (State Stream m a -> State Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
s2
        case Step s b
r of
            Yield b
a s
s -> do
                s
i <- b -> m s
inject2 b
a
                s
i s -> m (Step (ICUState s s s s) c) -> m (Step (ICUState s s s s) c)
`seq` Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> s2 -> i2 -> ICUState s1 s2 i1 i2
ICUSecondInner s
s1 s
s s
i))
            Skip s
s -> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c))
-> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall a b. (a -> b) -> a -> b
$ ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> s2 -> ICUState s1 s2 i1 i2
ICUSecond s
s1 s
s)
            Step s b
Stop -> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c))
-> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall a b. (a -> b) -> a -> b
$ ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> ICUState s1 s2 i1 i2
ICUFirstOnly s
s1)

    step State Stream m a
_ (ICUSecondInner s
s1 s
s2 s
i2) = do
        Step s c
r <- s -> m (Step s c)
istep2 s
i2
        Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c))
-> Step (ICUState s s s s) c -> m (Step (ICUState s s s s) c)
forall a b. (a -> b) -> a -> b
$ case Step s c
r of
            Yield c
x s
i' -> c -> ICUState s s s s -> Step (ICUState s s s s) c
forall s a. a -> s -> Step s a
Yield c
x (s -> s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> s2 -> i2 -> ICUState s1 s2 i1 i2
ICUSecondInner s
s1 s
s2 s
i')
            Skip s
i'    -> ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> s2 -> i2 -> ICUState s1 s2 i1 i2
ICUSecondInner s
s1 s
s2 s
i')
            Step s c
Stop       -> ICUState s s s s -> Step (ICUState s s s s) c
forall s a. s -> Step s a
Skip (s -> s -> ICUState s s s s
forall s1 s2 i1 i2. s1 -> s2 -> ICUState s1 s2 i1 i2
ICUFirst s
s1 s
s2)

    step State Stream m a
_ (ICUSecondOnly s
_s2) = m (Step (ICUState s s s s) c)
forall a. HasCallStack => a
undefined
    step State Stream m a
_ (ICUSecondOnlyInner s
_s2 s
_i2) = m (Step (ICUState s s s s) c)
forall a. HasCallStack => a
undefined

data ICALState s1 s2 i1 i2 a =
      ICALFirst s1 s2
    -- | ICALFirstYield s1 s2 i1
    | ICALFirstInner s1 s2 i1
    | ICALFirstOnly s1
    | ICALFirstOnlyInner s1 i1
    | ICALSecondInject s1 s2
    | ICALFirstInject s1 s2 i2
    -- | ICALFirstBuf s1 s2 i1 i2
    | ICALSecondInner s1 s2 i1 i2
    -- -- | ICALSecondInner s1 s2 i1 i2 a
    -- -- | ICALFirstResume s1 s2 i1 i2 a

-- | Interleave streams (full streams, not the elements) unfolded from two
-- input streams and concat. Stop when the first stream stops. If the second
-- stream ends before the first one then first stream still keeps running alone
-- without any interleaving with the second stream.
--
--    [a1, a2, ... an]                   [b1, b2 ...]
-- => [streamA1, streamA2, ... streamAn] [streamB1, streamB2, ...]
-- => [streamA1, streamB1, streamA2...StreamAn, streamBn]
-- => [a11, a12, ...a1j, b11, b12, ...b1k, a21, a22, ...]
--
{-# INLINE_NORMAL gintercalate #-}
gintercalate
    :: Monad m
    => Unfold m a c -> Stream m a -> Unfold m b c -> Stream m b -> Stream m c
gintercalate :: Unfold m a c
-> Stream m a -> Unfold m b c -> Stream m b -> Stream m c
gintercalate
    (Unfold s -> m (Step s c)
istep1 a -> m s
inject1) (Stream State Stream m a -> s -> m (Step s a)
step1 s
state1)
    (Unfold s -> m (Step s c)
istep2 b -> m s
inject2) (Stream State Stream m b -> s -> m (Step s b)
step2 s
state2) =
    (State Stream m c
 -> ICALState s s s s Any -> m (Step (ICALState s s s s Any) c))
-> ICALState s s s s Any -> Stream m c
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m c
-> ICALState s s s s Any -> m (Step (ICALState s s s s Any) c)
forall (m :: * -> *) a a a.
State Stream m a
-> ICALState s s s s a -> m (Step (ICALState s s s s a) c)
step (s -> s -> ICALState s s s s Any
forall s1 s2 i1 i2 a. s1 -> s2 -> ICALState s1 s2 i1 i2 a
ICALFirst s
state1 s
state2)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m a
-> ICALState s s s s a -> m (Step (ICALState s s s s a) c)
step State Stream m a
gst (ICALFirst s
s1 s
s2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
s1
        case Step s a
r of
            Yield a
a s
s -> do
                s
i <- a -> m s
inject1 a
a
                s
i s
-> m (Step (ICALState s s s s a) c)
-> m (Step (ICALState s s s s a) c)
`seq` Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> s2 -> i1 -> ICALState s1 s2 i1 i2 a
ICALFirstInner s
s s
s2 s
i))
                -- i `seq` return (Skip (ICALFirstYield s s2 i))
            Skip s
s -> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c))
-> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall a b. (a -> b) -> a -> b
$ ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> s2 -> ICALState s1 s2 i1 i2 a
ICALFirst s
s s
s2)
            Step s a
Stop -> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ICALState s s s s a) c
forall s a. Step s a
Stop

    {-
    step _ (ICALFirstYield s1 s2 i1) = do
        r <- istep1 i1
        return $ case r of
            Yield x i' -> Yield x (ICALFirstInner s1 s2 i')
            Skip i'    -> Skip (ICALFirstYield s1 s2 i')
            Stop       -> Skip (ICALFirst s1 s2)
    -}

    step State Stream m a
_ (ICALFirstInner s
s1 s
s2 s
i1) = do
        Step s c
r <- s -> m (Step s c)
istep1 s
i1
        Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c))
-> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall a b. (a -> b) -> a -> b
$ case Step s c
r of
            Yield c
x s
i' -> c -> ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. a -> s -> Step s a
Yield c
x (s -> s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> s2 -> i1 -> ICALState s1 s2 i1 i2 a
ICALFirstInner s
s1 s
s2 s
i')
            Skip s
i'    -> ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> s2 -> i1 -> ICALState s1 s2 i1 i2 a
ICALFirstInner s
s1 s
s2 s
i')
            Step s c
Stop       -> ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> s2 -> ICALState s1 s2 i1 i2 a
ICALSecondInject s
s1 s
s2)

    step State Stream m a
gst (ICALFirstOnly s
s1) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
s1
        case Step s a
r of
            Yield a
a s
s -> do
                s
i <- a -> m s
inject1 a
a
                s
i s
-> m (Step (ICALState s s s s a) c)
-> m (Step (ICALState s s s s a) c)
`seq` Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> i1 -> ICALState s1 s2 i1 i2 a
ICALFirstOnlyInner s
s s
i))
            Skip s
s -> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c))
-> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall a b. (a -> b) -> a -> b
$ ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> ICALState s1 s2 i1 i2 a
ICALFirstOnly s
s)
            Step s a
Stop -> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ICALState s s s s a) c
forall s a. Step s a
Stop

    step State Stream m a
_ (ICALFirstOnlyInner s
s1 s
i1) = do
        Step s c
r <- s -> m (Step s c)
istep1 s
i1
        Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c))
-> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall a b. (a -> b) -> a -> b
$ case Step s c
r of
            Yield c
x s
i' -> c -> ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. a -> s -> Step s a
Yield c
x (s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> i1 -> ICALState s1 s2 i1 i2 a
ICALFirstOnlyInner s
s1 s
i')
            Skip s
i'    -> ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> i1 -> ICALState s1 s2 i1 i2 a
ICALFirstOnlyInner s
s1 s
i')
            Step s c
Stop       -> ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> ICALState s1 s2 i1 i2 a
ICALFirstOnly s
s1)

    -- We inject the second stream even before checking if the first stream
    -- would yield any more elements. There is no clear choice whether we
    -- should do this before or after that. Doing it after may make the state
    -- machine a bit simpler though.
    step State Stream m a
gst (ICALSecondInject s
s1 s
s2) = do
        Step s b
r <- State Stream m b -> s -> m (Step s b)
step2 (State Stream m a -> State Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
s2
        case Step s b
r of
            Yield b
a s
s -> do
                s
i <- b -> m s
inject2 b
a
                s
i s
-> m (Step (ICALState s s s s a) c)
-> m (Step (ICALState s s s s a) c)
`seq` Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> s2 -> i2 -> ICALState s1 s2 i1 i2 a
ICALFirstInject s
s1 s
s s
i))
            Skip s
s -> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c))
-> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall a b. (a -> b) -> a -> b
$ ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> s2 -> ICALState s1 s2 i1 i2 a
ICALSecondInject s
s1 s
s)
            Step s b
Stop -> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c))
-> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall a b. (a -> b) -> a -> b
$ ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> ICALState s1 s2 i1 i2 a
ICALFirstOnly s
s1)

    step State Stream m a
gst (ICALFirstInject s
s1 s
s2 s
i2) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
s1
        case Step s a
r of
            Yield a
a s
s -> do
                s
i <- a -> m s
inject1 a
a
                s
i s
-> m (Step (ICALState s s s s a) c)
-> m (Step (ICALState s s s s a) c)
`seq` Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a.
s1 -> s2 -> i1 -> i2 -> ICALState s1 s2 i1 i2 a
ICALSecondInner s
s s
s2 s
i s
i2))
                -- i `seq` return (Skip (ICALFirstBuf s s2 i i2))
            Skip s
s -> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c))
-> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall a b. (a -> b) -> a -> b
$ ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> s2 -> i2 -> ICALState s1 s2 i1 i2 a
ICALFirstInject s
s s
s2 s
i2)
            Step s a
Stop -> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ICALState s s s s a) c
forall s a. Step s a
Stop

    {-
    step _ (ICALFirstBuf s1 s2 i1 i2) = do
        r <- istep1 i1
        return $ case r of
            Yield x i' -> Skip (ICALSecondInner s1 s2 i' i2 x)
            Skip i'    -> Skip (ICALFirstBuf s1 s2 i' i2)
            Stop       -> Stop

    step _ (ICALSecondInner s1 s2 i1 i2 v) = do
        r <- istep2 i2
        return $ case r of
            Yield x i' -> Yield x (ICALSecondInner s1 s2 i1 i' v)
            Skip i'    -> Skip (ICALSecondInner s1 s2 i1 i' v)
            Stop       -> Skip (ICALFirstResume s1 s2 i1 i2 v)
    -}

    step State Stream m a
_ (ICALSecondInner s
s1 s
s2 s
i1 s
i2) = do
        Step s c
r <- s -> m (Step s c)
istep2 s
i2
        Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c))
-> Step (ICALState s s s s a) c -> m (Step (ICALState s s s s a) c)
forall a b. (a -> b) -> a -> b
$ case Step s c
r of
            Yield c
x s
i' -> c -> ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. a -> s -> Step s a
Yield c
x (s -> s -> s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a.
s1 -> s2 -> i1 -> i2 -> ICALState s1 s2 i1 i2 a
ICALSecondInner s
s1 s
s2 s
i1 s
i')
            Skip s
i'    -> ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a.
s1 -> s2 -> i1 -> i2 -> ICALState s1 s2 i1 i2 a
ICALSecondInner s
s1 s
s2 s
i1 s
i')
            Step s c
Stop       -> ICALState s s s s a -> Step (ICALState s s s s a) c
forall s a. s -> Step s a
Skip (s -> s -> s -> ICALState s s s s a
forall s1 s2 i1 i2 a. s1 -> s2 -> i1 -> ICALState s1 s2 i1 i2 a
ICALFirstInner s
s1 s
s2 s
i1)
            -- Stop       -> Skip (ICALFirstResume s1 s2 i1 i2)

    {-
    step _ (ICALFirstResume s1 s2 i1 i2 x) = do
        return $ Yield x (ICALFirstInner s1 s2 i1 i2)
    -}

------------------------------------------------------------------------------
-- Folding
------------------------------------------------------------------------------

{-# ANN type FIterState Fuse #-}
data FIterState s f m a b
    = FIterInit s f
    | forall fs. FIterStream s (fs -> a -> m (FL.Step fs b)) fs (fs -> m b)
    | FIterYield b (FIterState s f m a b)
    | FIterStop

{-# INLINE_NORMAL foldIterateM #-}
foldIterateM ::
       Monad m => (b -> m (FL.Fold m a b)) -> m b -> Stream m a -> Stream m b
foldIterateM :: (b -> m (Fold m a b)) -> m b -> Stream m a -> Stream m b
foldIterateM b -> m (Fold m a b)
func m b
seed0 (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
    (State Stream m b
 -> FIterState s (m b) m a b
 -> m (Step (FIterState s (m b) m a b) b))
-> FIterState s (m b) m a b -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> FIterState s (m b) m a b
-> m (Step (FIterState s (m b) m a b) b)
forall (m :: * -> *) a.
State Stream m a
-> FIterState s (m b) m a b
-> m (Step (FIterState s (m b) m a b) b)
stepOuter (s -> m b -> FIterState s (m b) m a b
forall s f (m :: * -> *) a b. s -> f -> FIterState s f m a b
FIterInit s
state m b
seed0)

    where

    {-# INLINE iterStep #-}
    iterStep :: m (Step fs b)
-> s
-> (fs -> a -> m (Step fs b))
-> (fs -> m b)
-> m (Step (FIterState s (m b) m a b) a)
iterStep m (Step fs b)
from s
st fs -> a -> m (Step fs b)
fstep fs -> m b
extract = do
        Step fs b
res <- m (Step fs b)
from
        Step (FIterState s (m b) m a b) a
-> m (Step (FIterState s (m b) m a b) a)
forall (m :: * -> *) a. Monad m => a -> m a
return
            (Step (FIterState s (m b) m a b) a
 -> m (Step (FIterState s (m b) m a b) a))
-> Step (FIterState s (m b) m a b) a
-> m (Step (FIterState s (m b) m a b) a)
forall a b. (a -> b) -> a -> b
$ FIterState s (m b) m a b -> Step (FIterState s (m b) m a b) a
forall s a. s -> Step s a
Skip
            (FIterState s (m b) m a b -> Step (FIterState s (m b) m a b) a)
-> FIterState s (m b) m a b -> Step (FIterState s (m b) m a b) a
forall a b. (a -> b) -> a -> b
$ case Step fs b
res of
                  FL.Partial fs
fs -> s
-> (fs -> a -> m (Step fs b))
-> fs
-> (fs -> m b)
-> FIterState s (m b) m a b
forall s f (m :: * -> *) a b fs.
s
-> (fs -> a -> m (Step fs b))
-> fs
-> (fs -> m b)
-> FIterState s f m a b
FIterStream s
st fs -> a -> m (Step fs b)
fstep fs
fs fs -> m b
extract
                  FL.Done b
fb -> b -> FIterState s (m b) m a b -> FIterState s (m b) m a b
forall s f (m :: * -> *) a b.
b -> FIterState s f m a b -> FIterState s f m a b
FIterYield b
fb (FIterState s (m b) m a b -> FIterState s (m b) m a b)
-> FIterState s (m b) m a b -> FIterState s (m b) m a b
forall a b. (a -> b) -> a -> b
$ s -> m b -> FIterState s (m b) m a b
forall s f (m :: * -> *) a b. s -> f -> FIterState s f m a b
FIterInit s
st (b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
fb)

    {-# INLINE_LATE stepOuter #-}
    stepOuter :: State Stream m a
-> FIterState s (m b) m a b
-> m (Step (FIterState s (m b) m a b) b)
stepOuter State Stream m a
_ (FIterInit s
st m b
seed) = do
        (FL.Fold s -> a -> m (Step s b)
fstep m (Step s b)
initial s -> m b
extract) <- m b
seed m b -> (b -> m (Fold m a b)) -> m (Fold m a b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= b -> m (Fold m a b)
func
        m (Step s b)
-> s
-> (s -> a -> m (Step s b))
-> (s -> m b)
-> m (Step (FIterState s (m b) m a b) b)
forall (m :: * -> *) (m :: * -> *) fs b s a (m :: * -> *) a.
(Monad m, Monad m) =>
m (Step fs b)
-> s
-> (fs -> a -> m (Step fs b))
-> (fs -> m b)
-> m (Step (FIterState s (m b) m a b) a)
iterStep m (Step s b)
initial s
st s -> a -> m (Step s b)
fstep s -> m b
extract
    stepOuter State Stream m a
gst (FIterStream s
st fs -> a -> m (Step fs b)
fstep fs
fs fs -> m b
extract) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
r of
            Yield a
x s
s -> do
                m (Step fs b)
-> s
-> (fs -> a -> m (Step fs b))
-> (fs -> m b)
-> m (Step (FIterState s (m b) m a b) b)
forall (m :: * -> *) (m :: * -> *) fs b s a (m :: * -> *) a.
(Monad m, Monad m) =>
m (Step fs b)
-> s
-> (fs -> a -> m (Step fs b))
-> (fs -> m b)
-> m (Step (FIterState s (m b) m a b) a)
iterStep (fs -> a -> m (Step fs b)
fstep fs
fs a
x) s
s fs -> a -> m (Step fs b)
fstep fs -> m b
extract
            Skip s
s -> Step (FIterState s (m b) m a b) b
-> m (Step (FIterState s (m b) m a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FIterState s (m b) m a b) b
 -> m (Step (FIterState s (m b) m a b) b))
-> Step (FIterState s (m b) m a b) b
-> m (Step (FIterState s (m b) m a b) b)
forall a b. (a -> b) -> a -> b
$ FIterState s (m b) m a b -> Step (FIterState s (m b) m a b) b
forall s a. s -> Step s a
Skip (FIterState s (m b) m a b -> Step (FIterState s (m b) m a b) b)
-> FIterState s (m b) m a b -> Step (FIterState s (m b) m a b) b
forall a b. (a -> b) -> a -> b
$ s
-> (fs -> a -> m (Step fs b))
-> fs
-> (fs -> m b)
-> FIterState s (m b) m a b
forall s f (m :: * -> *) a b fs.
s
-> (fs -> a -> m (Step fs b))
-> fs
-> (fs -> m b)
-> FIterState s f m a b
FIterStream s
s fs -> a -> m (Step fs b)
fstep fs
fs fs -> m b
extract
            Step s a
Stop -> do
                b
b <- fs -> m b
extract fs
fs
                Step (FIterState s (m b) m a b) b
-> m (Step (FIterState s (m b) m a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FIterState s (m b) m a b) b
 -> m (Step (FIterState s (m b) m a b) b))
-> Step (FIterState s (m b) m a b) b
-> m (Step (FIterState s (m b) m a b) b)
forall a b. (a -> b) -> a -> b
$ FIterState s (m b) m a b -> Step (FIterState s (m b) m a b) b
forall s a. s -> Step s a
Skip (FIterState s (m b) m a b -> Step (FIterState s (m b) m a b) b)
-> FIterState s (m b) m a b -> Step (FIterState s (m b) m a b) b
forall a b. (a -> b) -> a -> b
$ b -> FIterState s (m b) m a b -> FIterState s (m b) m a b
forall s f (m :: * -> *) a b.
b -> FIterState s f m a b -> FIterState s f m a b
FIterYield b
b FIterState s (m b) m a b
forall s f (m :: * -> *) a b. FIterState s f m a b
FIterStop
    stepOuter State Stream m a
_ (FIterYield b
a FIterState s (m b) m a b
next) = Step (FIterState s (m b) m a b) b
-> m (Step (FIterState s (m b) m a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FIterState s (m b) m a b) b
 -> m (Step (FIterState s (m b) m a b) b))
-> Step (FIterState s (m b) m a b) b
-> m (Step (FIterState s (m b) m a b) b)
forall a b. (a -> b) -> a -> b
$ b -> FIterState s (m b) m a b -> Step (FIterState s (m b) m a b) b
forall s a. a -> s -> Step s a
Yield b
a FIterState s (m b) m a b
next
    stepOuter State Stream m a
_ FIterState s (m b) m a b
FIterStop = Step (FIterState s (m b) m a b) b
-> m (Step (FIterState s (m b) m a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (FIterState s (m b) m a b) b
forall s a. Step s a
Stop

{-# ANN type CIterState Fuse #-}
data CIterState s f fs b
    = CIterInit s f
    | CIterConsume s fs
    | CIterYield b (CIterState s f fs b)
    | CIterStop

-- | Like 'foldIterateM' but using the 'Refold' type instead. This could be
-- much more efficient due to stream fusion.
--
-- /Internal/
{-# INLINE_NORMAL refoldIterateM #-}
refoldIterateM ::
       Monad m => Refold m b a b -> m b -> Stream m a -> Stream m b
refoldIterateM :: Refold m b a b -> m b -> Stream m a -> Stream m b
refoldIterateM (Refold s -> a -> m (Step s b)
fstep b -> m (Step s b)
finject s -> m b
fextract) m b
initial (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
    (State Stream m b
 -> CIterState s (m b) s b -> m (Step (CIterState s (m b) s b) b))
-> CIterState s (m b) s b -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> CIterState s (m b) s b -> m (Step (CIterState s (m b) s b) b)
forall (m :: * -> *) a.
State Stream m a
-> CIterState s (m b) s b -> m (Step (CIterState s (m b) s b) b)
stepOuter (s -> m b -> CIterState s (m b) s b
forall s f fs b. s -> f -> CIterState s f fs b
CIterInit s
state m b
initial)

    where

    {-# INLINE iterStep #-}
    iterStep :: s -> m (Step fs b) -> m (Step (CIterState s (m b) fs b) a)
iterStep s
st m (Step fs b)
action = do
        Step fs b
res <- m (Step fs b)
action
        Step (CIterState s (m b) fs b) a
-> m (Step (CIterState s (m b) fs b) a)
forall (m :: * -> *) a. Monad m => a -> m a
return
            (Step (CIterState s (m b) fs b) a
 -> m (Step (CIterState s (m b) fs b) a))
-> Step (CIterState s (m b) fs b) a
-> m (Step (CIterState s (m b) fs b) a)
forall a b. (a -> b) -> a -> b
$ CIterState s (m b) fs b -> Step (CIterState s (m b) fs b) a
forall s a. s -> Step s a
Skip
            (CIterState s (m b) fs b -> Step (CIterState s (m b) fs b) a)
-> CIterState s (m b) fs b -> Step (CIterState s (m b) fs b) a
forall a b. (a -> b) -> a -> b
$ case Step fs b
res of
                  FL.Partial fs
fs -> s -> fs -> CIterState s (m b) fs b
forall s f fs b. s -> fs -> CIterState s f fs b
CIterConsume s
st fs
fs
                  FL.Done b
fb -> b -> CIterState s (m b) fs b -> CIterState s (m b) fs b
forall s f fs b. b -> CIterState s f fs b -> CIterState s f fs b
CIterYield b
fb (CIterState s (m b) fs b -> CIterState s (m b) fs b)
-> CIterState s (m b) fs b -> CIterState s (m b) fs b
forall a b. (a -> b) -> a -> b
$ s -> m b -> CIterState s (m b) fs b
forall s f fs b. s -> f -> CIterState s f fs b
CIterInit s
st (b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
fb)

    {-# INLINE_LATE stepOuter #-}
    stepOuter :: State Stream m a
-> CIterState s (m b) s b -> m (Step (CIterState s (m b) s b) b)
stepOuter State Stream m a
_ (CIterInit s
st m b
action) = do
        s -> m (Step s b) -> m (Step (CIterState s (m b) s b) b)
forall (m :: * -> *) (m :: * -> *) s fs b a.
(Monad m, Monad m) =>
s -> m (Step fs b) -> m (Step (CIterState s (m b) fs b) a)
iterStep s
st (m b
action m b -> (b -> m (Step s b)) -> m (Step s b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= b -> m (Step s b)
finject)
    stepOuter State Stream m a
gst (CIterConsume s
st s
fs) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
r of
            Yield a
x s
s -> s -> m (Step s b) -> m (Step (CIterState s (m b) s b) b)
forall (m :: * -> *) (m :: * -> *) s fs b a.
(Monad m, Monad m) =>
s -> m (Step fs b) -> m (Step (CIterState s (m b) fs b) a)
iterStep s
s (s -> a -> m (Step s b)
fstep s
fs a
x)
            Skip s
s -> Step (CIterState s (m b) s b) b
-> m (Step (CIterState s (m b) s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (CIterState s (m b) s b) b
 -> m (Step (CIterState s (m b) s b) b))
-> Step (CIterState s (m b) s b) b
-> m (Step (CIterState s (m b) s b) b)
forall a b. (a -> b) -> a -> b
$ CIterState s (m b) s b -> Step (CIterState s (m b) s b) b
forall s a. s -> Step s a
Skip (CIterState s (m b) s b -> Step (CIterState s (m b) s b) b)
-> CIterState s (m b) s b -> Step (CIterState s (m b) s b) b
forall a b. (a -> b) -> a -> b
$ s -> s -> CIterState s (m b) s b
forall s f fs b. s -> fs -> CIterState s f fs b
CIterConsume s
s s
fs
            Step s a
Stop -> do
                b
b <- s -> m b
fextract s
fs
                Step (CIterState s (m b) s b) b
-> m (Step (CIterState s (m b) s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (CIterState s (m b) s b) b
 -> m (Step (CIterState s (m b) s b) b))
-> Step (CIterState s (m b) s b) b
-> m (Step (CIterState s (m b) s b) b)
forall a b. (a -> b) -> a -> b
$ CIterState s (m b) s b -> Step (CIterState s (m b) s b) b
forall s a. s -> Step s a
Skip (CIterState s (m b) s b -> Step (CIterState s (m b) s b) b)
-> CIterState s (m b) s b -> Step (CIterState s (m b) s b) b
forall a b. (a -> b) -> a -> b
$ b -> CIterState s (m b) s b -> CIterState s (m b) s b
forall s f fs b. b -> CIterState s f fs b -> CIterState s f fs b
CIterYield b
b CIterState s (m b) s b
forall s f fs b. CIterState s f fs b
CIterStop
    stepOuter State Stream m a
_ (CIterYield b
a CIterState s (m b) s b
next) = Step (CIterState s (m b) s b) b
-> m (Step (CIterState s (m b) s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (CIterState s (m b) s b) b
 -> m (Step (CIterState s (m b) s b) b))
-> Step (CIterState s (m b) s b) b
-> m (Step (CIterState s (m b) s b) b)
forall a b. (a -> b) -> a -> b
$ b -> CIterState s (m b) s b -> Step (CIterState s (m b) s b) b
forall s a. a -> s -> Step s a
Yield b
a CIterState s (m b) s b
next
    stepOuter State Stream m a
_ CIterState s (m b) s b
CIterStop = Step (CIterState s (m b) s b) b
-> m (Step (CIterState s (m b) s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (CIterState s (m b) s b) b
forall s a. Step s a
Stop

-- "n" elements at the end are dropped by the fold.
{-# INLINE sliceBy #-}
sliceBy :: Monad m => Fold m a Int -> Int -> Refold m (Int, Int) a (Int, Int)
sliceBy :: Fold m a Int -> Int -> Refold m (Int, Int) a (Int, Int)
sliceBy (Fold s -> a -> m (Step s Int)
step1 m (Step s Int)
initial1 s -> m Int
extract1) Int
n = (Tuple' Int s -> a -> m (Step (Tuple' Int s) (Int, Int)))
-> ((Int, Int) -> m (Step (Tuple' Int s) (Int, Int)))
-> (Tuple' Int s -> m (Int, Int))
-> Refold m (Int, Int) a (Int, Int)
forall (m :: * -> *) c a b s.
(s -> a -> m (Step s b))
-> (c -> m (Step s b)) -> (s -> m b) -> Refold m c a b
Refold Tuple' Int s -> a -> m (Step (Tuple' Int s) (Int, Int))
forall a. Tuple' a s -> a -> m (Step (Tuple' a s) (a, Int))
step (Int, Int) -> m (Step (Tuple' Int s) (Int, Int))
inject Tuple' Int s -> m (Int, Int)
forall t. Tuple' t s -> m (t, Int)
extract

    where

    inject :: (Int, Int) -> m (Step (Tuple' Int s) (Int, Int))
inject (Int
i, Int
len) = do
        Step s Int
r <- m (Step s Int)
initial1
        Step (Tuple' Int s) (Int, Int)
-> m (Step (Tuple' Int s) (Int, Int))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Tuple' Int s) (Int, Int)
 -> m (Step (Tuple' Int s) (Int, Int)))
-> Step (Tuple' Int s) (Int, Int)
-> m (Step (Tuple' Int s) (Int, Int))
forall a b. (a -> b) -> a -> b
$ case Step s Int
r of
            Partial s
s -> Tuple' Int s -> Step (Tuple' Int s) (Int, Int)
forall s b. s -> Step s b
Partial (Tuple' Int s -> Step (Tuple' Int s) (Int, Int))
-> Tuple' Int s -> Step (Tuple' Int s) (Int, Int)
forall a b. (a -> b) -> a -> b
$ Int -> s -> Tuple' Int s
forall a b. a -> b -> Tuple' a b
Tuple' (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
len Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n) s
s
            Done Int
l -> (Int, Int) -> Step (Tuple' Int s) (Int, Int)
forall s b. b -> Step s b
Done (Int
i, Int
l)

    step :: Tuple' a s -> a -> m (Step (Tuple' a s) (a, Int))
step (Tuple' a
i s
s) a
x = do
        Step s Int
r <- s -> a -> m (Step s Int)
step1 s
s a
x
        Step (Tuple' a s) (a, Int) -> m (Step (Tuple' a s) (a, Int))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Tuple' a s) (a, Int) -> m (Step (Tuple' a s) (a, Int)))
-> Step (Tuple' a s) (a, Int) -> m (Step (Tuple' a s) (a, Int))
forall a b. (a -> b) -> a -> b
$ case Step s Int
r of
            Partial s
s1 -> Tuple' a s -> Step (Tuple' a s) (a, Int)
forall s b. s -> Step s b
Partial (Tuple' a s -> Step (Tuple' a s) (a, Int))
-> Tuple' a s -> Step (Tuple' a s) (a, Int)
forall a b. (a -> b) -> a -> b
$ a -> s -> Tuple' a s
forall a b. a -> b -> Tuple' a b
Tuple' a
i s
s1
            Done Int
len -> (a, Int) -> Step (Tuple' a s) (a, Int)
forall s b. b -> Step s b
Done (a
i, Int
len)

    extract :: Tuple' t s -> m (t, Int)
extract (Tuple' t
i s
s) = (t
i,) (Int -> (t, Int)) -> m Int -> m (t, Int)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m Int
extract1 s
s

{-# INLINE sliceOnSuffix #-}
sliceOnSuffix :: Monad m => (a -> Bool) -> Stream m a -> Stream m (Int, Int)
sliceOnSuffix :: (a -> Bool) -> Stream m a -> Stream m (Int, Int)
sliceOnSuffix a -> Bool
predicate =
    -- Scan the stream with the given refold
    Refold m (Int, Int) a (Int, Int)
-> m (Int, Int) -> Stream m a -> Stream m (Int, Int)
forall (m :: * -> *) b a.
Monad m =>
Refold m b a b -> m b -> Stream m a -> Stream m b
refoldIterateM
        (Fold m a Int -> Int -> Refold m (Int, Int) a (Int, Int)
forall (m :: * -> *) a.
Monad m =>
Fold m a Int -> Int -> Refold m (Int, Int) a (Int, Int)
sliceBy ((a -> Bool) -> Fold m a Int -> Fold m a Int
forall (m :: * -> *) a b.
Monad m =>
(a -> Bool) -> Fold m a b -> Fold m a b
FL.takeEndBy_ a -> Bool
predicate Fold m a Int
forall (m :: * -> *) a. Monad m => Fold m a Int
FL.length) Int
1)
        ((Int, Int) -> m (Int, Int)
forall (m :: * -> *) a. Monad m => a -> m a
return (-Int
1, Int
0))

------------------------------------------------------------------------------
-- Parsing
------------------------------------------------------------------------------

{-# ANN type ParseChunksState Fuse #-}
data ParseChunksState x inpBuf st pst =
      ParseChunksInit inpBuf st
    | ParseChunksInitLeftOver inpBuf
    | ParseChunksStream st inpBuf !pst
    | ParseChunksBuf inpBuf st inpBuf !pst
    | ParseChunksYield x (ParseChunksState x inpBuf st pst)

{-# INLINE_NORMAL parseMany #-}
parseMany
    :: MonadThrow m
    => PRD.Parser m a b
    -> Stream m a
    -> Stream m b
parseMany :: Parser m a b -> Stream m a -> Stream m b
parseMany (PRD.Parser s -> a -> m (Step s b)
pstep m (Initial s b)
initial s -> m b
extract) (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
    (State Stream m b
 -> ParseChunksState b [a] s s
 -> m (Step (ParseChunksState b [a] s s) b))
-> ParseChunksState b [a] s s -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> ParseChunksState b [a] s s
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a.
State Stream m a
-> ParseChunksState b [a] s s
-> m (Step (ParseChunksState b [a] s s) b)
stepOuter ([a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> ParseChunksState x inpBuf st pst
ParseChunksInit [] s
state)

    where

    {-# INLINE_LATE stepOuter #-}
    -- Buffer is empty, get the first element from the stream, initialize the
    -- fold and then go to stream processing loop.
    stepOuter :: State Stream m a
-> ParseChunksState b [a] s s
-> m (Step (ParseChunksState b [a] s s) b)
stepOuter State Stream m a
gst (ParseChunksInit [] s
st) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
r of
            Yield a
x s
s -> do
                Initial s b
res <- m (Initial s b)
initial
                case Initial s b
res of
                    PRD.IPartial s
ps ->
                        Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ [a] -> s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksBuf [a
x] s
s [] s
ps
                    PRD.IDone b
pb ->
                        let next :: ParseChunksState x [a] s pst
next = [a] -> s -> ParseChunksState x [a] s pst
forall x inpBuf st pst.
inpBuf -> st -> ParseChunksState x inpBuf st pst
ParseChunksInit [a
x] s
s
                         in Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ b -> ParseChunksState b [a] s s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
x
-> ParseChunksState x inpBuf st pst
-> ParseChunksState x inpBuf st pst
ParseChunksYield b
pb ParseChunksState b [a] s s
forall x pst. ParseChunksState x [a] s pst
next
                    PRD.IError String
err -> ParseError -> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (ParseError -> m (Step (ParseChunksState b [a] s s) b))
-> ParseError -> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ String -> ParseError
ParseError String
err
            Skip s
s -> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> ParseChunksState x inpBuf st pst
ParseChunksInit [] s
s
            Step s a
Stop   -> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ParseChunksState b [a] s s) b
forall s a. Step s a
Stop

    -- Buffer is not empty, go to buffered processing loop
    stepOuter State Stream m a
_ (ParseChunksInit [a]
src s
st) = do
        Initial s b
res <- m (Initial s b)
initial
        case Initial s b
res of
            PRD.IPartial s
ps ->
                Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ [a] -> s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksBuf [a]
src s
st [] s
ps
            PRD.IDone b
pb ->
                let next :: ParseChunksState x [a] s pst
next = [a] -> s -> ParseChunksState x [a] s pst
forall x inpBuf st pst.
inpBuf -> st -> ParseChunksState x inpBuf st pst
ParseChunksInit [a]
src s
st
                 in Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ b -> ParseChunksState b [a] s s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
x
-> ParseChunksState x inpBuf st pst
-> ParseChunksState x inpBuf st pst
ParseChunksYield b
pb ParseChunksState b [a] s s
forall x pst. ParseChunksState x [a] s pst
next
            PRD.IError String
err -> ParseError -> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (ParseError -> m (Step (ParseChunksState b [a] s s) b))
-> ParseError -> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ String -> ParseError
ParseError String
err

    -- XXX we just discard any leftover input at the end
    stepOuter State Stream m a
_ (ParseChunksInitLeftOver [a]
_) = Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ParseChunksState b [a] s s) b
forall s a. Step s a
Stop

    -- Buffer is empty, process elements from the stream
    stepOuter State Stream m a
gst (ParseChunksStream s
st [a]
buf s
pst) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
r of
            Yield a
x s
s -> do
                Step s b
pRes <- s -> a -> m (Step s b)
pstep s
pst a
x
                case Step s b
pRes of
                    PR.Partial Int
0 s
pst1 ->
                        Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksStream s
s [] s
pst1
                    PR.Partial Int
n s
pst1 -> do
                        Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                        let src0 :: [a]
src0 = Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
Prelude.take Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)
                            src :: [a]
src  = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse [a]
src0
                        Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ [a] -> s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksBuf [a]
src s
s [] s
pst1
                    PR.Continue Int
0 s
pst1 ->
                        Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksStream s
s (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf) s
pst1
                    PR.Continue Int
n s
pst1 -> do
                        Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                        let ([a]
src0, [a]
buf1) = Int -> [a] -> ([a], [a])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)
                            src :: [a]
src  = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse [a]
src0
                        Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ [a] -> s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksBuf [a]
src s
s [a]
buf1 s
pst1
                    PR.Done Int
0 b
b -> do
                        Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$
                            b -> ParseChunksState b [a] s s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
x
-> ParseChunksState x inpBuf st pst
-> ParseChunksState x inpBuf st pst
ParseChunksYield b
b ([a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> ParseChunksState x inpBuf st pst
ParseChunksInit [] s
s)
                    PR.Done Int
n b
b -> do
                        Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                        let src :: [a]
src = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse (Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
Prelude.take Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf))
                        Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$
                            b -> ParseChunksState b [a] s s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
x
-> ParseChunksState x inpBuf st pst
-> ParseChunksState x inpBuf st pst
ParseChunksYield b
b ([a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> ParseChunksState x inpBuf st pst
ParseChunksInit [a]
src s
s)
                    PR.Error String
err -> ParseError -> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (ParseError -> m (Step (ParseChunksState b [a] s s) b))
-> ParseError -> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ String -> ParseError
ParseError String
err
            Skip s
s -> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksStream s
s [a]
buf s
pst
            Step s a
Stop   -> do
                b
b <- s -> m b
extract s
pst
                let src :: [a]
src = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse [a]
buf
                Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$
                    b -> ParseChunksState b [a] s s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
x
-> ParseChunksState x inpBuf st pst
-> ParseChunksState x inpBuf st pst
ParseChunksYield b
b ([a] -> ParseChunksState b [a] s s
forall x inpBuf st pst. inpBuf -> ParseChunksState x inpBuf st pst
ParseChunksInitLeftOver [a]
src)

    -- go back to stream processing mode
    stepOuter State Stream m a
_ (ParseChunksBuf [] s
s [a]
buf s
pst) =
        Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksStream s
s [a]
buf s
pst

    -- buffered processing loop
    stepOuter State Stream m a
_ (ParseChunksBuf (a
x:[a]
xs) s
s [a]
buf s
pst) = do
        Step s b
pRes <- s -> a -> m (Step s b)
pstep s
pst a
x
        case Step s b
pRes of
            PR.Partial Int
0 s
pst1 ->
                Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ [a] -> s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksBuf [a]
xs s
s [] s
pst1
            PR.Partial Int
n s
pst1 -> do
                Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                let src0 :: [a]
src0 = Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
Prelude.take Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)
                    src :: [a]
src  = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse [a]
src0 [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
++ [a]
xs
                Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ [a] -> s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksBuf [a]
src s
s [] s
pst1
            PR.Continue Int
0 s
pst1 ->
                Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ [a] -> s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksBuf [a]
xs s
s (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf) s
pst1
            PR.Continue Int
n s
pst1 -> do
                Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                let ([a]
src0, [a]
buf1) = Int -> [a] -> ([a], [a])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)
                    src :: [a]
src  = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse [a]
src0 [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
++ [a]
xs
                Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ [a] -> s -> [a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> inpBuf -> pst -> ParseChunksState x inpBuf st pst
ParseChunksBuf [a]
src s
s [a]
buf1 s
pst1
            PR.Done Int
0 b
b ->
                Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ b -> ParseChunksState b [a] s s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
x
-> ParseChunksState x inpBuf st pst
-> ParseChunksState x inpBuf st pst
ParseChunksYield b
b ([a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> ParseChunksState x inpBuf st pst
ParseChunksInit [a]
xs s
s)
            PR.Done Int
n b
b -> do
                Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                let src :: [a]
src = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse (Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
Prelude.take Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
++ [a]
xs
                Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b
forall s a. s -> Step s a
Skip (ParseChunksState b [a] s s -> Step (ParseChunksState b [a] s s) b)
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall a b. (a -> b) -> a -> b
$ b -> ParseChunksState b [a] s s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
x
-> ParseChunksState x inpBuf st pst
-> ParseChunksState x inpBuf st pst
ParseChunksYield b
b ([a] -> s -> ParseChunksState b [a] s s
forall x inpBuf st pst.
inpBuf -> st -> ParseChunksState x inpBuf st pst
ParseChunksInit [a]
src s
s)
            PR.Error String
err -> ParseError -> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (ParseError -> m (Step (ParseChunksState b [a] s s) b))
-> ParseError -> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ String -> ParseError
ParseError String
err

    stepOuter State Stream m a
_ (ParseChunksYield b
a ParseChunksState b [a] s s
next) = Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ParseChunksState b [a] s s) b
 -> m (Step (ParseChunksState b [a] s s) b))
-> Step (ParseChunksState b [a] s s) b
-> m (Step (ParseChunksState b [a] s s) b)
forall a b. (a -> b) -> a -> b
$ b
-> ParseChunksState b [a] s s
-> Step (ParseChunksState b [a] s s) b
forall s a. a -> s -> Step s a
Yield b
a ParseChunksState b [a] s s
next

{-# ANN type ConcatParseState Fuse #-}
data ConcatParseState b inpBuf st p m a =
      ConcatParseInit inpBuf st p
    | ConcatParseInitLeftOver inpBuf
    | forall s. ConcatParseStream st inpBuf (s -> a -> m (PRD.Step s b)) s (s -> m b)
    | forall s. ConcatParseBuf inpBuf st inpBuf (s -> a -> m (PRD.Step s b)) s (s -> m b)
    | ConcatParseYield b (ConcatParseState b inpBuf st p m a)

{-# INLINE_NORMAL parseIterate #-}
parseIterate
    :: MonadThrow m
    => (b -> PRD.Parser m a b)
    -> b
    -> Stream m a
    -> Stream m b
parseIterate :: (b -> Parser m a b) -> b -> Stream m a -> Stream m b
parseIterate b -> Parser m a b
func b
seed (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
    (State Stream m b
 -> ConcatParseState b [a] s (Parser m a b) m a
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> ConcatParseState b [a] s (Parser m a b) m a -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> ConcatParseState b [a] s (Parser m a b) m a
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a.
State Stream m a
-> ConcatParseState b [a] s (Parser m a b) m a
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
stepOuter ([a]
-> s -> Parser m a b -> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a.
inpBuf -> st -> p -> ConcatParseState b inpBuf st p m a
ConcatParseInit [] s
state (b -> Parser m a b
func b
seed))

    where

    {-# INLINE_LATE stepOuter #-}
    -- Buffer is empty, go to stream processing loop
    stepOuter :: State Stream m a
-> ConcatParseState b [a] s (Parser m a b) m a
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
stepOuter State Stream m a
_ (ConcatParseInit [] s
st (PRD.Parser s -> a -> m (Step s b)
pstep m (Initial s b)
initial s -> m b
extract)) = do
        Initial s b
res <- m (Initial s b)
initial
        case Initial s b
res of
            PRD.IPartial s
ps ->
                Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ s
-> [a]
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a s.
st
-> inpBuf
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b inpBuf st p m a
ConcatParseStream s
st [] s -> a -> m (Step s b)
pstep s
ps s -> m b
extract
            PRD.IDone b
pb ->
                let next :: ConcatParseState b [a] s (Parser m a b) m a
next = [a]
-> s -> Parser m a b -> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a.
inpBuf -> st -> p -> ConcatParseState b inpBuf st p m a
ConcatParseInit [] s
st (b -> Parser m a b
func b
pb)
                 in Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ b
-> ConcatParseState b [a] s (Parser m a b) m a
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a.
b
-> ConcatParseState b inpBuf st p m a
-> ConcatParseState b inpBuf st p m a
ConcatParseYield b
pb ConcatParseState b [a] s (Parser m a b) m a
forall b a (m :: * -> *) a.
ConcatParseState b [a] s (Parser m a b) m a
next
            PRD.IError String
err -> ParseError
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (ParseError
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> ParseError
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ String -> ParseError
ParseError String
err

    -- Buffer is not empty, go to buffered processing loop
    stepOuter State Stream m a
_ (ConcatParseInit [a]
src s
st
                    (PRD.Parser s -> a -> m (Step s b)
pstep m (Initial s b)
initial s -> m b
extract)) = do
        Initial s b
res <- m (Initial s b)
initial
        case Initial s b
res of
            PRD.IPartial s
ps ->
                Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ [a]
-> s
-> [a]
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a s.
inpBuf
-> st
-> inpBuf
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b inpBuf st p m a
ConcatParseBuf [a]
src s
st [] s -> a -> m (Step s b)
pstep s
ps s -> m b
extract
            PRD.IDone b
pb ->
                let next :: ConcatParseState b [a] s (Parser m a b) m a
next = [a]
-> s -> Parser m a b -> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a.
inpBuf -> st -> p -> ConcatParseState b inpBuf st p m a
ConcatParseInit [a]
src s
st (b -> Parser m a b
func b
pb)
                 in Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ b
-> ConcatParseState b [a] s (Parser m a b) m a
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a.
b
-> ConcatParseState b inpBuf st p m a
-> ConcatParseState b inpBuf st p m a
ConcatParseYield b
pb ConcatParseState b [a] s (Parser m a b) m a
forall b (m :: * -> *) a.
ConcatParseState b [a] s (Parser m a b) m a
next
            PRD.IError String
err -> ParseError
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (ParseError
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> ParseError
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ String -> ParseError
ParseError String
err

    -- XXX we just discard any leftover input at the end
    stepOuter State Stream m a
_ (ConcatParseInitLeftOver [a]
_) = Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. Step s a
Stop

    -- Buffer is empty process elements from the stream
    stepOuter State Stream m a
gst (ConcatParseStream s
st [a]
buf s -> a -> m (Step s b)
pstep s
pst s -> m b
extract) = do
        Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
r of
            Yield a
x s
s -> do
                Step s b
pRes <- s -> a -> m (Step s b)
pstep s
pst a
x
                case Step s b
pRes of
                    PR.Partial Int
0 s
pst1 ->
                        Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ s
-> [a]
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a s.
st
-> inpBuf
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b inpBuf st p m a
ConcatParseStream s
s [] s -> a -> m (Step s b)
pstep s
pst1 s -> m b
extract
                    PR.Partial Int
n s
pst1 -> do
                        Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                        let src0 :: [a]
src0 = Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
Prelude.take Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)
                            src :: [a]
src  = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse [a]
src0
                        Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ [a]
-> s
-> [a]
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a s.
inpBuf
-> st
-> inpBuf
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b inpBuf st p m a
ConcatParseBuf [a]
src s
s [] s -> a -> m (Step s b)
pstep s
pst1 s -> m b
extract
                    -- PR.Continue 0 pst1 ->
                    --     return $ Skip $ ConcatParseStream s (x:buf) pst1
                    PR.Continue Int
n s
pst1 -> do
                        Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                        let ([a]
src0, [a]
buf1) = Int -> [a] -> ([a], [a])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)
                            src :: [a]
src  = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse [a]
src0
                        Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ [a]
-> s
-> [a]
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a s.
inpBuf
-> st
-> inpBuf
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b inpBuf st p m a
ConcatParseBuf [a]
src s
s [a]
buf1 s -> a -> m (Step s b)
pstep s
pst1 s -> m b
extract
                    -- XXX Specialize for Stop 0 common case?
                    PR.Done Int
n b
b -> do
                        Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                        let src :: [a]
src = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse (Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
Prelude.take Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf))
                        Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$
                            b
-> ConcatParseState b [a] s (Parser m a b) m a
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a.
b
-> ConcatParseState b inpBuf st p m a
-> ConcatParseState b inpBuf st p m a
ConcatParseYield b
b ([a]
-> s -> Parser m a b -> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a.
inpBuf -> st -> p -> ConcatParseState b inpBuf st p m a
ConcatParseInit [a]
src s
s (b -> Parser m a b
func b
b))
                    PR.Error String
err -> ParseError
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (ParseError
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> ParseError
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ String -> ParseError
ParseError String
err
            Skip s
s -> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ s
-> [a]
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a s.
st
-> inpBuf
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b inpBuf st p m a
ConcatParseStream s
s [a]
buf s -> a -> m (Step s b)
pstep s
pst s -> m b
extract
            Step s a
Stop   -> do
                b
b <- s -> m b
extract s
pst
                let src :: [a]
src = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse [a]
buf
                Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ b
-> ConcatParseState b [a] s (Parser m a b) m a
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a.
b
-> ConcatParseState b inpBuf st p m a
-> ConcatParseState b inpBuf st p m a
ConcatParseYield b
b ([a] -> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a.
inpBuf -> ConcatParseState b inpBuf st p m a
ConcatParseInitLeftOver [a]
src)

    -- go back to stream processing mode
    stepOuter State Stream m a
_ (ConcatParseBuf [] s
s [a]
buf s -> a -> m (Step s b)
pstep s
ps s -> m b
extract) =
        Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ s
-> [a]
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a s.
st
-> inpBuf
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b inpBuf st p m a
ConcatParseStream s
s [a]
buf s -> a -> m (Step s b)
pstep s
ps s -> m b
extract

    -- buffered processing loop
    stepOuter State Stream m a
_ (ConcatParseBuf (a
x:[a]
xs) s
s [a]
buf s -> a -> m (Step s b)
pstep s
pst s -> m b
extract) = do
        Step s b
pRes <- s -> a -> m (Step s b)
pstep s
pst a
x
        case Step s b
pRes of
            PR.Partial Int
0 s
pst1 ->
                Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ [a]
-> s
-> [a]
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a s.
inpBuf
-> st
-> inpBuf
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b inpBuf st p m a
ConcatParseBuf [a]
xs s
s [] s -> a -> m (Step s b)
pstep s
pst1 s -> m b
extract
            PR.Partial Int
n s
pst1 -> do
                Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                let src0 :: [a]
src0 = Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
Prelude.take Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)
                    src :: [a]
src  = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse [a]
src0 [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
++ [a]
xs
                Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ [a]
-> s
-> [a]
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a s.
inpBuf
-> st
-> inpBuf
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b inpBuf st p m a
ConcatParseBuf [a]
src s
s [] s -> a -> m (Step s b)
pstep s
pst1 s -> m b
extract
         -- PR.Continue 0 pst1 -> return $ Skip $ ConcatParseBuf xs s (x:buf) pst1
            PR.Continue Int
n s
pst1 -> do
                Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                let ([a]
src0, [a]
buf1) = Int -> [a] -> ([a], [a])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)
                    src :: [a]
src  = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse [a]
src0 [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
++ [a]
xs
                Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ [a]
-> s
-> [a]
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a s.
inpBuf
-> st
-> inpBuf
-> (s -> a -> m (Step s b))
-> s
-> (s -> m b)
-> ConcatParseState b inpBuf st p m a
ConcatParseBuf [a]
src s
s [a]
buf1 s -> a -> m (Step s b)
pstep s
pst1 s -> m b
extract
            -- XXX Specialize for Stop 0 common case?
            PR.Done Int
n b
b -> do
                Bool -> m () -> m ()
forall a. HasCallStack => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                let src :: [a]
src = [a] -> [a]
forall a. [a] -> [a]
Prelude.reverse (Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
Prelude.take Int
n (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
buf)) [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
++ [a]
xs
                Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. s -> Step s a
Skip (ConcatParseState b [a] s (Parser m a b) m a
 -> Step (ConcatParseState b [a] s (Parser m a b) m a) b)
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall a b. (a -> b) -> a -> b
$ b
-> ConcatParseState b [a] s (Parser m a b) m a
-> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a.
b
-> ConcatParseState b inpBuf st p m a
-> ConcatParseState b inpBuf st p m a
ConcatParseYield b
b
                                    ([a]
-> s -> Parser m a b -> ConcatParseState b [a] s (Parser m a b) m a
forall b inpBuf st p (m :: * -> *) a.
inpBuf -> st -> p -> ConcatParseState b inpBuf st p m a
ConcatParseInit [a]
src s
s (b -> Parser m a b
func b
b))
            PR.Error String
err -> ParseError
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM (ParseError
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> ParseError
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ String -> ParseError
ParseError String
err

    stepOuter State Stream m a
_ (ConcatParseYield b
a ConcatParseState b [a] s (Parser m a b) m a
next) = Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatParseState b [a] s (Parser m a b) m a) b
 -> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b))
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
-> m (Step (ConcatParseState b [a] s (Parser m a b) m a) b)
forall a b. (a -> b) -> a -> b
$ b
-> ConcatParseState b [a] s (Parser m a b) m a
-> Step (ConcatParseState b [a] s (Parser m a b) m a) b
forall s a. a -> s -> Step s a
Yield b
a ConcatParseState b [a] s (Parser m a b) m a
next

------------------------------------------------------------------------------
-- Grouping
------------------------------------------------------------------------------

data GroupByState st fs a b
    = GroupingInit st
    | GroupingDo st !fs
    | GroupingInitWith st !a
    | GroupingDoWith st !fs !a
    | GroupingYield !b (GroupByState st fs a b)
    | GroupingDone

{-# INLINE_NORMAL groupsBy #-}
groupsBy :: Monad m
    => (a -> a -> Bool)
    -> Fold m a b
    -> Stream m a
    -> Stream m b
{-
groupsBy eq fld = parseMany (PRD.groupBy eq fld)
-}
groupsBy :: (a -> a -> Bool) -> Fold m a b -> Stream m a -> Stream m b
groupsBy a -> a -> Bool
cmp (Fold s -> a -> m (Step s b)
fstep m (Step s b)
initial s -> m b
done) (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
    (State Stream m b
 -> GroupByState s s a Any -> m (Step (GroupByState s s a Any) b))
-> GroupByState s s a Any -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> GroupByState s s a Any -> m (Step (GroupByState s s a Any) b)
forall (m :: * -> *) a b b.
State Stream m a
-> GroupByState s s a b -> m (Step (GroupByState s s a b) b)
stepOuter (s -> GroupByState s s a Any
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
state)

    where

    {-# INLINE_LATE stepOuter #-}
    stepOuter :: State Stream m a
-> GroupByState s s a b -> m (Step (GroupByState s s a b) b)
stepOuter State Stream m a
_ (GroupingInit s
st) = do
        -- XXX Note that if the stream stops without yielding a single element
        -- in the group we discard the "initial" effect.
        Step s b
res <- m (Step s b)
initial
        Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return
            (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
res of
                  FL.Partial s
s -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. s -> Step s a
Skip (GroupByState s s a b -> Step (GroupByState s s a b) b)
-> GroupByState s s a b -> Step (GroupByState s s a b) b
forall a b. (a -> b) -> a -> b
$ s -> s -> GroupByState s s a b
forall st fs a b. st -> fs -> GroupByState st fs a b
GroupingDo s
st s
s
                  FL.Done b
b -> b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
b (GroupByState s s a b -> Step (GroupByState s s a b) b)
-> GroupByState s s a b -> Step (GroupByState s s a b) b
forall a b. (a -> b) -> a -> b
$ s -> GroupByState s s a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
st
    stepOuter State Stream m a
gst (GroupingDo s
st s
fs) = do
        Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
res of
            Yield a
x s
s -> do
                Step s b
r <- s -> a -> m (Step s b)
fstep s
fs a
x
                case Step s b
r of
                    FL.Partial s
fs1 -> SPEC -> a -> s -> s -> m (Step (GroupByState s s a b) b)
forall fs b.
SPEC -> a -> s -> s -> m (Step (GroupByState s fs a b) b)
go SPEC
SPEC a
x s
s s
fs1
                    FL.Done b
b -> Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
b (s -> GroupByState s s a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
s)
            Skip s
s -> Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. s -> Step s a
Skip (GroupByState s s a b -> Step (GroupByState s s a b) b)
-> GroupByState s s a b -> Step (GroupByState s s a b) b
forall a b. (a -> b) -> a -> b
$ s -> s -> GroupByState s s a b
forall st fs a b. st -> fs -> GroupByState st fs a b
GroupingDo s
s s
fs
            Step s a
Stop -> Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (GroupByState s s a b) b
forall s a. Step s a
Stop

        where

        go :: SPEC -> a -> s -> s -> m (Step (GroupByState s fs a b) b)
go !SPEC
_ a
prev s
stt !s
acc = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
stt
            case Step s a
res of
                Yield a
x s
s -> do
                    if a -> a -> Bool
cmp a
x a
prev
                    then do
                        Step s b
r <- s -> a -> m (Step s b)
fstep s
acc a
x
                        case Step s b
r of
                            FL.Partial s
fs1 -> SPEC -> a -> s -> s -> m (Step (GroupByState s fs a b) b)
go SPEC
SPEC a
prev s
s s
fs1
                            FL.Done b
b -> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s fs a b) b
 -> m (Step (GroupByState s fs a b) b))
-> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s fs a b -> Step (GroupByState s fs a b) b
forall s a. a -> s -> Step s a
Yield b
b (s -> GroupByState s fs a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
s)
                    else do
                        b
r <- s -> m b
done s
acc
                        Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s fs a b) b
 -> m (Step (GroupByState s fs a b) b))
-> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s fs a b -> Step (GroupByState s fs a b) b
forall s a. a -> s -> Step s a
Yield b
r (s -> a -> GroupByState s fs a b
forall st fs a b. st -> a -> GroupByState st fs a b
GroupingInitWith s
s a
x)
                Skip s
s -> SPEC -> a -> s -> s -> m (Step (GroupByState s fs a b) b)
go SPEC
SPEC a
prev s
s s
acc
                Step s a
Stop -> s -> m b
done s
acc m b
-> (b -> m (Step (GroupByState s fs a b) b))
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \b
r -> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s fs a b) b
 -> m (Step (GroupByState s fs a b) b))
-> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s fs a b -> Step (GroupByState s fs a b) b
forall s a. a -> s -> Step s a
Yield b
r GroupByState s fs a b
forall st fs a b. GroupByState st fs a b
GroupingDone
    stepOuter State Stream m a
_ (GroupingInitWith s
st a
x) = do
        Step s b
res <- m (Step s b)
initial
        Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return
            (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
res of
                  FL.Partial s
s -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. s -> Step s a
Skip (GroupByState s s a b -> Step (GroupByState s s a b) b)
-> GroupByState s s a b -> Step (GroupByState s s a b) b
forall a b. (a -> b) -> a -> b
$ s -> s -> a -> GroupByState s s a b
forall st fs a b. st -> fs -> a -> GroupByState st fs a b
GroupingDoWith s
st s
s a
x
                  FL.Done b
b -> b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
b (GroupByState s s a b -> Step (GroupByState s s a b) b)
-> GroupByState s s a b -> Step (GroupByState s s a b) b
forall a b. (a -> b) -> a -> b
$ s -> a -> GroupByState s s a b
forall st fs a b. st -> a -> GroupByState st fs a b
GroupingInitWith s
st a
x
    stepOuter State Stream m a
gst (GroupingDoWith s
st s
fs a
prev) = do
        Step s b
res <- s -> a -> m (Step s b)
fstep s
fs a
prev
        case Step s b
res of
            FL.Partial s
fs1 -> SPEC -> s -> s -> m (Step (GroupByState s s a b) b)
forall fs b. SPEC -> s -> s -> m (Step (GroupByState s fs a b) b)
go SPEC
SPEC s
st s
fs1
            FL.Done b
b -> Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
b (s -> GroupByState s s a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
st)

        where

        -- XXX code duplicated from the previous equation
        go :: SPEC -> s -> s -> m (Step (GroupByState s fs a b) b)
go !SPEC
_ s
stt !s
acc = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
stt
            case Step s a
res of
                Yield a
x s
s -> do
                    if a -> a -> Bool
cmp a
x a
prev
                    then do
                        Step s b
r <- s -> a -> m (Step s b)
fstep s
acc a
x
                        case Step s b
r of
                            FL.Partial s
fs1 -> SPEC -> s -> s -> m (Step (GroupByState s fs a b) b)
go SPEC
SPEC s
s s
fs1
                            FL.Done b
b -> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s fs a b) b
 -> m (Step (GroupByState s fs a b) b))
-> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s fs a b -> Step (GroupByState s fs a b) b
forall s a. a -> s -> Step s a
Yield b
b (s -> GroupByState s fs a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
s)
                    else do
                        b
r <- s -> m b
done s
acc
                        Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s fs a b) b
 -> m (Step (GroupByState s fs a b) b))
-> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s fs a b -> Step (GroupByState s fs a b) b
forall s a. a -> s -> Step s a
Yield b
r (s -> a -> GroupByState s fs a b
forall st fs a b. st -> a -> GroupByState st fs a b
GroupingInitWith s
s a
x)
                Skip s
s -> SPEC -> s -> s -> m (Step (GroupByState s fs a b) b)
go SPEC
SPEC s
s s
acc
                Step s a
Stop -> s -> m b
done s
acc m b
-> (b -> m (Step (GroupByState s fs a b) b))
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \b
r -> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s fs a b) b
 -> m (Step (GroupByState s fs a b) b))
-> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s fs a b -> Step (GroupByState s fs a b) b
forall s a. a -> s -> Step s a
Yield b
r GroupByState s fs a b
forall st fs a b. GroupByState st fs a b
GroupingDone
    stepOuter State Stream m a
_ (GroupingYield b
_ GroupByState s s a b
_) = String -> m (Step (GroupByState s s a b) b)
forall a. HasCallStack => String -> a
error String
"groupsBy: Unreachable"
    stepOuter State Stream m a
_ GroupByState s s a b
GroupingDone = Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (GroupByState s s a b) b
forall s a. Step s a
Stop

{-# INLINE_NORMAL groupsRollingBy #-}
groupsRollingBy :: Monad m
    => (a -> a -> Bool)
    -> Fold m a b
    -> Stream m a
    -> Stream m b
{-
groupsRollingBy eq fld = parseMany (PRD.groupByRolling eq fld)
-}
groupsRollingBy :: (a -> a -> Bool) -> Fold m a b -> Stream m a -> Stream m b
groupsRollingBy a -> a -> Bool
cmp (Fold s -> a -> m (Step s b)
fstep m (Step s b)
initial s -> m b
done) (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
    (State Stream m b
 -> GroupByState s s a b -> m (Step (GroupByState s s a b) b))
-> GroupByState s s a b -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> GroupByState s s a b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a.
State Stream m a
-> GroupByState s s a b -> m (Step (GroupByState s s a b) b)
stepOuter (s -> GroupByState s s a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
state)

    where

    {-# INLINE_LATE stepOuter #-}
    stepOuter :: State Stream m a
-> GroupByState s s a b -> m (Step (GroupByState s s a b) b)
stepOuter State Stream m a
_ (GroupingInit s
st) = do
        -- XXX Note that if the stream stops without yielding a single element
        -- in the group we discard the "initial" effect.
        Step s b
res <- m (Step s b)
initial
        Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return
            (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
res of
                  FL.Partial s
fs -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. s -> Step s a
Skip (GroupByState s s a b -> Step (GroupByState s s a b) b)
-> GroupByState s s a b -> Step (GroupByState s s a b) b
forall a b. (a -> b) -> a -> b
$ s -> s -> GroupByState s s a b
forall st fs a b. st -> fs -> GroupByState st fs a b
GroupingDo s
st s
fs
                  FL.Done b
fb -> b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
fb (GroupByState s s a b -> Step (GroupByState s s a b) b)
-> GroupByState s s a b -> Step (GroupByState s s a b) b
forall a b. (a -> b) -> a -> b
$ s -> GroupByState s s a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
st
    stepOuter State Stream m a
gst (GroupingDo s
st s
fs) = do
        Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
res of
            Yield a
x s
s -> do
                Step s b
r <- s -> a -> m (Step s b)
fstep s
fs a
x
                case Step s b
r of
                    FL.Partial s
fs1 -> SPEC -> a -> s -> s -> m (Step (GroupByState s s a b) b)
forall fs b.
SPEC -> a -> s -> s -> m (Step (GroupByState s fs a b) b)
go SPEC
SPEC a
x s
s s
fs1
                    FL.Done b
fb -> Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
fb (s -> GroupByState s s a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
s)
            Skip s
s -> Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. s -> Step s a
Skip (GroupByState s s a b -> Step (GroupByState s s a b) b)
-> GroupByState s s a b -> Step (GroupByState s s a b) b
forall a b. (a -> b) -> a -> b
$ s -> s -> GroupByState s s a b
forall st fs a b. st -> fs -> GroupByState st fs a b
GroupingDo s
s s
fs
            Step s a
Stop -> Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (GroupByState s s a b) b
forall s a. Step s a
Stop

        where

        go :: SPEC -> a -> s -> s -> m (Step (GroupByState s fs a b) b)
go !SPEC
_ a
prev s
stt !s
acc = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
stt
            case Step s a
res of
                Yield a
x s
s -> do
                    if a -> a -> Bool
cmp a
prev a
x
                    then do
                        Step s b
r <- s -> a -> m (Step s b)
fstep s
acc a
x
                        case Step s b
r of
                            FL.Partial s
fs1 -> SPEC -> a -> s -> s -> m (Step (GroupByState s fs a b) b)
go SPEC
SPEC a
x s
s s
fs1
                            FL.Done b
b -> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s fs a b) b
 -> m (Step (GroupByState s fs a b) b))
-> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s fs a b -> Step (GroupByState s fs a b) b
forall s a. a -> s -> Step s a
Yield b
b (s -> GroupByState s fs a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
s)
                    else do
                        b
r <- s -> m b
done s
acc
                        Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s fs a b) b
 -> m (Step (GroupByState s fs a b) b))
-> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s fs a b -> Step (GroupByState s fs a b) b
forall s a. a -> s -> Step s a
Yield b
r (s -> a -> GroupByState s fs a b
forall st fs a b. st -> a -> GroupByState st fs a b
GroupingInitWith s
s a
x)
                Skip s
s -> SPEC -> a -> s -> s -> m (Step (GroupByState s fs a b) b)
go SPEC
SPEC a
prev s
s s
acc
                Step s a
Stop -> s -> m b
done s
acc m b
-> (b -> m (Step (GroupByState s fs a b) b))
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \b
r -> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s fs a b) b
 -> m (Step (GroupByState s fs a b) b))
-> Step (GroupByState s fs a b) b
-> m (Step (GroupByState s fs a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s fs a b -> Step (GroupByState s fs a b) b
forall s a. a -> s -> Step s a
Yield b
r GroupByState s fs a b
forall st fs a b. GroupByState st fs a b
GroupingDone
    stepOuter State Stream m a
_ (GroupingInitWith s
st a
x) = do
        Step s b
res <- m (Step s b)
initial
        Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return
            (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
res of
                  FL.Partial s
s -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. s -> Step s a
Skip (GroupByState s s a b -> Step (GroupByState s s a b) b)
-> GroupByState s s a b -> Step (GroupByState s s a b) b
forall a b. (a -> b) -> a -> b
$ s -> s -> a -> GroupByState s s a b
forall st fs a b. st -> fs -> a -> GroupByState st fs a b
GroupingDoWith s
st s
s a
x
                  FL.Done b
b -> b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
b (GroupByState s s a b -> Step (GroupByState s s a b) b)
-> GroupByState s s a b -> Step (GroupByState s s a b) b
forall a b. (a -> b) -> a -> b
$ s -> a -> GroupByState s s a b
forall st fs a b. st -> a -> GroupByState st fs a b
GroupingInitWith s
st a
x
    stepOuter State Stream m a
gst (GroupingDoWith s
st s
fs a
previous) = do
        Step s b
res <- s -> a -> m (Step s b)
fstep s
fs a
previous
        case Step s b
res of
            FL.Partial s
s -> SPEC -> a -> s -> s -> m (Step (GroupByState s s a b) b)
go SPEC
SPEC a
previous s
st s
s
            FL.Done b
b -> Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
b (s -> GroupByState s s a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
st)

        where

        -- XXX GHC: groupsBy has one less parameter in this go loop and it
        -- fuses. However, groupsRollingBy does not fuse, removing the prev
        -- parameter makes it fuse. Something needs to be fixed in GHC. The
        -- workaround for this is noted in the comments below.
        go :: SPEC -> a -> s -> s -> m (Step (GroupByState s s a b) b)
go !SPEC
_ a
prev !s
stt !s
acc = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
stt
            case Step s a
res of
                Yield a
x s
s -> do
                    if a -> a -> Bool
cmp a
prev a
x
                    then do
                        Step s b
r <- s -> a -> m (Step s b)
fstep s
acc a
x
                        case Step s b
r of
                            FL.Partial s
fs1 -> SPEC -> a -> s -> s -> m (Step (GroupByState s s a b) b)
go SPEC
SPEC a
x s
s s
fs1
                            FL.Done b
b -> Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
b (s -> GroupByState s s a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
st)
                    else do
                        {-
                        r <- done acc
                        return $ Yield r (GroupingInitWith s x)
                        -}
                        -- The code above does not let groupBy fuse. We use the
                        -- alternative code below instead.  Instead of jumping
                        -- to GroupingInitWith state, we unroll the code of
                        -- GroupingInitWith state here to help GHC with stream
                        -- fusion.
                        Step s b
result <- m (Step s b)
initial
                        b
r <- s -> m b
done s
acc
                        Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return
                            (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
r
                            (GroupByState s s a b -> Step (GroupByState s s a b) b)
-> GroupByState s s a b -> Step (GroupByState s s a b) b
forall a b. (a -> b) -> a -> b
$ case Step s b
result of
                                  FL.Partial s
fsi -> s -> s -> a -> GroupByState s s a b
forall st fs a b. st -> fs -> a -> GroupByState st fs a b
GroupingDoWith s
s s
fsi a
x
                                  FL.Done b
b -> b -> GroupByState s s a b -> GroupByState s s a b
forall st fs a b.
b -> GroupByState st fs a b -> GroupByState st fs a b
GroupingYield b
b (s -> GroupByState s s a b
forall st fs a b. st -> GroupByState st fs a b
GroupingInit s
s)
                Skip s
s -> SPEC -> a -> s -> s -> m (Step (GroupByState s s a b) b)
go SPEC
SPEC a
prev s
s s
acc
                Step s a
Stop -> s -> m b
done s
acc m b
-> (b -> m (Step (GroupByState s s a b) b))
-> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \b
r -> Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
r GroupByState s s a b
forall st fs a b. GroupByState st fs a b
GroupingDone
    stepOuter State Stream m a
_ (GroupingYield b
r GroupByState s s a b
next) = Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (GroupByState s s a b) b
 -> m (Step (GroupByState s s a b) b))
-> Step (GroupByState s s a b) b
-> m (Step (GroupByState s s a b) b)
forall a b. (a -> b) -> a -> b
$ b -> GroupByState s s a b -> Step (GroupByState s s a b) b
forall s a. a -> s -> Step s a
Yield b
r GroupByState s s a b
next
    stepOuter State Stream m a
_ GroupByState s s a b
GroupingDone = Step (GroupByState s s a b) b -> m (Step (GroupByState s s a b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (GroupByState s s a b) b
forall s a. Step s a
Stop

------------------------------------------------------------------------------
-- Splitting - by a predicate
------------------------------------------------------------------------------

data WordsByState st fs b
    = WordsByInit st
    | WordsByDo st !fs
    | WordsByDone
    | WordsByYield !b (WordsByState st fs b)

{-# INLINE_NORMAL wordsBy #-}
wordsBy :: Monad m => (a -> Bool) -> Fold m a b -> Stream m a -> Stream m b
wordsBy :: (a -> Bool) -> Fold m a b -> Stream m a -> Stream m b
wordsBy a -> Bool
predicate (Fold s -> a -> m (Step s b)
fstep m (Step s b)
initial s -> m b
done) (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
    (State Stream m b
 -> WordsByState s s b -> m (Step (WordsByState s s b) b))
-> WordsByState s s b -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> WordsByState s s b -> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a.
State Stream m a
-> WordsByState s s b -> m (Step (WordsByState s s b) b)
stepOuter (s -> WordsByState s s b
forall st fs b. st -> WordsByState st fs b
WordsByInit s
state)

    where

    {-# INLINE_LATE stepOuter #-}
    stepOuter :: State Stream m a
-> WordsByState s s b -> m (Step (WordsByState s s b) b)
stepOuter State Stream m a
_ (WordsByInit s
st) = do
        Step s b
res <- m (Step s b)
initial
        Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return
            (Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b))
-> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
res of
                  FL.Partial s
s -> WordsByState s s b -> Step (WordsByState s s b) b
forall s a. s -> Step s a
Skip (WordsByState s s b -> Step (WordsByState s s b) b)
-> WordsByState s s b -> Step (WordsByState s s b) b
forall a b. (a -> b) -> a -> b
$ s -> s -> WordsByState s s b
forall st fs b. st -> fs -> WordsByState st fs b
WordsByDo s
st s
s
                  FL.Done b
b -> b -> WordsByState s s b -> Step (WordsByState s s b) b
forall s a. a -> s -> Step s a
Yield b
b (s -> WordsByState s s b
forall st fs b. st -> WordsByState st fs b
WordsByInit s
st)

    stepOuter State Stream m a
gst (WordsByDo s
st s
fs) = do
        Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
res of
            Yield a
x s
s -> do
                if a -> Bool
predicate a
x
                then do
                    Step s b
resi <- m (Step s b)
initial
                    Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return
                        (Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b))
-> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
resi of
                              FL.Partial s
fs1 -> WordsByState s s b -> Step (WordsByState s s b) b
forall s a. s -> Step s a
Skip (WordsByState s s b -> Step (WordsByState s s b) b)
-> WordsByState s s b -> Step (WordsByState s s b) b
forall a b. (a -> b) -> a -> b
$ s -> s -> WordsByState s s b
forall st fs b. st -> fs -> WordsByState st fs b
WordsByDo s
s s
fs1
                              FL.Done b
b -> b -> WordsByState s s b -> Step (WordsByState s s b) b
forall s a. a -> s -> Step s a
Yield b
b (s -> WordsByState s s b
forall st fs b. st -> WordsByState st fs b
WordsByInit s
s)
                else do
                    Step s b
r <- s -> a -> m (Step s b)
fstep s
fs a
x
                    case Step s b
r of
                        FL.Partial s
fs1 -> SPEC -> s -> s -> m (Step (WordsByState s s b) b)
go SPEC
SPEC s
s s
fs1
                        FL.Done b
b -> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b))
-> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall a b. (a -> b) -> a -> b
$ b -> WordsByState s s b -> Step (WordsByState s s b) b
forall s a. a -> s -> Step s a
Yield b
b (s -> WordsByState s s b
forall st fs b. st -> WordsByState st fs b
WordsByInit s
s)
            Skip s
s    -> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b))
-> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall a b. (a -> b) -> a -> b
$ WordsByState s s b -> Step (WordsByState s s b) b
forall s a. s -> Step s a
Skip (WordsByState s s b -> Step (WordsByState s s b) b)
-> WordsByState s s b -> Step (WordsByState s s b) b
forall a b. (a -> b) -> a -> b
$ s -> s -> WordsByState s s b
forall st fs b. st -> fs -> WordsByState st fs b
WordsByDo s
s s
fs
            Step s a
Stop      -> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (WordsByState s s b) b
forall s a. Step s a
Stop

        where

        go :: SPEC -> s -> s -> m (Step (WordsByState s s b) b)
go !SPEC
_ s
stt !s
acc = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
stt
            case Step s a
res of
                Yield a
x s
s -> do
                    if a -> Bool
predicate a
x
                    then do
                        {-
                        r <- done acc
                        return $ Yield r (WordsByInit s)
                        -}
                        -- The above code does not fuse well. Need to check why
                        -- GHC is not able to simplify it well.  Using the code
                        -- below, instead of jumping through the WordsByInit
                        -- state always, we directly go to WordsByDo state in
                        -- the common case of Partial.
                        Step s b
resi <- m (Step s b)
initial
                        b
r <- s -> m b
done s
acc
                        Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return
                            (Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b))
-> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall a b. (a -> b) -> a -> b
$ b -> WordsByState s s b -> Step (WordsByState s s b) b
forall s a. a -> s -> Step s a
Yield b
r
                            (WordsByState s s b -> Step (WordsByState s s b) b)
-> WordsByState s s b -> Step (WordsByState s s b) b
forall a b. (a -> b) -> a -> b
$ case Step s b
resi of
                                  FL.Partial s
fs1 -> s -> s -> WordsByState s s b
forall st fs b. st -> fs -> WordsByState st fs b
WordsByDo s
s s
fs1
                                  FL.Done b
b -> b -> WordsByState s s b -> WordsByState s s b
forall st fs b. b -> WordsByState st fs b -> WordsByState st fs b
WordsByYield b
b (s -> WordsByState s s b
forall st fs b. st -> WordsByState st fs b
WordsByInit s
s)
                    else do
                        Step s b
r <- s -> a -> m (Step s b)
fstep s
acc a
x
                        case Step s b
r of
                            FL.Partial s
fs1 -> SPEC -> s -> s -> m (Step (WordsByState s s b) b)
go SPEC
SPEC s
s s
fs1
                            FL.Done b
b -> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b))
-> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall a b. (a -> b) -> a -> b
$ b -> WordsByState s s b -> Step (WordsByState s s b) b
forall s a. a -> s -> Step s a
Yield b
b (s -> WordsByState s s b
forall st fs b. st -> WordsByState st fs b
WordsByInit s
s)
                Skip s
s -> SPEC -> s -> s -> m (Step (WordsByState s s b) b)
go SPEC
SPEC s
s s
acc
                Step s a
Stop -> s -> m b
done s
acc m b
-> (b -> m (Step (WordsByState s s b) b))
-> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \b
r -> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b))
-> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall a b. (a -> b) -> a -> b
$ b -> WordsByState s s b -> Step (WordsByState s s b) b
forall s a. a -> s -> Step s a
Yield b
r WordsByState s s b
forall st fs b. WordsByState st fs b
WordsByDone

    stepOuter State Stream m a
_ WordsByState s s b
WordsByDone = Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (WordsByState s s b) b
forall s a. Step s a
Stop

    stepOuter State Stream m a
_ (WordsByYield b
b WordsByState s s b
next) = Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b))
-> Step (WordsByState s s b) b -> m (Step (WordsByState s s b) b)
forall a b. (a -> b) -> a -> b
$ b -> WordsByState s s b -> Step (WordsByState s s b) b
forall s a. a -> s -> Step s a
Yield b
b WordsByState s s b
next

------------------------------------------------------------------------------
-- Splitting on a sequence
------------------------------------------------------------------------------

-- String search algorithms:
-- http://www-igm.univ-mlv.fr/~lecroq/string/index.html

{-
-- TODO can we unify the splitting operations using a splitting configuration
-- like in the split package.
--
data SplitStyle = Infix | Suffix | Prefix deriving (Eq, Show)
data SplitOptions = SplitOptions
    { style    :: SplitStyle
    , withSep  :: Bool  -- ^ keep the separators in output
    -- , compact  :: Bool  -- ^ treat multiple consecutive separators as one
    -- , trimHead :: Bool  -- ^ drop blank at head
    -- , trimTail :: Bool  -- ^ drop blank at tail
    }
-}

-- XXX using "fs" as the last arg in Constructors may simplify the code a bit,
-- because we can use the constructor directly without having to create "jump"
-- functions.
{-# ANN type SplitOnSeqState Fuse #-}
data SplitOnSeqState rb rh ck w fs s b x =
      SplitOnSeqInit
    | SplitOnSeqYield b (SplitOnSeqState rb rh ck w fs s b x)
    | SplitOnSeqDone

    | SplitOnSeqEmpty !fs s

    | SplitOnSeqSingle !fs s x

    | SplitOnSeqWordInit !fs s
    | SplitOnSeqWordLoop !w s !fs
    | SplitOnSeqWordDone Int !fs !w

    | SplitOnSeqKRInit Int !fs s rb !rh
    | SplitOnSeqKRLoop fs s rb !rh !ck
    | SplitOnSeqKRCheck fs s rb !rh
    | SplitOnSeqKRDone Int !fs rb !rh

    | SplitOnSeqReinit (fs -> SplitOnSeqState rb rh ck w fs s b x)

{-# INLINE_NORMAL splitOnSeq #-}
splitOnSeq
    :: forall m a b. (MonadIO m, Storable a, Enum a, Eq a)
    => Array a
    -> Fold m a b
    -> Stream m a
    -> Stream m b
splitOnSeq :: Array a -> Fold m a b -> Stream m a -> Stream m b
splitOnSeq Array a
patArr (Fold s -> a -> m (Step s b)
fstep m (Step s b)
initial s -> m b
done) (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
    (State Stream m b
 -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a.
State Stream m a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
stepOuter SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x. SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqInit

    where

    patLen :: Int
patLen = Array a -> Int
forall a. Storable a => Array a -> Int
A.length Array a
patArr
    maxIndex :: Int
maxIndex = Int
patLen Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
    elemBits :: Int
elemBits = a -> Int
forall a. Storable a => a -> Int
sizeOf (a
forall a. HasCallStack => a
undefined :: a) Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
8

    -- For word pattern case
    wordMask :: Word
    wordMask :: Word
wordMask = (Word
1 Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftL` (Int
elemBits Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
patLen)) Word -> Word -> Word
forall a. Num a => a -> a -> a
- Word
1

    elemMask :: Word
    elemMask :: Word
elemMask = (Word
1 Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftL` Int
elemBits) Word -> Word -> Word
forall a. Num a => a -> a -> a
- Word
1

    wordPat :: Word
    wordPat :: Word
wordPat = Word
wordMask Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. (Word -> a -> Word) -> Word -> Array a -> Word
forall a b. Storable a => (b -> a -> b) -> b -> Array a -> b
A.foldl' Word -> a -> Word
forall a a. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
0 Array a
patArr

    addToWord :: a -> a -> a
addToWord a
wd a
a = (a
wd a -> Int -> a
forall a. Bits a => a -> Int -> a
`shiftL` Int
elemBits) a -> a -> a
forall a. Bits a => a -> a -> a
.|. Int -> a
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
a)

    -- For Rabin-Karp search
    k :: Word32
k = Word32
2891336453 :: Word32
    coeff :: Word32
coeff = Word32
k Word32 -> Int -> Word32
forall a b. (Num a, Integral b) => a -> b -> a
^ Int
patLen

    addCksum :: Word32 -> a -> Word32
addCksum Word32
cksum a
a = Word32
cksum Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
* Word32
k Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
+ Int -> Word32
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
a)

    deltaCksum :: Word32 -> a -> a -> Word32
deltaCksum Word32
cksum a
old a
new =
        Word32 -> a -> Word32
forall a. Enum a => Word32 -> a -> Word32
addCksum Word32
cksum a
new Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
- Word32
coeff Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
* Int -> Word32
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
old)

    -- XXX shall we use a random starting hash or 1 instead of 0?
    patHash :: Word32
patHash = (Word32 -> a -> Word32) -> Word32 -> Array a -> Word32
forall a b. Storable a => (b -> a -> b) -> b -> Array a -> b
A.foldl' Word32 -> a -> Word32
forall a. Enum a => Word32 -> a -> Word32
addCksum Word32
0 Array a
patArr

    skip :: s -> m (Step s a)
skip = Step s a -> m (Step s a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s a -> m (Step s a)) -> (s -> Step s a) -> s -> m (Step s a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> Step s a
forall s a. s -> Step s a
Skip

    nextAfterInit :: (fs -> SplitOnSeqState rb rh ck w fs s b x)
-> Step fs b -> SplitOnSeqState rb rh ck w fs s b x
nextAfterInit fs -> SplitOnSeqState rb rh ck w fs s b x
nextGen Step fs b
stepRes =
        case Step fs b
stepRes of
            FL.Partial fs
s -> fs -> SplitOnSeqState rb rh ck w fs s b x
nextGen fs
s
            FL.Done b
b -> b
-> SplitOnSeqState rb rh ck w fs s b x
-> SplitOnSeqState rb rh ck w fs s b x
forall rb rh ck w fs s b x.
b
-> SplitOnSeqState rb rh ck w fs s b x
-> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqYield b
b ((fs -> SplitOnSeqState rb rh ck w fs s b x)
-> SplitOnSeqState rb rh ck w fs s b x
forall rb rh ck w fs s b x.
(fs -> SplitOnSeqState rb rh ck w fs s b x)
-> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqReinit fs -> SplitOnSeqState rb rh ck w fs s b x
nextGen)

    {-# INLINE yieldProceed #-}
    yieldProceed :: (s -> SplitOnSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSeqState rb rh ck w s s b x
nextGen b
fs =
        m (Step s b)
initial m (Step s b)
-> (Step s b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a))
-> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= SplitOnSeqState rb rh ck w s s b x
-> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState rb rh ck w s s b x
 -> m (Step (SplitOnSeqState rb rh ck w s s b x) a))
-> (Step s b -> SplitOnSeqState rb rh ck w s s b x)
-> Step s b
-> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b
-> SplitOnSeqState rb rh ck w s s b x
-> SplitOnSeqState rb rh ck w s s b x
forall rb rh ck w fs s b x.
b
-> SplitOnSeqState rb rh ck w fs s b x
-> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqYield b
fs (SplitOnSeqState rb rh ck w s s b x
 -> SplitOnSeqState rb rh ck w s s b x)
-> (Step s b -> SplitOnSeqState rb rh ck w s s b x)
-> Step s b
-> SplitOnSeqState rb rh ck w s s b x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (s -> SplitOnSeqState rb rh ck w s s b x)
-> Step s b -> SplitOnSeqState rb rh ck w s s b x
forall fs rb rh ck w s b x.
(fs -> SplitOnSeqState rb rh ck w fs s b x)
-> Step fs b -> SplitOnSeqState rb rh ck w fs s b x
nextAfterInit s -> SplitOnSeqState rb rh ck w s s b x
nextGen

    {-# INLINE_LATE stepOuter #-}
    stepOuter :: State Stream m a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
stepOuter State Stream m a
_ SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
SplitOnSeqInit = do
        Step s b
res <- m (Step s b)
initial
        case Step s b
res of
            FL.Partial s
acc ->
                if Int
patLen Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
                then Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. s -> Step s a
Skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall a b. (a -> b) -> a -> b
$ s -> s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqEmpty s
acc s
state
                else if Int
patLen Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1
                     then do
                         a
pat <- IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Array a -> Int -> IO a
forall a. Storable a => Array a -> Int -> IO a
A.unsafeIndexIO Array a
patArr Int
0
                         Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. s -> Step s a
Skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall a b. (a -> b) -> a -> b
$ s -> s -> a -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> x -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqSingle s
acc s
state a
pat
                     else if a -> Int
forall a. Storable a => a -> Int
sizeOf (a
forall a. HasCallStack => a
undefined :: a) Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
patLen
                               Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Word -> Int
forall a. Storable a => a -> Int
sizeOf (Word
forall a. HasCallStack => a
undefined :: Word)
                          then Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. s -> Step s a
Skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall a b. (a -> b) -> a -> b
$ s -> s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqWordInit s
acc s
state
                          else do
                              (Ring a
rb, Ptr a
rhead) <- IO (Ring a, Ptr a) -> m (Ring a, Ptr a)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Ring a, Ptr a) -> m (Ring a, Ptr a))
-> IO (Ring a, Ptr a) -> m (Ring a, Ptr a)
forall a b. (a -> b) -> a -> b
$ Int -> IO (Ring a, Ptr a)
forall a. Storable a => Int -> IO (Ring a, Ptr a)
RB.new Int
patLen
                              SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> s
-> Ring a
-> Ptr a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
Int -> fs -> s -> rb -> rh -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRInit Int
0 s
acc s
state Ring a
rb Ptr a
rhead
            FL.Done b
b -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
b
-> SplitOnSeqState rb rh ck w fs s b x
-> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqYield b
b SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x. SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqInit

    stepOuter State Stream m a
_ (SplitOnSeqYield b
x SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
next) = Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. a -> s -> Step s a
Yield b
x SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
next

    ---------------------------
    -- Checkpoint
    ---------------------------

    stepOuter State Stream m a
_ (SplitOnSeqReinit s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
nextGen) =
        m (Step s b)
initial m (Step s b)
-> (Step s b
    -> m (Step
            (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> (Step s b
    -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> Step s b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> Step s b -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs rb rh ck w s b x.
(fs -> SplitOnSeqState rb rh ck w fs s b x)
-> Step fs b -> SplitOnSeqState rb rh ck w fs s b x
nextAfterInit s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
nextGen

    ---------------------------
    -- Empty pattern
    ---------------------------

    stepOuter State Stream m a
gst (SplitOnSeqEmpty s
acc s
st) = do
        Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
res of
            Yield a
x s
s -> do
                Step s b
r <- s -> a -> m (Step s b)
fstep s
acc a
x
                b
b1 <-
                    case Step s b
r of
                        FL.Partial s
acc1 -> s -> m b
done s
acc1
                        FL.Done b
b -> b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
b
                let jump :: fs -> SplitOnSeqState rb rh ck w fs s b x
jump fs
c = fs -> s -> SplitOnSeqState rb rh ck w fs s b x
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqEmpty fs
c s
s
                 in (s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs rb rh ck w b x. fs -> SplitOnSeqState rb rh ck w fs s b x
jump b
b1
            Skip s
s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (s -> s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqEmpty s
acc s
s)
            Step s a
Stop -> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. Step s a
Stop

    -----------------
    -- Done
    -----------------

    stepOuter State Stream m a
_ SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
SplitOnSeqDone = Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. Step s a
Stop

    -----------------
    -- Single Pattern
    -----------------

    stepOuter State Stream m a
gst (SplitOnSeqSingle s
fs s
st a
pat) = do
        Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
res of
            Yield a
x s
s -> do
                let jump :: fs -> SplitOnSeqState rb rh ck w fs s b a
jump fs
c = fs -> s -> a -> SplitOnSeqState rb rh ck w fs s b a
forall rb rh ck w fs s b x.
fs -> s -> x -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqSingle fs
c s
s a
pat
                if a
pat a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
x
                then s -> m b
done s
fs m b
-> (b
    -> m (Step
            (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs rb rh ck w b. fs -> SplitOnSeqState rb rh ck w fs s b a
jump
                else do
                    Step s b
r <- s -> a -> m (Step s b)
fstep s
fs a
x
                    case Step s b
r of
                        FL.Partial s
fs1 -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs rb rh ck w b. fs -> SplitOnSeqState rb rh ck w fs s b a
jump s
fs1
                        FL.Done b
b -> (s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs rb rh ck w b. fs -> SplitOnSeqState rb rh ck w fs s b a
jump b
b
            Skip s
s -> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. s -> Step s a
Skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall a b. (a -> b) -> a -> b
$ s -> s -> a -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> x -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqSingle s
fs s
s a
pat
            Step s a
Stop -> do
                b
r <- s -> m b
done s
fs
                Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. s -> Step s a
Skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
b
-> SplitOnSeqState rb rh ck w fs s b x
-> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqYield b
r SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x. SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqDone

    ---------------------------
    -- Short Pattern - Shift Or
    ---------------------------

    stepOuter State Stream m a
_ (SplitOnSeqWordDone Int
0 s
fs Word
_) = do
        b
r <- s -> m b
done s
fs
        SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
b
-> SplitOnSeqState rb rh ck w fs s b x
-> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqYield b
r SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x. SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqDone
    stepOuter State Stream m a
_ (SplitOnSeqWordDone Int
n s
fs Word
wrd) = do
        let old :: Word
old = Word
elemMask Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. (Word
wrd Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftR` (Int
elemBits Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)))
        Step s b
r <- s -> a -> m (Step s b)
fstep s
fs (Int -> a
forall a. Enum a => Int -> a
toEnum (Int -> a) -> Int -> a
forall a b. (a -> b) -> a -> b
$ Word -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word
old)
        case Step s b
r of
            FL.Partial s
fs1 -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> Word
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
Int -> fs -> w -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqWordDone (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) s
fs1 Word
wrd
            FL.Done b
b -> do
                 let jump :: fs -> SplitOnSeqState rb rh ck Word fs s b x
jump fs
c = Int -> fs -> Word -> SplitOnSeqState rb rh ck Word fs s b x
forall rb rh ck w fs s b x.
Int -> fs -> w -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqWordDone (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) fs
c Word
wrd
                 (s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs rb rh ck s b x.
fs -> SplitOnSeqState rb rh ck Word fs s b x
jump b
b

    stepOuter State Stream m a
gst (SplitOnSeqWordInit s
fs s
st0) =
        SPEC
-> Int
-> Word
-> s
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck x a.
SPEC
-> Int
-> Word
-> s
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC Int
0 Word
0 s
st0

        where

        {-# INLINE go #-}
        go :: SPEC
-> Int
-> Word
-> s
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
go !SPEC
_ !Int
idx !Word
wrd !s
st = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
            case Step s a
res of
                Yield a
x s
s -> do
                    let wrd1 :: Word
wrd1 = Word -> a -> Word
forall a a. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
wrd a
x
                    if Int
idx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
maxIndex
                    then do
                        if Word
wrd1 Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wordMask Word -> Word -> Bool
forall a. Eq a => a -> a -> Bool
== Word
wordPat
                        then do
                            let jump :: fs -> SplitOnSeqState rb rh ck w fs s b x
jump fs
c = fs -> s -> SplitOnSeqState rb rh ck w fs s b x
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqWordInit fs
c s
s
                            s -> m b
done s
fs m b
-> (b -> m (Step (SplitOnSeqState rb rh ck Word s s b x) a))
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (s -> SplitOnSeqState rb rh ck Word s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall rb rh ck w s x a.
(s -> SplitOnSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSeqState rb rh ck Word s s b x
forall fs rb rh ck w b x. fs -> SplitOnSeqState rb rh ck w fs s b x
jump
                        else SplitOnSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState rb rh ck Word s s b x
 -> m (Step (SplitOnSeqState rb rh ck Word s s b x) a))
-> SplitOnSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall a b. (a -> b) -> a -> b
$ Word -> s -> s -> SplitOnSeqState rb rh ck Word s s b x
forall rb rh ck w fs s b x.
w -> s -> fs -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqWordLoop Word
wrd1 s
s s
fs
                    else SPEC
-> Int
-> Word
-> s
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Word
wrd1 s
s
                Skip s
s -> SPEC
-> Int
-> Word
-> s
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC Int
idx Word
wrd s
s
                Step s a
Stop -> do
                    if Int
idx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0
                    then SplitOnSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState rb rh ck Word s s b x
 -> m (Step (SplitOnSeqState rb rh ck Word s s b x) a))
-> SplitOnSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall a b. (a -> b) -> a -> b
$ Int -> s -> Word -> SplitOnSeqState rb rh ck Word s s b x
forall rb rh ck w fs s b x.
Int -> fs -> w -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqWordDone Int
idx s
fs Word
wrd
                    else do
                        b
r <- s -> m b
done s
fs
                        SplitOnSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState rb rh ck Word s s b x
 -> m (Step (SplitOnSeqState rb rh ck Word s s b x) a))
-> SplitOnSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSeqState rb rh ck Word s s b x
-> SplitOnSeqState rb rh ck Word s s b x
forall rb rh ck w fs s b x.
b
-> SplitOnSeqState rb rh ck w fs s b x
-> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqYield b
r SplitOnSeqState rb rh ck Word s s b x
forall rb rh ck w fs s b x. SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqDone

    stepOuter State Stream m a
gst (SplitOnSeqWordLoop Word
wrd0 s
st0 s
fs0) =
        SPEC
-> Word
-> s
-> s
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck x a.
SPEC
-> Word
-> s
-> s
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC Word
wrd0 s
st0 s
fs0

        where

        {-# INLINE go #-}
        go :: SPEC
-> Word
-> s
-> s
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
go !SPEC
_ !Word
wrd !s
st !s
fs = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
            case Step s a
res of
                Yield a
x s
s -> do
                    let jump :: fs -> SplitOnSeqState rb rh ck w fs s b x
jump fs
c = fs -> s -> SplitOnSeqState rb rh ck w fs s b x
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqWordInit fs
c s
s
                        wrd1 :: Word
wrd1 = Word -> a -> Word
forall a a. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
wrd a
x
                        old :: Word
old = (Word
wordMask Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wrd)
                                Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftR` (Int
elemBits Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Int
patLen Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1))
                    Step s b
r <- s -> a -> m (Step s b)
fstep s
fs (Int -> a
forall a. Enum a => Int -> a
toEnum (Int -> a) -> Int -> a
forall a b. (a -> b) -> a -> b
$ Word -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word
old)
                    case Step s b
r of
                        FL.Partial s
fs1 -> do
                            if Word
wrd1 Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wordMask Word -> Word -> Bool
forall a. Eq a => a -> a -> Bool
== Word
wordPat
                            then s -> m b
done s
fs1 m b
-> (b -> m (Step (SplitOnSeqState rb rh ck Word s s b x) a))
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (s -> SplitOnSeqState rb rh ck Word s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall rb rh ck w s x a.
(s -> SplitOnSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSeqState rb rh ck Word s s b x
forall fs rb rh ck w b x. fs -> SplitOnSeqState rb rh ck w fs s b x
jump
                            else SPEC
-> Word
-> s
-> s
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC Word
wrd1 s
s s
fs1
                        FL.Done b
b -> (s -> SplitOnSeqState rb rh ck Word s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall rb rh ck w s x a.
(s -> SplitOnSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSeqState rb rh ck Word s s b x
forall fs rb rh ck w b x. fs -> SplitOnSeqState rb rh ck w fs s b x
jump b
b
                Skip s
s -> SPEC
-> Word
-> s
-> s
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC Word
wrd s
s s
fs
                Step s a
Stop -> SplitOnSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState rb rh ck Word s s b x
 -> m (Step (SplitOnSeqState rb rh ck Word s s b x) a))
-> SplitOnSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSeqState rb rh ck Word s s b x) a)
forall a b. (a -> b) -> a -> b
$ Int -> s -> Word -> SplitOnSeqState rb rh ck Word s s b x
forall rb rh ck w fs s b x.
Int -> fs -> w -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqWordDone Int
patLen s
fs Word
wrd

    -------------------------------
    -- General Pattern - Karp Rabin
    -------------------------------

    stepOuter State Stream m a
gst (SplitOnSeqKRInit Int
idx s
fs s
st Ring a
rb Ptr a
rh) = do
        Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
res of
            Yield a
x s
s -> do
                Ptr a
rh1 <- IO (Ptr a) -> m (Ptr a)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Ptr a) -> m (Ptr a)) -> IO (Ptr a) -> m (Ptr a)
forall a b. (a -> b) -> a -> b
$ Ring a -> Ptr a -> a -> IO (Ptr a)
forall a. Storable a => Ring a -> Ptr a -> a -> IO (Ptr a)
RB.unsafeInsert Ring a
rb Ptr a
rh a
x
                if Int
idx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
maxIndex
                then do
                    let fld :: (b -> a -> b) -> b -> Ring a -> b
fld = Ptr a -> (b -> a -> b) -> b -> Ring a -> b
forall a b.
Storable a =>
Ptr a -> (b -> a -> b) -> b -> Ring a -> b
RB.unsafeFoldRing (Ring a -> Ptr a
forall a. Ring a -> Ptr a
RB.ringBound Ring a
rb)
                    let !ringHash :: Word32
ringHash = (Word32 -> a -> Word32) -> Word32 -> Ring a -> Word32
forall b. (b -> a -> b) -> b -> Ring a -> b
fld Word32 -> a -> Word32
forall a. Enum a => Word32 -> a -> Word32
addCksum Word32
0 Ring a
rb
                    if Word32
ringHash Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
== Word32
patHash
                    then SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ s
-> s
-> Ring a
-> Ptr a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> rb -> rh -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRCheck s
fs s
s Ring a
rb Ptr a
rh1
                    else SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ s
-> s
-> Ring a
-> Ptr a
-> Word32
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> rb -> rh -> ck -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRLoop s
fs s
s Ring a
rb Ptr a
rh1 Word32
ringHash
                else SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> s
-> Ring a
-> Ptr a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
Int -> fs -> s -> rb -> rh -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRInit (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) s
fs s
s Ring a
rb Ptr a
rh1
            Skip s
s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> s
-> Ring a
-> Ptr a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
Int -> fs -> s -> rb -> rh -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRInit Int
idx s
fs s
s Ring a
rb Ptr a
rh
            Step s a
Stop -> do
                SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> Ring a
-> Ptr a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
Int -> fs -> rb -> rh -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRDone Int
idx s
fs Ring a
rb (Ring a -> Ptr a
forall a. Ring a -> Ptr a
RB.startOf Ring a
rb)

    -- XXX The recursive "go" is more efficient than the state based recursion
    -- code commented out below. Perhaps its more efficient because of
    -- factoring out "rb" outside the loop.
    --
    stepOuter State Stream m a
gst (SplitOnSeqKRLoop s
fs0 s
st0 Ring a
rb Ptr a
rh0 Word32
cksum0) =
        SPEC
-> s
-> s
-> Ptr a
-> Word32
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall ck w x a.
SPEC
-> s
-> s
-> Ptr a
-> Word32
-> m (Step (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x) a)
go SPEC
SPEC s
fs0 s
st0 Ptr a
rh0 Word32
cksum0

        where

        go :: SPEC
-> s
-> s
-> Ptr a
-> Word32
-> m (Step (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x) a)
go !SPEC
_ !s
fs !s
st !Ptr a
rh !Word32
cksum = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
            case Step s a
res of
                Yield a
x s
s -> do
                    a
old <- IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Ptr a -> IO a
forall a. Storable a => Ptr a -> IO a
peek Ptr a
rh
                    let cksum1 :: Word32
cksum1 = Word32 -> a -> a -> Word32
forall a a. (Enum a, Enum a) => Word32 -> a -> a -> Word32
deltaCksum Word32
cksum a
old a
x
                    Step s b
r <- s -> a -> m (Step s b)
fstep s
fs a
old
                    case Step s b
r of
                        FL.Partial s
fs1 -> do
                            Ptr a
rh1 <- IO (Ptr a) -> m (Ptr a)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (Ring a -> Ptr a -> a -> IO (Ptr a)
forall a. Storable a => Ring a -> Ptr a -> a -> IO (Ptr a)
RB.unsafeInsert Ring a
rb Ptr a
rh a
x)
                            if Word32
cksum1 Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
== Word32
patHash
                            then SplitOnSeqState (Ring a) (Ptr a) ck w s s b x
-> m (Step (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x
 -> m (Step (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x) a))
-> SplitOnSeqState (Ring a) (Ptr a) ck w s s b x
-> m (Step (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall a b. (a -> b) -> a -> b
$ s
-> s
-> Ring a
-> Ptr a
-> SplitOnSeqState (Ring a) (Ptr a) ck w s s b x
forall rb rh ck w fs s b x.
fs -> s -> rb -> rh -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRCheck s
fs1 s
s Ring a
rb Ptr a
rh1
                            else SPEC
-> s
-> s
-> Ptr a
-> Word32
-> m (Step (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x) a)
go SPEC
SPEC s
fs1 s
s Ptr a
rh1 Word32
cksum1
                        FL.Done b
b -> do
                            let rst :: Ptr a
rst = Ring a -> Ptr a
forall a. Ring a -> Ptr a
RB.startOf Ring a
rb
                                jump :: fs -> SplitOnSeqState (Ring a) (Ptr a) ck w fs s b x
jump fs
c = Int
-> fs
-> s
-> Ring a
-> Ptr a
-> SplitOnSeqState (Ring a) (Ptr a) ck w fs s b x
forall rb rh ck w fs s b x.
Int -> fs -> s -> rb -> rh -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRInit Int
0 fs
c s
s Ring a
rb Ptr a
rst
                            (s -> SplitOnSeqState (Ring a) (Ptr a) ck w s s b x)
-> b -> m (Step (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall rb rh ck w s x a.
(s -> SplitOnSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSeqState (Ring a) (Ptr a) ck w s s b x
forall fs ck w b x.
fs -> SplitOnSeqState (Ring a) (Ptr a) ck w fs s b x
jump b
b
                Skip s
s -> SPEC
-> s
-> s
-> Ptr a
-> Word32
-> m (Step (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x) a)
go SPEC
SPEC s
fs s
s Ptr a
rh Word32
cksum
                Step s a
Stop -> SplitOnSeqState (Ring a) (Ptr a) ck w s s b x
-> m (Step (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x
 -> m (Step (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x) a))
-> SplitOnSeqState (Ring a) (Ptr a) ck w s s b x
-> m (Step (SplitOnSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> Ring a
-> Ptr a
-> SplitOnSeqState (Ring a) (Ptr a) ck w s s b x
forall rb rh ck w fs s b x.
Int -> fs -> rb -> rh -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRDone Int
patLen s
fs Ring a
rb Ptr a
rh

    -- XXX The following code is 5 times slower compared to the recursive loop
    -- based code above. Need to investigate why. One possibility is that the
    -- go loop above does not thread around the ring buffer (rb). This code may
    -- be causing the state to bloat and getting allocated on each iteration.
    -- We can check the cmm/asm code to confirm.  If so a good GHC solution to
    -- such problem is needed. One way to avoid this could be to use unboxed
    -- mutable state?
    {-
    stepOuter gst (SplitOnSeqKRLoop fs st rb rh cksum) = do
            res <- step (adaptState gst) st
            case res of
                Yield x s -> do
                    old <- liftIO $ peek rh
                    let cksum1 = deltaCksum cksum old x
                    fs1 <- fstep fs old
                    if (cksum1 == patHash)
                    then do
                        r <- done fs1
                        skip $ SplitOnSeqYield r $ SplitOnSeqKRInit 0 s rb rh
                    else do
                        rh1 <- liftIO (RB.unsafeInsert rb rh x)
                        skip $ SplitOnSeqKRLoop fs1 s rb rh1 cksum1
                Skip s -> skip $ SplitOnSeqKRLoop fs s rb rh cksum
                Stop -> skip $ SplitOnSeqKRDone patLen fs rb rh
    -}

    stepOuter State Stream m a
_ (SplitOnSeqKRCheck s
fs s
st Ring a
rb Ptr a
rh) = do
        if Ring a -> Ptr a -> Array a -> Bool
forall a. Ring a -> Ptr a -> Array a -> Bool
RB.unsafeEqArray Ring a
rb Ptr a
rh Array a
patArr
        then do
            b
r <- s -> m b
done s
fs
            let rst :: Ptr a
rst = Ring a -> Ptr a
forall a. Ring a -> Ptr a
RB.startOf Ring a
rb
                jump :: fs -> SplitOnSeqState (Ring a) (Ptr a) ck w fs s b x
jump fs
c = Int
-> fs
-> s
-> Ring a
-> Ptr a
-> SplitOnSeqState (Ring a) (Ptr a) ck w fs s b x
forall rb rh ck w fs s b x.
Int -> fs -> s -> rb -> rh -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRInit Int
0 fs
c s
st Ring a
rb Ptr a
rst
            (s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs ck w b x.
fs -> SplitOnSeqState (Ring a) (Ptr a) ck w fs s b x
jump b
r
        else SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ s
-> s
-> Ring a
-> Ptr a
-> Word32
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> rb -> rh -> ck -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRLoop s
fs s
st Ring a
rb Ptr a
rh Word32
patHash

    stepOuter State Stream m a
_ (SplitOnSeqKRDone Int
0 s
fs Ring a
_ Ptr a
_) = do
        b
r <- s -> m b
done s
fs
        SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
b
-> SplitOnSeqState rb rh ck w fs s b x
-> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqYield b
r SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x. SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqDone
    stepOuter State Stream m a
_ (SplitOnSeqKRDone Int
n s
fs Ring a
rb Ptr a
rh) = do
        a
old <- IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Ptr a -> IO a
forall a. Storable a => Ptr a -> IO a
peek Ptr a
rh
        let rh1 :: Ptr a
rh1 = Ring a -> Ptr a -> Ptr a
forall a. Storable a => Ring a -> Ptr a -> Ptr a
RB.advance Ring a
rb Ptr a
rh
        Step s b
r <- s -> a -> m (Step s b)
fstep s
fs a
old
        case Step s b
r of
            FL.Partial s
fs1 -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> Ring a
-> Ptr a
-> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
Int -> fs -> rb -> rh -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRDone (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) s
fs1 Ring a
rb Ptr a
rh1
            FL.Done b
b -> do
                 let jump :: fs -> SplitOnSeqState (Ring a) (Ptr a) ck w fs s b x
jump fs
c = Int
-> fs
-> Ring a
-> Ptr a
-> SplitOnSeqState (Ring a) (Ptr a) ck w fs s b x
forall rb rh ck w fs s b x.
Int -> fs -> rb -> rh -> SplitOnSeqState rb rh ck w fs s b x
SplitOnSeqKRDone (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) fs
c Ring a
rb Ptr a
rh1
                 (s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs ck w s b x.
fs -> SplitOnSeqState (Ring a) (Ptr a) ck w fs s b x
jump b
b

{-# ANN type SplitOnSuffixSeqState Fuse #-}
data SplitOnSuffixSeqState rb rh ck w fs s b x =
      SplitOnSuffixSeqInit
    | SplitOnSuffixSeqYield b (SplitOnSuffixSeqState rb rh ck w fs s b x)
    | SplitOnSuffixSeqDone

    | SplitOnSuffixSeqEmpty !fs s

    | SplitOnSuffixSeqSingleInit !fs s x
    | SplitOnSuffixSeqSingle !fs s x

    | SplitOnSuffixSeqWordInit !fs s
    | SplitOnSuffixSeqWordLoop !w s !fs
    | SplitOnSuffixSeqWordDone Int !fs !w

    | SplitOnSuffixSeqKRInit Int !fs s rb !rh
    | SplitOnSuffixSeqKRInit1 !fs s rb !rh
    | SplitOnSuffixSeqKRLoop fs s rb !rh !ck
    | SplitOnSuffixSeqKRCheck fs s rb !rh
    | SplitOnSuffixSeqKRDone Int !fs rb !rh

    | SplitOnSuffixSeqReinit
          (fs -> SplitOnSuffixSeqState rb rh ck w fs s b x)

{-# INLINE_NORMAL splitOnSuffixSeq #-}
splitOnSuffixSeq
    :: forall m a b. (MonadIO m, Storable a, Enum a, Eq a)
    => Bool
    -> Array a
    -> Fold m a b
    -> Stream m a
    -> Stream m b
splitOnSuffixSeq :: Bool -> Array a -> Fold m a b -> Stream m a -> Stream m b
splitOnSuffixSeq Bool
withSep Array a
patArr (Fold s -> a -> m (Step s b)
fstep m (Step s b)
initial s -> m b
done) (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
    (State Stream m b
 -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a.
State Stream m a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
stepOuter SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqInit

    where

    patLen :: Int
patLen = Array a -> Int
forall a. Storable a => Array a -> Int
A.length Array a
patArr
    maxIndex :: Int
maxIndex = Int
patLen Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
    elemBits :: Int
elemBits = a -> Int
forall a. Storable a => a -> Int
sizeOf (a
forall a. HasCallStack => a
undefined :: a) Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
8

    -- For word pattern case
    wordMask :: Word
    wordMask :: Word
wordMask = (Word
1 Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftL` (Int
elemBits Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
patLen)) Word -> Word -> Word
forall a. Num a => a -> a -> a
- Word
1

    elemMask :: Word
    elemMask :: Word
elemMask = (Word
1 Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftL` Int
elemBits) Word -> Word -> Word
forall a. Num a => a -> a -> a
- Word
1

    wordPat :: Word
    wordPat :: Word
wordPat = Word
wordMask Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. (Word -> a -> Word) -> Word -> Array a -> Word
forall a b. Storable a => (b -> a -> b) -> b -> Array a -> b
A.foldl' Word -> a -> Word
forall a a. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
0 Array a
patArr

    addToWord :: a -> a -> a
addToWord a
wd a
a = (a
wd a -> Int -> a
forall a. Bits a => a -> Int -> a
`shiftL` Int
elemBits) a -> a -> a
forall a. Bits a => a -> a -> a
.|. Int -> a
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
a)

    nextAfterInit :: (fs -> SplitOnSuffixSeqState rb rh ck w fs s b x)
-> Step fs b -> SplitOnSuffixSeqState rb rh ck w fs s b x
nextAfterInit fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
nextGen Step fs b
stepRes =
        case Step fs b
stepRes of
            FL.Partial fs
s -> fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
nextGen fs
s
            FL.Done b
b ->
                b
-> SplitOnSuffixSeqState rb rh ck w fs s b x
-> SplitOnSuffixSeqState rb rh ck w fs s b x
forall rb rh ck w fs s b x.
b
-> SplitOnSuffixSeqState rb rh ck w fs s b x
-> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqYield b
b ((fs -> SplitOnSuffixSeqState rb rh ck w fs s b x)
-> SplitOnSuffixSeqState rb rh ck w fs s b x
forall rb rh ck w fs s b x.
(fs -> SplitOnSuffixSeqState rb rh ck w fs s b x)
-> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqReinit fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
nextGen)

    {-# INLINE yieldProceed #-}
    yieldProceed :: (s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState rb rh ck w s s b x
nextGen b
fs =
        m (Step s b)
initial m (Step s b)
-> (Step s b
    -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a))
-> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= SplitOnSuffixSeqState rb rh ck w s s b x
-> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState rb rh ck w s s b x
 -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a))
-> (Step s b -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> Step s b
-> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b
-> SplitOnSuffixSeqState rb rh ck w s s b x
-> SplitOnSuffixSeqState rb rh ck w s s b x
forall rb rh ck w fs s b x.
b
-> SplitOnSuffixSeqState rb rh ck w fs s b x
-> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqYield b
fs (SplitOnSuffixSeqState rb rh ck w s s b x
 -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> (Step s b -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> Step s b
-> SplitOnSuffixSeqState rb rh ck w s s b x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> Step s b -> SplitOnSuffixSeqState rb rh ck w s s b x
forall fs rb rh ck w s b x.
(fs -> SplitOnSuffixSeqState rb rh ck w fs s b x)
-> Step fs b -> SplitOnSuffixSeqState rb rh ck w fs s b x
nextAfterInit s -> SplitOnSuffixSeqState rb rh ck w s s b x
nextGen

    -- For single element pattern case
    {-# INLINE processYieldSingle #-}
    processYieldSingle :: a
-> a
-> s
-> s
-> m (Step (SplitOnSuffixSeqState rb rh ck w s s b a) a)
processYieldSingle a
pat a
x s
s s
fs = do
        let jump :: fs -> SplitOnSuffixSeqState rb rh ck w fs s b a
jump fs
c = fs -> s -> a -> SplitOnSuffixSeqState rb rh ck w fs s b a
forall rb rh ck w fs s b x.
fs -> s -> x -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqSingleInit fs
c s
s a
pat
        if a
pat a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
x
        then do
            Step s b
r <- if Bool
withSep then s -> a -> m (Step s b)
fstep s
fs a
x else Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ s -> Step s b
forall s b. s -> Step s b
FL.Partial s
fs
            b
b1 <-
                case Step s b
r of
                    FL.Partial s
fs1 -> s -> m b
done s
fs1
                    FL.Done b
b -> b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
b
            (s -> SplitOnSuffixSeqState rb rh ck w s s b a)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b a) a)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState rb rh ck w s s b a
forall fs rb rh ck w b.
fs -> SplitOnSuffixSeqState rb rh ck w fs s b a
jump b
b1
        else do
            Step s b
r <- s -> a -> m (Step s b)
fstep s
fs a
x
            case Step s b
r of
                FL.Partial s
fs1 -> SplitOnSuffixSeqState rb rh ck w s s b a
-> m (Step (SplitOnSuffixSeqState rb rh ck w s s b a) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState rb rh ck w s s b a
 -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b a) a))
-> SplitOnSuffixSeqState rb rh ck w s s b a
-> m (Step (SplitOnSuffixSeqState rb rh ck w s s b a) a)
forall a b. (a -> b) -> a -> b
$ s -> s -> a -> SplitOnSuffixSeqState rb rh ck w s s b a
forall rb rh ck w fs s b x.
fs -> s -> x -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqSingle s
fs1 s
s a
pat
                FL.Done b
b -> (s -> SplitOnSuffixSeqState rb rh ck w s s b a)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b a) a)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState rb rh ck w s s b a
forall fs rb rh ck w b.
fs -> SplitOnSuffixSeqState rb rh ck w fs s b a
jump b
b

    -- For Rabin-Karp search
    k :: Word32
k = Word32
2891336453 :: Word32
    coeff :: Word32
coeff = Word32
k Word32 -> Int -> Word32
forall a b. (Num a, Integral b) => a -> b -> a
^ Int
patLen

    addCksum :: Word32 -> a -> Word32
addCksum Word32
cksum a
a = Word32
cksum Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
* Word32
k Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
+ Int -> Word32
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
a)

    deltaCksum :: Word32 -> a -> a -> Word32
deltaCksum Word32
cksum a
old a
new =
        Word32 -> a -> Word32
forall a. Enum a => Word32 -> a -> Word32
addCksum Word32
cksum a
new Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
- Word32
coeff Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
* Int -> Word32
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
old)

    -- XXX shall we use a random starting hash or 1 instead of 0?
    patHash :: Word32
patHash = (Word32 -> a -> Word32) -> Word32 -> Array a -> Word32
forall a b. Storable a => (b -> a -> b) -> b -> Array a -> b
A.foldl' Word32 -> a -> Word32
forall a. Enum a => Word32 -> a -> Word32
addCksum Word32
0 Array a
patArr

    skip :: s -> m (Step s a)
skip = Step s a -> m (Step s a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s a -> m (Step s a)) -> (s -> Step s a) -> s -> m (Step s a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> Step s a
forall s a. s -> Step s a
Skip

    {-# INLINE_LATE stepOuter #-}
    stepOuter :: State Stream m a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
stepOuter State Stream m a
_ SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
SplitOnSuffixSeqInit = do
        Step s b
res <- m (Step s b)
initial
        case Step s b
res of
            FL.Partial s
fs ->
                if Int
patLen Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
                then SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ s
-> s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqEmpty s
fs s
state
                else if Int
patLen Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1
                     then do
                         a
pat <- IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Array a -> Int -> IO a
forall a. Storable a => Array a -> Int -> IO a
A.unsafeIndexIO Array a
patArr Int
0
                         SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ s
-> s
-> a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> x -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqSingleInit s
fs s
state a
pat
                     else if a -> Int
forall a. Storable a => a -> Int
sizeOf (a
forall a. HasCallStack => a
undefined :: a) Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
patLen
                               Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Word -> Int
forall a. Storable a => a -> Int
sizeOf (Word
forall a. HasCallStack => a
undefined :: Word)
                          then SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ s
-> s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqWordInit s
fs s
state
                          else do
                              (Ring a
rb, Ptr a
rhead) <- IO (Ring a, Ptr a) -> m (Ring a, Ptr a)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Ring a, Ptr a) -> m (Ring a, Ptr a))
-> IO (Ring a, Ptr a) -> m (Ring a, Ptr a)
forall a b. (a -> b) -> a -> b
$ Int -> IO (Ring a, Ptr a)
forall a. Storable a => Int -> IO (Ring a, Ptr a)
RB.new Int
patLen
                              SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
Int
-> fs -> s -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRInit Int
0 s
fs s
state Ring a
rb Ptr a
rhead
            FL.Done b
fb -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
b
-> SplitOnSuffixSeqState rb rh ck w fs s b x
-> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqYield b
fb SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqInit

    stepOuter State Stream m a
_ (SplitOnSuffixSeqYield b
x SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
next) = Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step
   (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> Step
     (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> Step
     (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. a -> s -> Step s a
Yield b
x SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
next

    ---------------------------
    -- Reinit
    ---------------------------

    stepOuter State Stream m a
_ (SplitOnSuffixSeqReinit s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
nextGen) =
        m (Step s b)
initial m (Step s b)
-> (Step s b
    -> m (Step
            (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> (Step s b
    -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> Step s b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> Step s b
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs rb rh ck w s b x.
(fs -> SplitOnSuffixSeqState rb rh ck w fs s b x)
-> Step fs b -> SplitOnSuffixSeqState rb rh ck w fs s b x
nextAfterInit s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
nextGen

    ---------------------------
    -- Empty pattern
    ---------------------------

    stepOuter State Stream m a
gst (SplitOnSuffixSeqEmpty s
acc s
st) = do
        Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
res of
            Yield a
x s
s -> do
                let jump :: fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
jump fs
c = fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqEmpty fs
c s
s
                Step s b
r <- s -> a -> m (Step s b)
fstep s
acc a
x
                b
b1 <-
                    case Step s b
r of
                        FL.Partial s
fs -> s -> m b
done s
fs
                        FL.Done b
b -> b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
b
                (s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs rb rh ck w b x.
fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
jump b
b1
            Skip s
s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (s
-> s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqEmpty s
acc s
s)
            Step s a
Stop -> Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. Step s a
Stop

    -----------------
    -- Done
    -----------------

    stepOuter State Stream m a
_ SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
SplitOnSuffixSeqDone = Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. Step s a
Stop

    -----------------
    -- Single Pattern
    -----------------

    stepOuter State Stream m a
gst (SplitOnSuffixSeqSingleInit s
fs s
st a
pat) = do
        Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
res of
            Yield a
x s
s -> a
-> a
-> s
-> s
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s rb rh ck w a.
a
-> a
-> s
-> s
-> m (Step (SplitOnSuffixSeqState rb rh ck w s s b a) a)
processYieldSingle a
pat a
x s
s s
fs
            Skip s
s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ s
-> s
-> a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> x -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqSingleInit s
fs s
s a
pat
            Step s a
Stop -> Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. Step s a
Stop

    stepOuter State Stream m a
gst (SplitOnSuffixSeqSingle s
fs s
st a
pat) = do
        Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
        case Step s a
res of
            Yield a
x s
s -> a
-> a
-> s
-> s
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s rb rh ck w a.
a
-> a
-> s
-> s
-> m (Step (SplitOnSuffixSeqState rb rh ck w s s b a) a)
processYieldSingle a
pat a
x s
s s
fs
            Skip s
s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ s
-> s
-> a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> x -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqSingle s
fs s
s a
pat
            Step s a
Stop -> do
                b
r <- s -> m b
done s
fs
                SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
b
-> SplitOnSuffixSeqState rb rh ck w fs s b x
-> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqYield b
r SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqDone

    ---------------------------
    -- Short Pattern - Shift Or
    ---------------------------

    stepOuter State Stream m a
_ (SplitOnSuffixSeqWordDone Int
0 s
fs Word
_) = do
        b
r <- s -> m b
done s
fs
        SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
b
-> SplitOnSuffixSeqState rb rh ck w fs s b x
-> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqYield b
r SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqDone
    stepOuter State Stream m a
_ (SplitOnSuffixSeqWordDone Int
n s
fs Word
wrd) = do
        let old :: Word
old = Word
elemMask Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. (Word
wrd Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftR` (Int
elemBits Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)))
        Step s b
r <- s -> a -> m (Step s b)
fstep s
fs (Int -> a
forall a. Enum a => Int -> a
toEnum (Int -> a) -> Int -> a
forall a b. (a -> b) -> a -> b
$ Word -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word
old)
        case Step s b
r of
            FL.Partial s
fs1 -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> Word
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
Int -> fs -> w -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqWordDone (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) s
fs1 Word
wrd
            FL.Done b
b -> do
                let jump :: fs -> SplitOnSuffixSeqState rb rh ck Word fs s b x
jump fs
c = Int -> fs -> Word -> SplitOnSuffixSeqState rb rh ck Word fs s b x
forall rb rh ck w fs s b x.
Int -> fs -> w -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqWordDone (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) fs
c Word
wrd
                (s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs rb rh ck s b x.
fs -> SplitOnSuffixSeqState rb rh ck Word fs s b x
jump b
b

    stepOuter State Stream m a
gst (SplitOnSuffixSeqWordInit s
fs0 s
st0) = do
        Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st0
        case Step s a
res of
            Yield a
x s
s -> do
                let wrd :: Word
wrd = Word -> a -> Word
forall a a. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
0 a
x
                Step s b
r <- if Bool
withSep then s -> a -> m (Step s b)
fstep s
fs0 a
x else Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ s -> Step s b
forall s b. s -> Step s b
FL.Partial s
fs0
                case Step s b
r of
                    FL.Partial s
fs1 -> SPEC
-> Int
-> Word
-> s
-> s
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck x a.
SPEC
-> Int
-> Word
-> s
-> s
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC Int
1 Word
wrd s
s s
fs1
                    FL.Done b
b -> do
                        let jump :: fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
jump fs
c = fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqWordInit fs
c s
s
                        (s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs rb rh ck w b x.
fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
jump b
b
            Skip s
s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (s
-> s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqWordInit s
fs0 s
s)
            Step s a
Stop -> Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. Step s a
Stop

        where

        {-# INLINE go #-}
        go :: SPEC
-> Int
-> Word
-> s
-> s
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
go !SPEC
_ !Int
idx !Word
wrd !s
st !s
fs = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
            case Step s a
res of
                Yield a
x s
s -> do
                    let jump :: fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
jump fs
c = fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqWordInit fs
c s
s
                    let wrd1 :: Word
wrd1 = Word -> a -> Word
forall a a. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
wrd a
x
                    Step s b
r <- if Bool
withSep then s -> a -> m (Step s b)
fstep s
fs a
x else Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ s -> Step s b
forall s b. s -> Step s b
FL.Partial s
fs
                    case Step s b
r of
                        FL.Partial s
fs1 ->
                            if Int
idx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
maxIndex
                            then SPEC
-> Int
-> Word
-> s
-> s
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Word
wrd1 s
s s
fs1
                            else if Word
wrd1 Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wordMask Word -> Word -> Bool
forall a. Eq a => a -> a -> Bool
/= Word
wordPat
                            then SplitOnSuffixSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState rb rh ck Word s s b x
 -> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a))
-> SplitOnSuffixSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall a b. (a -> b) -> a -> b
$ Word -> s -> s -> SplitOnSuffixSeqState rb rh ck Word s s b x
forall rb rh ck w fs s b x.
w -> s -> fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqWordLoop Word
wrd1 s
s s
fs1
                            else do s -> m b
done s
fs m b
-> (b -> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a))
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (s -> SplitOnSuffixSeqState rb rh ck Word s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState rb rh ck Word s s b x
forall fs rb rh ck w b x.
fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
jump
                        FL.Done b
b -> (s -> SplitOnSuffixSeqState rb rh ck Word s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState rb rh ck Word s s b x
forall fs rb rh ck w b x.
fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
jump b
b
                Skip s
s -> SPEC
-> Int
-> Word
-> s
-> s
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC Int
idx Word
wrd s
s s
fs
                Step s a
Stop -> SplitOnSuffixSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState rb rh ck Word s s b x
 -> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a))
-> SplitOnSuffixSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall a b. (a -> b) -> a -> b
$ Int -> s -> Word -> SplitOnSuffixSeqState rb rh ck Word s s b x
forall rb rh ck w fs s b x.
Int -> fs -> w -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqWordDone Int
idx s
fs Word
wrd

    stepOuter State Stream m a
gst (SplitOnSuffixSeqWordLoop Word
wrd0 s
st0 s
fs0) =
        SPEC
-> Word
-> s
-> s
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck x a.
SPEC
-> Word
-> s
-> s
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC Word
wrd0 s
st0 s
fs0

        where

        {-# INLINE go #-}
        go :: SPEC
-> Word
-> s
-> s
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
go !SPEC
_ !Word
wrd !s
st !s
fs = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
            case Step s a
res of
                Yield a
x s
s -> do
                    let jump :: fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
jump fs
c = fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
forall rb rh ck w fs s b x.
fs -> s -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqWordInit fs
c s
s
                        wrd1 :: Word
wrd1 = Word -> a -> Word
forall a a. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
wrd a
x
                        old :: Word
old = (Word
wordMask Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wrd)
                                Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftR` (Int
elemBits Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Int
patLen Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1))
                    Step s b
r <-
                        if Bool
withSep
                        then s -> a -> m (Step s b)
fstep s
fs a
x
                        else s -> a -> m (Step s b)
fstep s
fs (Int -> a
forall a. Enum a => Int -> a
toEnum (Int -> a) -> Int -> a
forall a b. (a -> b) -> a -> b
$ Word -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word
old)
                    case Step s b
r of
                        FL.Partial s
fs1 ->
                            if Word
wrd1 Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wordMask Word -> Word -> Bool
forall a. Eq a => a -> a -> Bool
== Word
wordPat
                            then s -> m b
done s
fs1 m b
-> (b -> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a))
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (s -> SplitOnSuffixSeqState rb rh ck Word s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState rb rh ck Word s s b x
forall fs rb rh ck w b x.
fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
jump
                            else SPEC
-> Word
-> s
-> s
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC Word
wrd1 s
s s
fs1
                        FL.Done b
b -> (s -> SplitOnSuffixSeqState rb rh ck Word s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState rb rh ck Word s s b x
forall fs rb rh ck w b x.
fs -> SplitOnSuffixSeqState rb rh ck w fs s b x
jump b
b
                Skip s
s -> SPEC
-> Word
-> s
-> s
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
go SPEC
SPEC Word
wrd s
s s
fs
                Step s a
Stop ->
                    if Word
wrd Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wordMask Word -> Word -> Bool
forall a. Eq a => a -> a -> Bool
== Word
wordPat
                    then Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a
forall s a. Step s a
Stop
                    else if Bool
withSep
                    then do
                        b
r <- s -> m b
done s
fs
                        SplitOnSuffixSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState rb rh ck Word s s b x
 -> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a))
-> SplitOnSuffixSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSuffixSeqState rb rh ck Word s s b x
-> SplitOnSuffixSeqState rb rh ck Word s s b x
forall rb rh ck w fs s b x.
b
-> SplitOnSuffixSeqState rb rh ck w fs s b x
-> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqYield b
r SplitOnSuffixSeqState rb rh ck Word s s b x
forall rb rh ck w fs s b x.
SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqDone
                    else SplitOnSuffixSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState rb rh ck Word s s b x
 -> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a))
-> SplitOnSuffixSeqState rb rh ck Word s s b x
-> m (Step (SplitOnSuffixSeqState rb rh ck Word s s b x) a)
forall a b. (a -> b) -> a -> b
$ Int -> s -> Word -> SplitOnSuffixSeqState rb rh ck Word s s b x
forall rb rh ck w fs s b x.
Int -> fs -> w -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqWordDone Int
patLen s
fs Word
wrd

    -------------------------------
    -- General Pattern - Karp Rabin
    -------------------------------

    stepOuter State Stream m a
gst (SplitOnSuffixSeqKRInit Int
idx0 s
fs s
st0 Ring a
rb Ptr a
rh0) = do
        Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st0
        case Step s a
res of
            Yield a
x s
s -> do
                Ptr a
rh1 <- IO (Ptr a) -> m (Ptr a)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Ptr a) -> m (Ptr a)) -> IO (Ptr a) -> m (Ptr a)
forall a b. (a -> b) -> a -> b
$ Ring a -> Ptr a -> a -> IO (Ptr a)
forall a. Storable a => Ring a -> Ptr a -> a -> IO (Ptr a)
RB.unsafeInsert Ring a
rb Ptr a
rh0 a
x
                Step s b
r <- if Bool
withSep then s -> a -> m (Step s b)
fstep s
fs a
x else Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ s -> Step s b
forall s b. s -> Step s b
FL.Partial s
fs
                case Step s b
r of
                    FL.Partial s
fs1 ->
                        SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ s
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs -> s -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRInit1 s
fs1 s
s Ring a
rb Ptr a
rh1
                    FL.Done b
b -> do
                        let rst :: Ptr a
rst = Ring a -> Ptr a
forall a. Ring a -> Ptr a
RB.startOf Ring a
rb
                            jump :: fs -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
jump fs
c = Int
-> fs
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
forall rb rh ck w fs s b x.
Int
-> fs -> s -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRInit Int
0 fs
c s
s Ring a
rb Ptr a
rst
                        (s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs ck w b x.
fs -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
jump b
b
            Skip s
s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
Int
-> fs -> s -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRInit Int
idx0 s
fs s
s Ring a
rb Ptr a
rh0
            Step s a
Stop -> Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b
forall s a. Step s a
Stop

    stepOuter State Stream m a
gst (SplitOnSuffixSeqKRInit1 s
fs0 s
st0 Ring a
rb Ptr a
rh0) = do
        SPEC
-> Int
-> Ptr a
-> s
-> s
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall w x a.
SPEC
-> Int
-> Ptr a
-> s
-> s
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
go SPEC
SPEC Int
1 Ptr a
rh0 s
st0 s
fs0

        where

        go :: SPEC
-> Int
-> Ptr a
-> s
-> s
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
go !SPEC
_ !Int
idx !Ptr a
rh s
st !s
fs = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
            case Step s a
res of
                Yield a
x s
s -> do
                    Ptr a
rh1 <- IO (Ptr a) -> m (Ptr a)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (Ring a -> Ptr a -> a -> IO (Ptr a)
forall a. Storable a => Ring a -> Ptr a -> a -> IO (Ptr a)
RB.unsafeInsert Ring a
rb Ptr a
rh a
x)
                    Step s b
r <- if Bool
withSep then s -> a -> m (Step s b)
fstep s
fs a
x else Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ s -> Step s b
forall s b. s -> Step s b
FL.Partial s
fs
                    case Step s b
r of
                        FL.Partial s
fs1 ->
                            if Int
idx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
maxIndex
                            then SPEC
-> Int
-> Ptr a
-> s
-> s
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
go SPEC
SPEC (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Ptr a
rh1 s
s s
fs1
                            else SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
forall a b. (a -> b) -> a -> b
$
                                let fld :: (b -> a -> b) -> b -> Ring a -> b
fld = Ptr a -> (b -> a -> b) -> b -> Ring a -> b
forall a b.
Storable a =>
Ptr a -> (b -> a -> b) -> b -> Ring a -> b
RB.unsafeFoldRing (Ring a -> Ptr a
forall a. Ring a -> Ptr a
RB.ringBound Ring a
rb)
                                    !ringHash :: Word32
ringHash = (Word32 -> a -> Word32) -> Word32 -> Ring a -> Word32
forall b. (b -> a -> b) -> b -> Ring a -> b
fld Word32 -> a -> Word32
forall a. Enum a => Word32 -> a -> Word32
addCksum Word32
0 Ring a
rb
                                 in if Word32
ringHash Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
== Word32
patHash
                                    then s
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
forall rb rh ck w fs s b x.
fs -> s -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRCheck s
fs1 s
s Ring a
rb Ptr a
rh1
                                    else s
-> s
-> Ring a
-> Ptr a
-> Word32
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
forall rb rh ck w fs s b x.
fs
-> s -> rb -> rh -> ck -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRLoop
                                            s
fs1 s
s Ring a
rb Ptr a
rh1 Word32
ringHash
                        FL.Done b
b -> do
                            let rst :: Ptr a
rst = Ring a -> Ptr a
forall a. Ring a -> Ptr a
RB.startOf Ring a
rb
                                jump :: fs -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
jump fs
c = Int
-> fs
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
forall rb rh ck w fs s b x.
Int
-> fs -> s -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRInit Int
0 fs
c s
s Ring a
rb Ptr a
rst
                            (s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x)
-> b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
forall fs ck w b x.
fs -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
jump b
b
                Skip s
s -> SPEC
-> Int
-> Ptr a
-> s
-> s
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
go SPEC
SPEC Int
idx Ptr a
rh s
s s
fs
                Step s a
Stop -> do
                    -- do not issue a blank segment when we end at pattern
                    if (Int
idx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
maxIndex) Bool -> Bool -> Bool
&& Ring a -> Ptr a -> Array a -> Bool
forall a. Ring a -> Ptr a -> Array a -> Bool
RB.unsafeEqArray Ring a
rb Ptr a
rh Array a
patArr
                    then Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a
forall s a. Step s a
Stop
                    else if Bool
withSep
                    then do
                        b
r <- s -> m b
done s
fs
                        SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
forall rb rh ck w fs s b x.
b
-> SplitOnSuffixSeqState rb rh ck w fs s b x
-> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqYield b
r SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
forall rb rh ck w fs s b x.
SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqDone
                    else SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x) a)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 w s s b x
forall rb rh ck w fs s b x.
Int -> fs -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRDone Int
idx s
fs Ring a
rb (Ring a -> Ptr a
forall a. Ring a -> Ptr a
RB.startOf Ring a
rb)

    stepOuter State Stream m a
gst (SplitOnSuffixSeqKRLoop s
fs0 s
st0 Ring a
rb Ptr a
rh0 Word32
cksum0) =
        SPEC
-> s
-> s
-> Ptr a
-> Word32
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall ck w x a.
SPEC
-> s
-> s
-> Ptr a
-> Word32
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
go SPEC
SPEC s
fs0 s
st0 Ptr a
rh0 Word32
cksum0

        where

        go :: SPEC
-> s
-> s
-> Ptr a
-> Word32
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
go !SPEC
_ !s
fs !s
st !Ptr a
rh !Word32
cksum = do
            Step s a
res <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
            case Step s a
res of
                Yield a
x s
s -> do
                    a
old <- IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Ptr a -> IO a
forall a. Storable a => Ptr a -> IO a
peek Ptr a
rh
                    Ptr a
rh1 <- IO (Ptr a) -> m (Ptr a)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (Ring a -> Ptr a -> a -> IO (Ptr a)
forall a. Storable a => Ring a -> Ptr a -> a -> IO (Ptr a)
RB.unsafeInsert Ring a
rb Ptr a
rh a
x)
                    let cksum1 :: Word32
cksum1 = Word32 -> a -> a -> Word32
forall a a. (Enum a, Enum a) => Word32 -> a -> a -> Word32
deltaCksum Word32
cksum a
old a
x
                    Step s b
r <- if Bool
withSep then s -> a -> m (Step s b)
fstep s
fs a
x else s -> a -> m (Step s b)
fstep s
fs a
old
                    case Step s b
r of
                        FL.Partial s
fs1 ->
                            if Word32
cksum1 Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word32
patHash
                            then SPEC
-> s
-> s
-> Ptr a
-> Word32
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
go SPEC
SPEC s
fs1 s
s Ptr a
rh1 Word32
cksum1
                            else SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall a b. (a -> b) -> a -> b
$ s
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
forall rb rh ck w fs s b x.
fs -> s -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRCheck s
fs1 s
s Ring a
rb Ptr a
rh1
                        FL.Done b
b -> do
                            let rst :: Ptr a
rst = Ring a -> Ptr a
forall a. Ring a -> Ptr a
RB.startOf Ring a
rb
                                jump :: fs -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
jump fs
c = Int
-> fs
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
forall rb rh ck w fs s b x.
Int
-> fs -> s -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRInit Int
0 fs
c s
s Ring a
rb Ptr a
rst
                            (s -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x)
-> b
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
forall fs ck w b x.
fs -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
jump b
b
                Skip s
s -> SPEC
-> s
-> s
-> Ptr a
-> Word32
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
go SPEC
SPEC s
fs s
s Ptr a
rh Word32
cksum
                Step s a
Stop ->
                    if Ring a -> Ptr a -> Array a -> Bool
forall a. Ring a -> Ptr a -> Array a -> Bool
RB.unsafeEqArray Ring a
rb Ptr a
rh Array a
patArr
                    then Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a
forall s a. Step s a
Stop
                    else if Bool
withSep
                    then do
                        b
r <- s -> m b
done s
fs
                        SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
forall rb rh ck w fs s b x.
b
-> SplitOnSuffixSeqState rb rh ck w fs s b x
-> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqYield b
r SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
forall rb rh ck w fs s b x.
SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqDone
                    else SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
-> m (Step (SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x) a)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w s s b x
forall rb rh ck w fs s b x.
Int -> fs -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRDone Int
patLen s
fs Ring a
rb Ptr a
rh

    stepOuter State Stream m a
_ (SplitOnSuffixSeqKRCheck s
fs s
st Ring a
rb Ptr a
rh) = do
        if Ring a -> Ptr a -> Array a -> Bool
forall a. Ring a -> Ptr a -> Array a -> Bool
RB.unsafeEqArray Ring a
rb Ptr a
rh Array a
patArr
        then do
            b
r <- s -> m b
done s
fs
            let rst :: Ptr a
rst = Ring a -> Ptr a
forall a. Ring a -> Ptr a
RB.startOf Ring a
rb
                jump :: fs -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
jump fs
c = Int
-> fs
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
forall rb rh ck w fs s b x.
Int
-> fs -> s -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRInit Int
0 fs
c s
st Ring a
rb Ptr a
rst
            (s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs ck w b x.
fs -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
jump b
r
        else SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ s
-> s
-> Ring a
-> Ptr a
-> Word32
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
fs
-> s -> rb -> rh -> ck -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRLoop s
fs s
st Ring a
rb Ptr a
rh Word32
patHash

    stepOuter State Stream m a
_ (SplitOnSuffixSeqKRDone Int
0 s
fs Ring a
_ Ptr a
_) = do
        b
r <- s -> m b
done s
fs
        SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ b
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
b
-> SplitOnSuffixSeqState rb rh ck w fs s b x
-> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqYield b
r SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqDone
    stepOuter State Stream m a
_ (SplitOnSuffixSeqKRDone Int
n s
fs Ring a
rb Ptr a
rh) = do
        a
old <- IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Ptr a -> IO a
forall a. Storable a => Ptr a -> IO a
peek Ptr a
rh
        let rh1 :: Ptr a
rh1 = Ring a -> Ptr a -> Ptr a
forall a. Storable a => Ring a -> Ptr a -> Ptr a
RB.advance Ring a
rb Ptr a
rh
        Step s b
r <- s -> a -> m (Step s b)
fstep s
fs a
old
        case Step s b
r of
            FL.Partial s
fs1 -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall s a. s -> m (Step s a)
skip (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
 -> m (Step
         (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b))
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall a b. (a -> b) -> a -> b
$ Int
-> s
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall rb rh ck w fs s b x.
Int -> fs -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRDone (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) s
fs1 Ring a
rb Ptr a
rh1
            FL.Done b
b -> do
                let jump :: fs -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
jump fs
c = Int
-> fs
-> Ring a
-> Ptr a
-> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
forall rb rh ck w fs s b x.
Int -> fs -> rb -> rh -> SplitOnSuffixSeqState rb rh ck w fs s b x
SplitOnSuffixSeqKRDone (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) fs
c Ring a
rb Ptr a
rh1
                (s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a)
-> b
-> m (Step
        (SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a) b)
forall rb rh ck w s x a.
(s -> SplitOnSuffixSeqState rb rh ck w s s b x)
-> b -> m (Step (SplitOnSuffixSeqState rb rh ck w s s b x) a)
yieldProceed s -> SplitOnSuffixSeqState (Ring a) (Ptr a) Word32 Word s s b a
forall fs ck w s b x.
fs -> SplitOnSuffixSeqState (Ring a) (Ptr a) ck w fs s b x
jump b
b

------------------------------------------------------------------------------
-- Nested Container Transformation
------------------------------------------------------------------------------

{-# ANN type SplitState Fuse #-}
data SplitState s arr
    = SplitInitial s
    | SplitBuffering s arr
    | SplitSplitting s arr
    | SplitYielding arr (SplitState s arr)
    | SplitFinishing

-- XXX An alternative approach would be to use a partial fold (Fold m a b) to
-- split using a splitBy like combinator. The Fold would consume upto the
-- separator and return any leftover which can then be fed to the next fold.
--
-- We can revisit this once we have partial folds/parsers.
--
-- | Performs infix separator style splitting.
{-# INLINE_NORMAL splitInnerBy #-}
splitInnerBy
    :: Monad m
    => (f a -> m (f a, Maybe (f a)))  -- splitter
    -> (f a -> f a -> m (f a))        -- joiner
    -> Stream m (f a)
    -> Stream m (f a)
splitInnerBy :: (f a -> m (f a, Maybe (f a)))
-> (f a -> f a -> m (f a)) -> Stream m (f a) -> Stream m (f a)
splitInnerBy f a -> m (f a, Maybe (f a))
splitter f a -> f a -> m (f a)
joiner (Stream State Stream m (f a) -> s -> m (Step s (f a))
step1 s
state1) =
    (State Stream m (f a)
 -> SplitState s (f a) -> m (Step (SplitState s (f a)) (f a)))
-> SplitState s (f a) -> Stream m (f a)
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m (f a)
-> SplitState s (f a) -> m (Step (SplitState s (f a)) (f a))
step (s -> SplitState s (f a)
forall s arr. s -> SplitState s arr
SplitInitial s
state1)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m (f a)
-> SplitState s (f a) -> m (Step (SplitState s (f a)) (f a))
step State Stream m (f a)
gst (SplitInitial s
st) = do
        Step s (f a)
r <- State Stream m (f a) -> s -> m (Step s (f a))
step1 State Stream m (f a)
gst s
st
        case Step s (f a)
r of
            Yield f a
x s
s -> do
                (f a
x1, Maybe (f a)
mx2) <- f a -> m (f a, Maybe (f a))
splitter f a
x
                Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ case Maybe (f a)
mx2 of
                    Maybe (f a)
Nothing -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitBuffering s
s f a
x1)
                    Just f a
x2 -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (f a -> SplitState s (f a) -> SplitState s (f a)
forall s arr. arr -> SplitState s arr -> SplitState s arr
SplitYielding f a
x1 (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitSplitting s
s f a
x2))
            Skip s
s -> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (s -> SplitState s (f a)
forall s arr. s -> SplitState s arr
SplitInitial s
s)
            Step s (f a)
Stop -> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitState s (f a)) (f a)
forall s a. Step s a
Stop

    step State Stream m (f a)
gst (SplitBuffering s
st f a
buf) = do
        Step s (f a)
r <- State Stream m (f a) -> s -> m (Step s (f a))
step1 State Stream m (f a)
gst s
st
        case Step s (f a)
r of
            Yield f a
x s
s -> do
                (f a
x1, Maybe (f a)
mx2) <- f a -> m (f a, Maybe (f a))
splitter f a
x
                f a
buf' <- f a -> f a -> m (f a)
joiner f a
buf f a
x1
                Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ case Maybe (f a)
mx2 of
                    Maybe (f a)
Nothing -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitBuffering s
s f a
buf')
                    Just f a
x2 -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (f a -> SplitState s (f a) -> SplitState s (f a)
forall s arr. arr -> SplitState s arr -> SplitState s arr
SplitYielding f a
buf' (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitSplitting s
s f a
x2))
            Skip s
s -> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitBuffering s
s f a
buf)
            Step s (f a)
Stop -> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (f a -> SplitState s (f a) -> SplitState s (f a)
forall s arr. arr -> SplitState s arr -> SplitState s arr
SplitYielding f a
buf SplitState s (f a)
forall s arr. SplitState s arr
SplitFinishing)

    step State Stream m (f a)
_ (SplitSplitting s
st f a
buf) = do
        (f a
x1, Maybe (f a)
mx2) <- f a -> m (f a, Maybe (f a))
splitter f a
buf
        Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ case Maybe (f a)
mx2 of
                Maybe (f a)
Nothing -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (SplitState s (f a) -> Step (SplitState s (f a)) (f a))
-> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall a b. (a -> b) -> a -> b
$ s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitBuffering s
st f a
x1
                Just f a
x2 -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (SplitState s (f a) -> Step (SplitState s (f a)) (f a))
-> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall a b. (a -> b) -> a -> b
$ f a -> SplitState s (f a) -> SplitState s (f a)
forall s arr. arr -> SplitState s arr -> SplitState s arr
SplitYielding f a
x1 (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitSplitting s
st f a
x2)

    step State Stream m (f a)
_ (SplitYielding f a
x SplitState s (f a)
next) = Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ f a -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. a -> s -> Step s a
Yield f a
x SplitState s (f a)
next
    step State Stream m (f a)
_ SplitState s (f a)
SplitFinishing = Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitState s (f a)) (f a)
forall s a. Step s a
Stop

-- | Performs infix separator style splitting.
{-# INLINE_NORMAL splitInnerBySuffix #-}
splitInnerBySuffix
    :: (Monad m, Eq (f a), Monoid (f a))
    => (f a -> m (f a, Maybe (f a)))  -- splitter
    -> (f a -> f a -> m (f a))        -- joiner
    -> Stream m (f a)
    -> Stream m (f a)
splitInnerBySuffix :: (f a -> m (f a, Maybe (f a)))
-> (f a -> f a -> m (f a)) -> Stream m (f a) -> Stream m (f a)
splitInnerBySuffix f a -> m (f a, Maybe (f a))
splitter f a -> f a -> m (f a)
joiner (Stream State Stream m (f a) -> s -> m (Step s (f a))
step1 s
state1) =
    (State Stream m (f a)
 -> SplitState s (f a) -> m (Step (SplitState s (f a)) (f a)))
-> SplitState s (f a) -> Stream m (f a)
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m (f a)
-> SplitState s (f a) -> m (Step (SplitState s (f a)) (f a))
step (s -> SplitState s (f a)
forall s arr. s -> SplitState s arr
SplitInitial s
state1)

    where

    {-# INLINE_LATE step #-}
    step :: State Stream m (f a)
-> SplitState s (f a) -> m (Step (SplitState s (f a)) (f a))
step State Stream m (f a)
gst (SplitInitial s
st) = do
        Step s (f a)
r <- State Stream m (f a) -> s -> m (Step s (f a))
step1 State Stream m (f a)
gst s
st
        case Step s (f a)
r of
            Yield f a
x s
s -> do
                (f a
x1, Maybe (f a)
mx2) <- f a -> m (f a, Maybe (f a))
splitter f a
x
                Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ case Maybe (f a)
mx2 of
                    Maybe (f a)
Nothing -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitBuffering s
s f a
x1)
                    Just f a
x2 -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (f a -> SplitState s (f a) -> SplitState s (f a)
forall s arr. arr -> SplitState s arr -> SplitState s arr
SplitYielding f a
x1 (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitSplitting s
s f a
x2))
            Skip s
s -> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (s -> SplitState s (f a)
forall s arr. s -> SplitState s arr
SplitInitial s
s)
            Step s (f a)
Stop -> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitState s (f a)) (f a)
forall s a. Step s a
Stop

    step State Stream m (f a)
gst (SplitBuffering s
st f a
buf) = do
        Step s (f a)
r <- State Stream m (f a) -> s -> m (Step s (f a))
step1 State Stream m (f a)
gst s
st
        case Step s (f a)
r of
            Yield f a
x s
s -> do
                (f a
x1, Maybe (f a)
mx2) <- f a -> m (f a, Maybe (f a))
splitter f a
x
                f a
buf' <- f a -> f a -> m (f a)
joiner f a
buf f a
x1
                Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ case Maybe (f a)
mx2 of
                    Maybe (f a)
Nothing -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitBuffering s
s f a
buf')
                    Just f a
x2 -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (f a -> SplitState s (f a) -> SplitState s (f a)
forall s arr. arr -> SplitState s arr -> SplitState s arr
SplitYielding f a
buf' (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitSplitting s
s f a
x2))
            Skip s
s -> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitBuffering s
s f a
buf)
            Step s (f a)
Stop -> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$
                if f a
buf f a -> f a -> Bool
forall a. Eq a => a -> a -> Bool
== f a
forall a. Monoid a => a
mempty
                then Step (SplitState s (f a)) (f a)
forall s a. Step s a
Stop
                else SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (f a -> SplitState s (f a) -> SplitState s (f a)
forall s arr. arr -> SplitState s arr -> SplitState s arr
SplitYielding f a
buf SplitState s (f a)
forall s arr. SplitState s arr
SplitFinishing)

    step State Stream m (f a)
_ (SplitSplitting s
st f a
buf) = do
        (f a
x1, Maybe (f a)
mx2) <- f a -> m (f a, Maybe (f a))
splitter f a
buf
        Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ case Maybe (f a)
mx2 of
                Maybe (f a)
Nothing -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (SplitState s (f a) -> Step (SplitState s (f a)) (f a))
-> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall a b. (a -> b) -> a -> b
$ s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitBuffering s
st f a
x1
                Just f a
x2 -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. s -> Step s a
Skip (SplitState s (f a) -> Step (SplitState s (f a)) (f a))
-> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall a b. (a -> b) -> a -> b
$ f a -> SplitState s (f a) -> SplitState s (f a)
forall s arr. arr -> SplitState s arr -> SplitState s arr
SplitYielding f a
x1 (s -> f a -> SplitState s (f a)
forall s arr. s -> arr -> SplitState s arr
SplitSplitting s
st f a
x2)

    step State Stream m (f a)
_ (SplitYielding f a
x SplitState s (f a)
next) = Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitState s (f a)) (f a)
 -> m (Step (SplitState s (f a)) (f a)))
-> Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall a b. (a -> b) -> a -> b
$ f a -> SplitState s (f a) -> Step (SplitState s (f a)) (f a)
forall s a. a -> s -> Step s a
Yield f a
x SplitState s (f a)
next
    step State Stream m (f a)
_ SplitState s (f a)
SplitFinishing = Step (SplitState s (f a)) (f a)
-> m (Step (SplitState s (f a)) (f a))
forall (m :: * -> *) a. Monad m => a -> m a
return Step (SplitState s (f a)) (f a)
forall s a. Step s a
Stop