module Streamly.Internal.Data.Fold
(
Step (..)
, Fold (..)
, foldl'
, foldlM'
, foldl1'
, foldr
, foldrM
, mkFold
, mkFold_
, mkFoldM
, mkFoldM_
, fromPure
, fromEffect
, sconcat
, mconcat
, foldMap
, foldMapM
, drain
, drainBy
, last
, length
, mean
, variance
, stdDev
, rollingHash
, rollingHashWithSalt
, rollingHashFirstN
, sum
, product
, maximumBy
, maximum
, minimumBy
, minimum
, toList
, toListRev
, toStream
, toStreamRev
, drainN
, genericIndex
, index
, head
, find
, lookup
, findIndex
, elemIndex
, null
, elem
, notElem
, all
, any
, and
, or
, with
, hoist
, generally
, rmapM
, transform
, lmap
, lmapM
, scan
, indexed
, filter
, filterM
, sampleFromthen
, catMaybes
, mapMaybe
, take
, takeEndBy
, takeEndBy_
, serialWith
, serial_
, splitAt
, teeWith
, tee
, teeWithFst
, teeWithMin
, distribute
, shortest
, longest
, partitionByM
, partitionByFstM
, partitionByMinM
, partitionBy
, partition
, demux
, demuxWith
, demuxDefault
, demuxDefaultWith
, classify
, classifyWith
, unzip
, unzipWith
, unzipWithM
, unzipWithFstM
, unzipWithMinM
, zipWithM
, zip
, many
, chunksOf
, chunksBetween
, concatSequence
, concatMap
, initialize
, snoc
, duplicate
, finish
, sequence
, mapM
)
where
import Data.Bifunctor (first)
import Data.Either (isLeft, isRight)
import Data.Functor.Identity (Identity(..))
import Data.Int (Int64)
import Data.Map.Strict (Map)
import Data.Maybe (isJust, fromJust)
#if __GLASGOW_HASKELL__ < 804
import Data.Semigroup (Semigroup((<>)))
#endif
import Streamly.Internal.BaseCompat (fromLeft, fromRight)
import Streamly.Internal.Data.Either.Strict
(Either'(..), fromLeft', fromRight', isLeft', isRight')
import Streamly.Internal.Data.Pipe.Type (Pipe (..), PipeState(..))
import Streamly.Internal.Data.Tuple.Strict (Tuple'(..), Tuple3'(..))
import Streamly.Internal.Data.Stream.Serial (SerialT(..))
import qualified Data.Map.Strict as Map
import qualified Streamly.Internal.Data.Pipe.Type as Pipe
import qualified Prelude
import Prelude hiding
( filter, foldl1, drop, dropWhile, take, takeWhile, zipWith
, foldl, foldr, map, mapM_, sequence, all, any, sum, product, elem
, notElem, maximum, minimum, head, last, tail, length, null
, reverse, iterate, init, and, or, lookup, (!!)
, scanl, scanl1, replicate, concatMap, mconcat, foldMap, unzip
, span, splitAt, break, mapM, zip)
import Streamly.Internal.Data.Fold.Type
hoist :: (forall x. m x -> n x) -> Fold m a b -> Fold n a b
hoist :: (forall x. m x -> n x) -> Fold m a b -> Fold n a b
hoist forall x. m x -> n x
f (Fold s -> a -> m (Step s b)
step m (Step s b)
initial s -> m b
extract) =
(s -> a -> n (Step s b))
-> n (Step s b) -> (s -> n b) -> Fold n a b
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
Fold (\s
x a
a -> m (Step s b) -> n (Step s b)
forall x. m x -> n x
f (m (Step s b) -> n (Step s b)) -> m (Step s b) -> n (Step s b)
forall a b. (a -> b) -> a -> b
$ s -> a -> m (Step s b)
step s
x a
a) (m (Step s b) -> n (Step s b)
forall x. m x -> n x
f m (Step s b)
initial) (m b -> n b
forall x. m x -> n x
f (m b -> n b) -> (s -> m b) -> s -> n b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> m b
extract)
generally :: Monad m => Fold Identity a b -> Fold m a b
generally :: Fold Identity a b -> Fold m a b
generally = (forall x. Identity x -> m x) -> Fold Identity a b -> Fold m a b
forall (m :: * -> *) (n :: * -> *) a b.
(forall x. m x -> n x) -> Fold m a b -> Fold n a b
hoist (x -> m x
forall (m :: * -> *) a. Monad m => a -> m a
return (x -> m x) -> (Identity x -> x) -> Identity x -> m x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Identity x -> x
forall a. Identity a -> a
runIdentity)
{-# DEPRECATED sequence "Use \"rmapM id\" instead" #-}
{-# INLINE sequence #-}
sequence :: Monad m => Fold m a (m b) -> Fold m a b
sequence :: Fold m a (m b) -> Fold m a b
sequence = (m b -> m b) -> Fold m a (m b) -> Fold m a b
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> Fold m a b -> Fold m a c
rmapM m b -> m b
forall a. a -> a
id
{-# DEPRECATED mapM "Use rmapM instead" #-}
{-# INLINE mapM #-}
mapM :: Monad m => (b -> m c) -> Fold m a b -> Fold m a c
mapM :: (b -> m c) -> Fold m a b -> Fold m a c
mapM = (b -> m c) -> Fold m a b -> Fold m a c
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> Fold m a b -> Fold m a c
rmapM
{-# INLINE mapMaybe #-}
mapMaybe :: (Monad m) => (a -> Maybe b) -> Fold m b r -> Fold m a r
mapMaybe :: (a -> Maybe b) -> Fold m b r -> Fold m a r
mapMaybe a -> Maybe b
f = (a -> Maybe b) -> Fold m (Maybe b) r -> Fold m a r
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap a -> Maybe b
f (Fold m (Maybe b) r -> Fold m a r)
-> (Fold m b r -> Fold m (Maybe b) r) -> Fold m b r -> Fold m a r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Maybe b -> Bool) -> Fold m (Maybe b) r -> Fold m (Maybe b) r
forall (m :: * -> *) a r.
Monad m =>
(a -> Bool) -> Fold m a r -> Fold m a r
filter Maybe b -> Bool
forall a. Maybe a -> Bool
isJust (Fold m (Maybe b) r -> Fold m (Maybe b) r)
-> (Fold m b r -> Fold m (Maybe b) r)
-> Fold m b r
-> Fold m (Maybe b) r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Maybe b -> b) -> Fold m b r -> Fold m (Maybe b) r
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap Maybe b -> b
forall a. HasCallStack => Maybe a -> a
fromJust
{-# INLINE transform #-}
transform :: Monad m => Pipe m a b -> Fold m b c -> Fold m a c
transform :: Pipe m a b -> Fold m b c -> Fold m a c
transform (Pipe s1 -> a -> m (Step (PipeState s1 s2) b)
pstep1 s2 -> m (Step (PipeState s1 s2) b)
pstep2 s1
pinitial) (Fold s -> b -> m (Step s c)
fstep m (Step s c)
finitial s -> m c
fextract) =
(Tuple' s1 s -> a -> m (Step (Tuple' s1 s) c))
-> m (Step (Tuple' s1 s) c) -> (Tuple' s1 s -> m c) -> Fold m a c
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
Fold Tuple' s1 s -> a -> m (Step (Tuple' s1 s) c)
step m (Step (Tuple' s1 s) c)
initial Tuple' s1 s -> m c
forall a. Tuple' a s -> m c
extract
where
initial :: m (Step (Tuple' s1 s) c)
initial = (s -> Tuple' s1 s) -> Step s c -> Step (Tuple' s1 s) c
forall (p :: * -> * -> *) a b c.
Bifunctor p =>
(a -> b) -> p a c -> p b c
first (s1 -> s -> Tuple' s1 s
forall a b. a -> b -> Tuple' a b
Tuple' s1
pinitial) (Step s c -> Step (Tuple' s1 s) c)
-> m (Step s c) -> m (Step (Tuple' s1 s) c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (Step s c)
finitial
step :: Tuple' s1 s -> a -> m (Step (Tuple' s1 s) c)
step (Tuple' s1
ps s
fs) a
x = do
Step (PipeState s1 s2) b
r <- s1 -> a -> m (Step (PipeState s1 s2) b)
pstep1 s1
ps a
x
s -> Step (PipeState s1 s2) b -> m (Step (Tuple' s1 s) c)
go s
fs Step (PipeState s1 s2) b
r
where
go :: s -> Step (PipeState s1 s2) b -> m (Step (Tuple' s1 s) c)
go s
acc (Pipe.Yield b
b (Consume s1
ps')) = do
Step s c
acc' <- s -> b -> m (Step s c)
fstep s
acc b
b
Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c))
-> Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall a b. (a -> b) -> a -> b
$ case Step s c
acc' of
Partial s
s -> Tuple' s1 s -> Step (Tuple' s1 s) c
forall s b. s -> Step s b
Partial (Tuple' s1 s -> Step (Tuple' s1 s) c)
-> Tuple' s1 s -> Step (Tuple' s1 s) c
forall a b. (a -> b) -> a -> b
$ s1 -> s -> Tuple' s1 s
forall a b. a -> b -> Tuple' a b
Tuple' s1
ps' s
s
Done c
b2 -> c -> Step (Tuple' s1 s) c
forall s b. b -> Step s b
Done c
b2
go s
acc (Pipe.Yield b
b (Produce s2
ps')) = do
Step s c
acc' <- s -> b -> m (Step s c)
fstep s
acc b
b
Step (PipeState s1 s2) b
r <- s2 -> m (Step (PipeState s1 s2) b)
pstep2 s2
ps'
case Step s c
acc' of
Partial s
s -> s -> Step (PipeState s1 s2) b -> m (Step (Tuple' s1 s) c)
go s
s Step (PipeState s1 s2) b
r
Done c
b2 -> Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c))
-> Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall a b. (a -> b) -> a -> b
$ c -> Step (Tuple' s1 s) c
forall s b. b -> Step s b
Done c
b2
go s
acc (Pipe.Continue (Consume s1
ps')) =
Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c))
-> Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall a b. (a -> b) -> a -> b
$ Tuple' s1 s -> Step (Tuple' s1 s) c
forall s b. s -> Step s b
Partial (Tuple' s1 s -> Step (Tuple' s1 s) c)
-> Tuple' s1 s -> Step (Tuple' s1 s) c
forall a b. (a -> b) -> a -> b
$ s1 -> s -> Tuple' s1 s
forall a b. a -> b -> Tuple' a b
Tuple' s1
ps' s
acc
go s
acc (Pipe.Continue (Produce s2
ps')) = do
Step (PipeState s1 s2) b
r <- s2 -> m (Step (PipeState s1 s2) b)
pstep2 s2
ps'
s -> Step (PipeState s1 s2) b -> m (Step (Tuple' s1 s) c)
go s
acc Step (PipeState s1 s2) b
r
extract :: Tuple' a s -> m c
extract (Tuple' a
_ s
fs) = s -> m c
fextract s
fs
{-# INLINE scan #-}
scan :: Monad m => Fold m a b -> Fold m b c -> Fold m a c
scan :: Fold m a b -> Fold m b c -> Fold m a c
scan (Fold s -> a -> m (Step s b)
stepL m (Step s b)
initialL s -> m b
extractL) (Fold s -> b -> m (Step s c)
stepR m (Step s c)
initialR s -> m c
extractR) =
((s, s) -> a -> m (Step (s, s) c))
-> m (Step (s, s) c) -> ((s, s) -> m c) -> Fold m a c
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
Fold (s, s) -> a -> m (Step (s, s) c)
step m (Step (s, s) c)
initial (s, s) -> m c
forall a. (a, s) -> m c
extract
where
runStep :: m (Step s b) -> s -> m (Step (s, s) c)
runStep m (Step s b)
actionL s
sR = do
Step s b
rL <- m (Step s b)
actionL
case Step s b
rL of
Done b
bL -> do
Step s c
rR <- s -> b -> m (Step s c)
stepR s
sR b
bL
case Step s c
rR of
Partial s
sR1 -> c -> Step (s, s) c
forall s b. b -> Step s b
Done (c -> Step (s, s) c) -> m c -> m (Step (s, s) c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m c
extractR s
sR1
Done c
bR -> Step (s, s) c -> m (Step (s, s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (s, s) c -> m (Step (s, s) c))
-> Step (s, s) c -> m (Step (s, s) c)
forall a b. (a -> b) -> a -> b
$ c -> Step (s, s) c
forall s b. b -> Step s b
Done c
bR
Partial s
sL -> do
!b
b <- s -> m b
extractL s
sL
Step s c
rR <- s -> b -> m (Step s c)
stepR s
sR b
b
Step (s, s) c -> m (Step (s, s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (s, s) c -> m (Step (s, s) c))
-> Step (s, s) c -> m (Step (s, s) c)
forall a b. (a -> b) -> a -> b
$ case Step s c
rR of
Partial s
sR1 -> (s, s) -> Step (s, s) c
forall s b. s -> Step s b
Partial (s
sL, s
sR1)
Done c
bR -> c -> Step (s, s) c
forall s b. b -> Step s b
Done c
bR
initial :: m (Step (s, s) c)
initial = do
Step s c
r <- m (Step s c)
initialR
case Step s c
r of
Partial s
sR -> m (Step s b) -> s -> m (Step (s, s) c)
runStep m (Step s b)
initialL s
sR
Done c
b -> Step (s, s) c -> m (Step (s, s) c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (s, s) c -> m (Step (s, s) c))
-> Step (s, s) c -> m (Step (s, s) c)
forall a b. (a -> b) -> a -> b
$ c -> Step (s, s) c
forall s b. b -> Step s b
Done c
b
step :: (s, s) -> a -> m (Step (s, s) c)
step (s
sL, s
sR) a
x = m (Step s b) -> s -> m (Step (s, s) c)
runStep (s -> a -> m (Step s b)
stepL s
sL a
x) s
sR
extract :: (a, s) -> m c
extract = s -> m c
extractR (s -> m c) -> ((a, s) -> s) -> (a, s) -> m c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a, s) -> s
forall a b. (a, b) -> b
snd
{-# INLINABLE drainBy #-}
drainBy :: Monad m => (a -> m b) -> Fold m a ()
drainBy :: (a -> m b) -> Fold m a ()
drainBy a -> m b
f = (a -> m b) -> Fold m b () -> Fold m a ()
forall (m :: * -> *) a b r.
Monad m =>
(a -> m b) -> Fold m b r -> Fold m a r
lmapM a -> m b
f Fold m b ()
forall (m :: * -> *) a. Monad m => Fold m a ()
drain
{-# INLINABLE last #-}
last :: Monad m => Fold m a (Maybe a)
last :: Fold m a (Maybe a)
last = (a -> a -> a) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> a -> a) -> Fold m a (Maybe a)
foldl1' (\a
_ a
x -> a
x)
{-# INLINE genericLength #-}
genericLength :: (Monad m, Num b) => Fold m a b
genericLength :: Fold m a b
genericLength = (b -> a -> b) -> b -> Fold m a b
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' (\b
n a
_ -> b
n b -> b -> b
forall a. Num a => a -> a -> a
+ b
1) b
0
{-# INLINE length #-}
length :: Monad m => Fold m a Int
length :: Fold m a Int
length = Fold m a Int
forall (m :: * -> *) b a. (Monad m, Num b) => Fold m a b
genericLength
{-# INLINE sum #-}
sum :: (Monad m, Num a) => Fold m a a
sum :: Fold m a a
sum = (a -> a -> a) -> a -> Fold m a a
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' a -> a -> a
forall a. Num a => a -> a -> a
(+) a
0
{-# INLINE product #-}
product :: (Monad m, Num a, Eq a) => Fold m a a
product :: Fold m a a
product = (a -> a -> Step a a) -> Step a a -> Fold m a a
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> Step b b) -> Step b b -> Fold m a b
mkFold_ a -> a -> Step a a
forall s b. (Eq s, Num s, Num b) => s -> s -> Step s b
step (a -> Step a a
forall s b. s -> Step s b
Partial a
1)
where
step :: s -> s -> Step s b
step s
x s
a =
if s
a s -> s -> Bool
forall a. Eq a => a -> a -> Bool
== s
0
then b -> Step s b
forall s b. b -> Step s b
Done b
0
else s -> Step s b
forall s b. s -> Step s b
Partial (s -> Step s b) -> s -> Step s b
forall a b. (a -> b) -> a -> b
$ s
x s -> s -> s
forall a. Num a => a -> a -> a
* s
a
{-# INLINE maximumBy #-}
maximumBy :: Monad m => (a -> a -> Ordering) -> Fold m a (Maybe a)
maximumBy :: (a -> a -> Ordering) -> Fold m a (Maybe a)
maximumBy a -> a -> Ordering
cmp = (a -> a -> a) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> a -> a) -> Fold m a (Maybe a)
foldl1' a -> a -> a
max'
where
max' :: a -> a -> a
max' a
x a
y =
case a -> a -> Ordering
cmp a
x a
y of
Ordering
GT -> a
x
Ordering
_ -> a
y
{-# INLINE maximum #-}
maximum :: (Monad m, Ord a) => Fold m a (Maybe a)
maximum :: Fold m a (Maybe a)
maximum = (a -> a -> a) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> a -> a) -> Fold m a (Maybe a)
foldl1' a -> a -> a
forall a. Ord a => a -> a -> a
max
{-# INLINE minimumBy #-}
minimumBy :: Monad m => (a -> a -> Ordering) -> Fold m a (Maybe a)
minimumBy :: (a -> a -> Ordering) -> Fold m a (Maybe a)
minimumBy a -> a -> Ordering
cmp = (a -> a -> a) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> a -> a) -> Fold m a (Maybe a)
foldl1' a -> a -> a
min'
where
min' :: a -> a -> a
min' a
x a
y =
case a -> a -> Ordering
cmp a
x a
y of
Ordering
GT -> a
y
Ordering
_ -> a
x
{-# INLINE minimum #-}
minimum :: (Monad m, Ord a) => Fold m a (Maybe a)
minimum :: Fold m a (Maybe a)
minimum = (a -> a -> a) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> a -> a) -> Fold m a (Maybe a)
foldl1' a -> a -> a
forall a. Ord a => a -> a -> a
min
{-# INLINABLE mean #-}
mean :: (Monad m, Fractional a) => Fold m a a
mean :: Fold m a a
mean = (Tuple' a a -> a) -> Fold m a (Tuple' a a) -> Fold m a a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Tuple' a a -> a
forall a b. Tuple' a b -> a
done (Fold m a (Tuple' a a) -> Fold m a a)
-> Fold m a (Tuple' a a) -> Fold m a a
forall a b. (a -> b) -> a -> b
$ (Tuple' a a -> a -> Tuple' a a)
-> Tuple' a a -> Fold m a (Tuple' a a)
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' Tuple' a a -> a -> Tuple' a a
forall b. Fractional b => Tuple' b b -> b -> Tuple' b b
step Tuple' a a
begin
where
begin :: Tuple' a a
begin = a -> a -> Tuple' a a
forall a b. a -> b -> Tuple' a b
Tuple' a
0 a
0
step :: Tuple' b b -> b -> Tuple' b b
step (Tuple' b
x b
n) b
y =
let n1 :: b
n1 = b
n b -> b -> b
forall a. Num a => a -> a -> a
+ b
1
in b -> b -> Tuple' b b
forall a b. a -> b -> Tuple' a b
Tuple' (b
x b -> b -> b
forall a. Num a => a -> a -> a
+ (b
y b -> b -> b
forall a. Num a => a -> a -> a
- b
x) b -> b -> b
forall a. Fractional a => a -> a -> a
/ b
n1) b
n1
done :: Tuple' a b -> a
done (Tuple' a
x b
_) = a
x
{-# INLINABLE variance #-}
variance :: (Monad m, Fractional a) => Fold m a a
variance :: Fold m a a
variance = (Tuple3' a a a -> a) -> Fold m a (Tuple3' a a a) -> Fold m a a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Tuple3' a a a -> a
forall a b. Fractional a => Tuple3' a b a -> a
done (Fold m a (Tuple3' a a a) -> Fold m a a)
-> Fold m a (Tuple3' a a a) -> Fold m a a
forall a b. (a -> b) -> a -> b
$ (Tuple3' a a a -> a -> Tuple3' a a a)
-> Tuple3' a a a -> Fold m a (Tuple3' a a a)
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' Tuple3' a a a -> a -> Tuple3' a a a
forall b. Fractional b => Tuple3' b b b -> b -> Tuple3' b b b
step Tuple3' a a a
begin
where
begin :: Tuple3' a a a
begin = a -> a -> a -> Tuple3' a a a
forall a b c. a -> b -> c -> Tuple3' a b c
Tuple3' a
0 a
0 a
0
step :: Tuple3' b b b -> b -> Tuple3' b b b
step (Tuple3' b
n b
mean_ b
m2) b
x = b -> b -> b -> Tuple3' b b b
forall a b c. a -> b -> c -> Tuple3' a b c
Tuple3' b
n' b
mean' b
m2'
where
n' :: b
n' = b
n b -> b -> b
forall a. Num a => a -> a -> a
+ b
1
mean' :: b
mean' = (b
n b -> b -> b
forall a. Num a => a -> a -> a
* b
mean_ b -> b -> b
forall a. Num a => a -> a -> a
+ b
x) b -> b -> b
forall a. Fractional a => a -> a -> a
/ (b
n b -> b -> b
forall a. Num a => a -> a -> a
+ b
1)
delta :: b
delta = b
x b -> b -> b
forall a. Num a => a -> a -> a
- b
mean_
m2' :: b
m2' = b
m2 b -> b -> b
forall a. Num a => a -> a -> a
+ b
delta b -> b -> b
forall a. Num a => a -> a -> a
* b
delta b -> b -> b
forall a. Num a => a -> a -> a
* b
n b -> b -> b
forall a. Fractional a => a -> a -> a
/ (b
n b -> b -> b
forall a. Num a => a -> a -> a
+ b
1)
done :: Tuple3' a b a -> a
done (Tuple3' a
n b
_ a
m2) = a
m2 a -> a -> a
forall a. Fractional a => a -> a -> a
/ a
n
{-# INLINABLE stdDev #-}
stdDev :: (Monad m, Floating a) => Fold m a a
stdDev :: Fold m a a
stdDev = a -> a
forall a. Floating a => a -> a
sqrt (a -> a) -> Fold m a a -> Fold m a a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Fold m a a
forall (m :: * -> *) a. (Monad m, Fractional a) => Fold m a a
variance
{-# INLINABLE rollingHashWithSalt #-}
rollingHashWithSalt :: (Monad m, Enum a) => Int64 -> Fold m a Int64
rollingHashWithSalt :: Int64 -> Fold m a Int64
rollingHashWithSalt = (Int64 -> a -> Int64) -> Int64 -> Fold m a Int64
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' Int64 -> a -> Int64
forall a. Enum a => Int64 -> a -> Int64
step
where
k :: Int64
k = Int64
2891336453 :: Int64
step :: Int64 -> a -> Int64
step Int64
cksum a
a = Int64
cksum Int64 -> Int64 -> Int64
forall a. Num a => a -> a -> a
* Int64
k Int64 -> Int64 -> Int64
forall a. Num a => a -> a -> a
+ Int -> Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
a)
{-# INLINE defaultSalt #-}
defaultSalt :: Int64
defaultSalt :: Int64
defaultSalt = -Int64
2578643520546668380
{-# INLINABLE rollingHash #-}
rollingHash :: (Monad m, Enum a) => Fold m a Int64
rollingHash :: Fold m a Int64
rollingHash = Int64 -> Fold m a Int64
forall (m :: * -> *) a.
(Monad m, Enum a) =>
Int64 -> Fold m a Int64
rollingHashWithSalt Int64
defaultSalt
{-# INLINABLE rollingHashFirstN #-}
rollingHashFirstN :: (Monad m, Enum a) => Int -> Fold m a Int64
rollingHashFirstN :: Int -> Fold m a Int64
rollingHashFirstN Int
n = Int -> Fold m a Int64 -> Fold m a Int64
forall (m :: * -> *) a b.
Monad m =>
Int -> Fold m a b -> Fold m a b
take Int
n Fold m a Int64
forall (m :: * -> *) a. (Monad m, Enum a) => Fold m a Int64
rollingHash
{-# INLINE sconcat #-}
sconcat :: (Monad m, Semigroup a) => a -> Fold m a a
sconcat :: a -> Fold m a a
sconcat = (a -> a -> a) -> a -> Fold m a a
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' a -> a -> a
forall a. Semigroup a => a -> a -> a
(<>)
{-# INLINE mconcat #-}
mconcat ::
( Monad m
#if !MIN_VERSION_base(4,11,0)
, Semigroup a
#endif
, Monoid a) => Fold m a a
mconcat :: Fold m a a
mconcat = a -> Fold m a a
forall (m :: * -> *) a. (Monad m, Semigroup a) => a -> Fold m a a
sconcat a
forall a. Monoid a => a
mempty
{-# INLINABLE foldMap #-}
foldMap :: (Monad m, Monoid b
#if !MIN_VERSION_base(4,11,0)
, Semigroup b
#endif
) => (a -> b) -> Fold m a b
foldMap :: (a -> b) -> Fold m a b
foldMap a -> b
f = (a -> b) -> Fold m b b -> Fold m a b
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap a -> b
f Fold m b b
forall (m :: * -> *) a. (Monad m, Monoid a) => Fold m a a
mconcat
{-# INLINABLE foldMapM #-}
foldMapM :: (Monad m, Monoid b) => (a -> m b) -> Fold m a b
foldMapM :: (a -> m b) -> Fold m a b
foldMapM a -> m b
act = (b -> a -> m b) -> m b -> Fold m a b
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> m b) -> m b -> Fold m a b
foldlM' b -> a -> m b
step (b -> m b
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
forall a. Monoid a => a
mempty)
where
step :: b -> a -> m b
step b
m a
a = do
b
m' <- a -> m b
act a
a
b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> b -> m b
forall a b. (a -> b) -> a -> b
$! b -> b -> b
forall a. Monoid a => a -> a -> a
mappend b
m b
m'
{-# INLINABLE toListRev #-}
toListRev :: Monad m => Fold m a [a]
toListRev :: Fold m a [a]
toListRev = ([a] -> a -> [a]) -> [a] -> Fold m a [a]
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' ((a -> [a] -> [a]) -> [a] -> a -> [a]
forall a b c. (a -> b -> c) -> b -> a -> c
flip (:)) []
{-# INLINABLE drainN #-}
drainN :: Monad m => Int -> Fold m a ()
drainN :: Int -> Fold m a ()
drainN Int
n = Int -> Fold m a () -> Fold m a ()
forall (m :: * -> *) a b.
Monad m =>
Int -> Fold m a b -> Fold m a b
take Int
n Fold m a ()
forall (m :: * -> *) a. Monad m => Fold m a ()
drain
{-# INLINABLE genericIndex #-}
genericIndex :: (Integral i, Monad m) => i -> Fold m a (Maybe a)
genericIndex :: i -> Fold m a (Maybe a)
genericIndex i
i = (i -> a -> Step i (Maybe a))
-> Step i (Maybe a) -> (i -> Maybe a) -> Fold m a (Maybe a)
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
mkFold i -> a -> Step i (Maybe a)
forall a. i -> a -> Step i (Maybe a)
step (i -> Step i (Maybe a)
forall s b. s -> Step s b
Partial i
0) (Maybe a -> i -> Maybe a
forall a b. a -> b -> a
const Maybe a
forall a. Maybe a
Nothing)
where
step :: i -> a -> Step i (Maybe a)
step i
j a
a =
if i
i i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
j
then Maybe a -> Step i (Maybe a)
forall s b. b -> Step s b
Done (Maybe a -> Step i (Maybe a)) -> Maybe a -> Step i (Maybe a)
forall a b. (a -> b) -> a -> b
$ a -> Maybe a
forall a. a -> Maybe a
Just a
a
else i -> Step i (Maybe a)
forall s b. s -> Step s b
Partial (i
j i -> i -> i
forall a. Num a => a -> a -> a
+ i
1)
{-# INLINABLE index #-}
index :: Monad m => Int -> Fold m a (Maybe a)
index :: Int -> Fold m a (Maybe a)
index = Int -> Fold m a (Maybe a)
forall i (m :: * -> *) a.
(Integral i, Monad m) =>
i -> Fold m a (Maybe a)
genericIndex
{-# INLINABLE head #-}
head :: Monad m => Fold m a (Maybe a)
head :: Fold m a (Maybe a)
head = (Maybe a -> a -> Step (Maybe a) (Maybe a))
-> Step (Maybe a) (Maybe a) -> Fold m a (Maybe a)
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> Step b b) -> Step b b -> Fold m a b
mkFold_ ((a -> Step (Maybe a) (Maybe a))
-> Maybe a -> a -> Step (Maybe a) (Maybe a)
forall a b. a -> b -> a
const (Maybe a -> Step (Maybe a) (Maybe a)
forall s b. b -> Step s b
Done (Maybe a -> Step (Maybe a) (Maybe a))
-> (a -> Maybe a) -> a -> Step (Maybe a) (Maybe a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Maybe a
forall a. a -> Maybe a
Just)) (Maybe a -> Step (Maybe a) (Maybe a)
forall s b. s -> Step s b
Partial Maybe a
forall a. Maybe a
Nothing)
{-# INLINABLE find #-}
find :: Monad m => (a -> Bool) -> Fold m a (Maybe a)
find :: (a -> Bool) -> Fold m a (Maybe a)
find a -> Bool
predicate = (() -> a -> Step () (Maybe a))
-> Step () (Maybe a) -> (() -> Maybe a) -> Fold m a (Maybe a)
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
mkFold () -> a -> Step () (Maybe a)
step (() -> Step () (Maybe a)
forall s b. s -> Step s b
Partial ()) (Maybe a -> () -> Maybe a
forall a b. a -> b -> a
const Maybe a
forall a. Maybe a
Nothing)
where
step :: () -> a -> Step () (Maybe a)
step () a
a =
if a -> Bool
predicate a
a
then Maybe a -> Step () (Maybe a)
forall s b. b -> Step s b
Done (a -> Maybe a
forall a. a -> Maybe a
Just a
a)
else () -> Step () (Maybe a)
forall s b. s -> Step s b
Partial ()
{-# INLINABLE lookup #-}
lookup :: (Eq a, Monad m) => a -> Fold m (a,b) (Maybe b)
lookup :: a -> Fold m (a, b) (Maybe b)
lookup a
a0 = (() -> (a, b) -> Step () (Maybe b))
-> Step () (Maybe b) -> (() -> Maybe b) -> Fold m (a, b) (Maybe b)
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
mkFold () -> (a, b) -> Step () (Maybe b)
forall a. () -> (a, a) -> Step () (Maybe a)
step (() -> Step () (Maybe b)
forall s b. s -> Step s b
Partial ()) (Maybe b -> () -> Maybe b
forall a b. a -> b -> a
const Maybe b
forall a. Maybe a
Nothing)
where
step :: () -> (a, a) -> Step () (Maybe a)
step () (a
a, a
b) =
if a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
a0
then Maybe a -> Step () (Maybe a)
forall s b. b -> Step s b
Done (Maybe a -> Step () (Maybe a)) -> Maybe a -> Step () (Maybe a)
forall a b. (a -> b) -> a -> b
$ a -> Maybe a
forall a. a -> Maybe a
Just a
b
else () -> Step () (Maybe a)
forall s b. s -> Step s b
Partial ()
{-# INLINABLE findIndex #-}
findIndex :: Monad m => (a -> Bool) -> Fold m a (Maybe Int)
findIndex :: (a -> Bool) -> Fold m a (Maybe Int)
findIndex a -> Bool
predicate = (Int -> a -> Step Int (Maybe Int))
-> Step Int (Maybe Int)
-> (Int -> Maybe Int)
-> Fold m a (Maybe Int)
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
mkFold Int -> a -> Step Int (Maybe Int)
forall s. Num s => s -> a -> Step s (Maybe s)
step (Int -> Step Int (Maybe Int)
forall s b. s -> Step s b
Partial Int
0) (Maybe Int -> Int -> Maybe Int
forall a b. a -> b -> a
const Maybe Int
forall a. Maybe a
Nothing)
where
step :: s -> a -> Step s (Maybe s)
step s
i a
a =
if a -> Bool
predicate a
a
then Maybe s -> Step s (Maybe s)
forall s b. b -> Step s b
Done (Maybe s -> Step s (Maybe s)) -> Maybe s -> Step s (Maybe s)
forall a b. (a -> b) -> a -> b
$ s -> Maybe s
forall a. a -> Maybe a
Just s
i
else s -> Step s (Maybe s)
forall s b. s -> Step s b
Partial (s
i s -> s -> s
forall a. Num a => a -> a -> a
+ s
1)
{-# INLINABLE elemIndex #-}
elemIndex :: (Eq a, Monad m) => a -> Fold m a (Maybe Int)
elemIndex :: a -> Fold m a (Maybe Int)
elemIndex a
a = (a -> Bool) -> Fold m a (Maybe Int)
forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Fold m a (Maybe Int)
findIndex (a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
==)
{-# INLINABLE null #-}
null :: Monad m => Fold m a Bool
null :: Fold m a Bool
null = (() -> a -> Step () Bool)
-> Step () Bool -> (() -> Bool) -> Fold m a Bool
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
mkFold (\() a
_ -> Bool -> Step () Bool
forall s b. b -> Step s b
Done Bool
False) (() -> Step () Bool
forall s b. s -> Step s b
Partial ()) (Bool -> () -> Bool
forall a b. a -> b -> a
const Bool
True)
{-# INLINE any #-}
any :: Monad m => (a -> Bool) -> Fold m a Bool
any :: (a -> Bool) -> Fold m a Bool
any a -> Bool
predicate = (Bool -> a -> Step Bool Bool) -> Step Bool Bool -> Fold m a Bool
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> Step b b) -> Step b b -> Fold m a b
mkFold_ Bool -> a -> Step Bool Bool
forall p. p -> a -> Step Bool Bool
step Step Bool Bool
forall b. Step Bool b
initial
where
initial :: Step Bool b
initial = Bool -> Step Bool b
forall s b. s -> Step s b
Partial Bool
False
step :: p -> a -> Step Bool Bool
step p
_ a
a =
if a -> Bool
predicate a
a
then Bool -> Step Bool Bool
forall s b. b -> Step s b
Done Bool
True
else Bool -> Step Bool Bool
forall s b. s -> Step s b
Partial Bool
False
{-# INLINABLE elem #-}
elem :: (Eq a, Monad m) => a -> Fold m a Bool
elem :: a -> Fold m a Bool
elem a
a = (a -> Bool) -> Fold m a Bool
forall (m :: * -> *) a. Monad m => (a -> Bool) -> Fold m a Bool
any (a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
==)
{-# INLINABLE all #-}
all :: Monad m => (a -> Bool) -> Fold m a Bool
all :: (a -> Bool) -> Fold m a Bool
all a -> Bool
predicate = (Bool -> a -> Step Bool Bool) -> Step Bool Bool -> Fold m a Bool
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> Step b b) -> Step b b -> Fold m a b
mkFold_ Bool -> a -> Step Bool Bool
forall p. p -> a -> Step Bool Bool
step Step Bool Bool
forall b. Step Bool b
initial
where
initial :: Step Bool b
initial = Bool -> Step Bool b
forall s b. s -> Step s b
Partial Bool
True
step :: p -> a -> Step Bool Bool
step p
_ a
a =
if a -> Bool
predicate a
a
then Bool -> Step Bool Bool
forall s b. s -> Step s b
Partial Bool
True
else Bool -> Step Bool Bool
forall s b. b -> Step s b
Done Bool
False
{-# INLINABLE notElem #-}
notElem :: (Eq a, Monad m) => a -> Fold m a Bool
notElem :: a -> Fold m a Bool
notElem a
a = (a -> Bool) -> Fold m a Bool
forall (m :: * -> *) a. Monad m => (a -> Bool) -> Fold m a Bool
all (a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
/=)
{-# INLINE and #-}
and :: Monad m => Fold m Bool Bool
and :: Fold m Bool Bool
and = (Bool -> Bool) -> Fold m Bool Bool
forall (m :: * -> *) a. Monad m => (a -> Bool) -> Fold m a Bool
all (Bool -> Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Bool
True)
{-# INLINE or #-}
or :: Monad m => Fold m Bool Bool
or :: Fold m Bool Bool
or = (Bool -> Bool) -> Fold m Bool Bool
forall (m :: * -> *) a. Monad m => (a -> Bool) -> Fold m a Bool
any (Bool -> Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Bool
True)
{-# INLINE splitAt #-}
splitAt
:: Monad m
=> Int
-> Fold m a b
-> Fold m a c
-> Fold m a (b, c)
splitAt :: Int -> Fold m a b -> Fold m a c -> Fold m a (b, c)
splitAt Int
n Fold m a b
fld = (b -> c -> (b, c)) -> Fold m a b -> Fold m a c -> Fold m a (b, c)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
serialWith (,) (Int -> Fold m a b -> Fold m a b
forall (m :: * -> *) a b.
Monad m =>
Int -> Fold m a b -> Fold m a b
take Int
n Fold m a b
fld)
{-# INLINE takeEndBy_ #-}
takeEndBy_ :: Monad m => (a -> Bool) -> Fold m a b -> Fold m a b
takeEndBy_ :: (a -> Bool) -> Fold m a b -> Fold m a b
takeEndBy_ a -> Bool
predicate (Fold s -> a -> m (Step s b)
fstep m (Step s b)
finitial s -> m b
fextract) =
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
Fold s -> a -> m (Step s b)
step m (Step s b)
finitial s -> m b
fextract
where
step :: s -> a -> m (Step s b)
step s
s a
a =
if Bool -> Bool
not (a -> Bool
predicate a
a)
then s -> a -> m (Step s b)
fstep s
s a
a
else b -> Step s b
forall s b. b -> Step s b
Done (b -> Step s b) -> m b -> m (Step s b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
fextract s
s
{-# INLINE takeEndBy #-}
takeEndBy :: Monad m => (a -> Bool) -> Fold m a b -> Fold m a b
takeEndBy :: (a -> Bool) -> Fold m a b -> Fold m a b
takeEndBy a -> Bool
predicate (Fold s -> a -> m (Step s b)
fstep m (Step s b)
finitial s -> m b
fextract) =
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
Fold s -> a -> m (Step s b)
step m (Step s b)
finitial s -> m b
fextract
where
step :: s -> a -> m (Step s b)
step s
s a
a = do
Step s b
res <- s -> a -> m (Step s b)
fstep s
s a
a
if Bool -> Bool
not (a -> Bool
predicate a
a)
then Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step s b
res
else do
case Step s b
res of
Partial s
s1 -> b -> Step s b
forall s b. b -> Step s b
Done (b -> Step s b) -> m b -> m (Step s b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
fextract s
s1
Done b
b -> Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ b -> Step s b
forall s b. b -> Step s b
Done b
b
{-# INLINE tee #-}
tee :: Monad m => Fold m a b -> Fold m a c -> Fold m a (b,c)
tee :: Fold m a b -> Fold m a c -> Fold m a (b, c)
tee = (b -> c -> (b, c)) -> Fold m a b -> Fold m a c -> Fold m a (b, c)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWith (,)
{-# INLINE distribute #-}
distribute :: Monad m => [Fold m a b] -> Fold m a [b]
distribute :: [Fold m a b] -> Fold m a [b]
distribute = (Fold m a b -> Fold m a [b] -> Fold m a [b])
-> Fold m a [b] -> [Fold m a b] -> Fold m a [b]
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
Prelude.foldr ((b -> [b] -> [b]) -> Fold m a b -> Fold m a [b] -> Fold m a [b]
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWith (:)) ([b] -> Fold m a [b]
forall (m :: * -> *) b a. Applicative m => b -> Fold m a b
fromPure [])
{-# INLINE partitionByMUsing #-}
partitionByMUsing :: Monad m =>
( (x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y)
)
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
partitionByMUsing :: ((x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
partitionByMUsing (x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y)
t a -> m (Either b c)
f Fold m b x
fld1 Fold m c y
fld2 =
let l :: Fold m (Either b b) x
l = (Either b b -> b) -> Fold m b x -> Fold m (Either b b) x
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap (b -> Either b b -> b
forall a b. a -> Either a b -> a
fromLeft b
forall a. HasCallStack => a
undefined) Fold m b x
fld1
r :: Fold m (Either a c) y
r = (Either a c -> c) -> Fold m c y -> Fold m (Either a c) y
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap (c -> Either a c -> c
forall b a. b -> Either a b -> b
fromRight c
forall a. HasCallStack => a
undefined) Fold m c y
fld2
in (a -> m (Either b c))
-> Fold m (Either b c) (x, y) -> Fold m a (x, y)
forall (m :: * -> *) a b r.
Monad m =>
(a -> m b) -> Fold m b r -> Fold m a r
lmapM a -> m (Either b c)
f ((x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y)
t (,) ((Either b c -> Bool)
-> Fold m (Either b c) x -> Fold m (Either b c) x
forall (m :: * -> *) a r.
Monad m =>
(a -> Bool) -> Fold m a r -> Fold m a r
filter Either b c -> Bool
forall a b. Either a b -> Bool
isLeft Fold m (Either b c) x
forall b. Fold m (Either b b) x
l) ((Either b c -> Bool)
-> Fold m (Either b c) y -> Fold m (Either b c) y
forall (m :: * -> *) a r.
Monad m =>
(a -> Bool) -> Fold m a r -> Fold m a r
filter Either b c -> Bool
forall a b. Either a b -> Bool
isRight Fold m (Either b c) y
forall a. Fold m (Either a c) y
r))
{-# INLINE partitionByM #-}
partitionByM :: Monad m
=> (a -> m (Either b c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByM :: (a -> m (Either b c))
-> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByM = ((x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
partitionByMUsing (x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWith
{-# INLINE partitionByFstM #-}
partitionByFstM :: Monad m
=> (a -> m (Either b c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByFstM :: (a -> m (Either b c))
-> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByFstM = ((x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
partitionByMUsing (x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWithFst
{-# INLINE partitionByMinM #-}
partitionByMinM :: Monad m =>
(a -> m (Either b c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByMinM :: (a -> m (Either b c))
-> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByMinM = ((x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
partitionByMUsing (x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWithMin
{-# INLINE partitionBy #-}
partitionBy :: Monad m
=> (a -> Either b c) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionBy :: (a -> Either b c) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionBy a -> Either b c
f = (a -> m (Either b c))
-> Fold m b x -> Fold m c y -> Fold m a (x, y)
forall (m :: * -> *) a b c x y.
Monad m =>
(a -> m (Either b c))
-> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByM (Either b c -> m (Either b c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Either b c -> m (Either b c))
-> (a -> Either b c) -> a -> m (Either b c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Either b c
f)
{-# INLINE partition #-}
partition :: Monad m
=> Fold m b x -> Fold m c y -> Fold m (Either b c) (x, y)
partition :: Fold m b x -> Fold m c y -> Fold m (Either b c) (x, y)
partition = (Either b c -> Either b c)
-> Fold m b x -> Fold m c y -> Fold m (Either b c) (x, y)
forall (m :: * -> *) a b c x y.
Monad m =>
(a -> Either b c) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionBy Either b c -> Either b c
forall a. a -> a
id
{-# INLINE demuxWith #-}
demuxWith :: (Monad m, Ord k)
=> (a -> (k, a')) -> Map k (Fold m a' b) -> Fold m a (Map k b)
demuxWith :: (a -> (k, a')) -> Map k (Fold m a' b) -> Fold m a (Map k b)
demuxWith a -> (k, a')
f Map k (Fold m a' b)
kv = ((Map k b, ()) -> Map k b)
-> Fold m a (Map k b, ()) -> Fold m a (Map k b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Map k b, ()) -> Map k b
forall a b. (a, b) -> a
fst (Fold m a (Map k b, ()) -> Fold m a (Map k b))
-> Fold m a (Map k b, ()) -> Fold m a (Map k b)
forall a b. (a -> b) -> a -> b
$ (a -> (k, a'))
-> Map k (Fold m a' b)
-> Fold m (k, a') ()
-> Fold m a (Map k b, ())
forall (m :: * -> *) k a a' b c.
(Monad m, Ord k) =>
(a -> (k, a'))
-> Map k (Fold m a' b) -> Fold m (k, a') c -> Fold m a (Map k b, c)
demuxDefaultWith a -> (k, a')
f Map k (Fold m a' b)
kv Fold m (k, a') ()
forall (m :: * -> *) a. Monad m => Fold m a ()
drain
{-# INLINE demux #-}
demux :: (Monad m, Ord k)
=> Map k (Fold m a b) -> Fold m (k, a) (Map k b)
demux :: Map k (Fold m a b) -> Fold m (k, a) (Map k b)
demux = ((k, a) -> (k, a)) -> Map k (Fold m a b) -> Fold m (k, a) (Map k b)
forall (m :: * -> *) k a a' b.
(Monad m, Ord k) =>
(a -> (k, a')) -> Map k (Fold m a' b) -> Fold m a (Map k b)
demuxWith (k, a) -> (k, a)
forall a. a -> a
id
data DemuxState s b doneMap runMap =
DemuxMapAndDefault !s !doneMap !runMap
| DemuxOnlyMap b !doneMap !runMap
| DemuxOnlyDefault s !doneMap
{-# INLINE demuxDefaultWith #-}
demuxDefaultWith :: (Monad m, Ord k)
=> (a -> (k, a'))
-> Map k (Fold m a' b)
-> Fold m (k, a') c
-> Fold m a (Map k b, c)
demuxDefaultWith :: (a -> (k, a'))
-> Map k (Fold m a' b) -> Fold m (k, a') c -> Fold m a (Map k b, c)
demuxDefaultWith a -> (k, a')
f Map k (Fold m a' b)
kv (Fold s -> (k, a') -> m (Step s c)
dstep m (Step s c)
dinitial s -> m c
dextract) =
(DemuxState s c (Map k b) (Map k (Fold m a' b))
-> a
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)))
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
-> (DemuxState s c (Map k b) (Map k (Fold m a' b))
-> m (Map k b, c))
-> Fold m a (Map k b, c)
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
Fold DemuxState s c (Map k b) (Map k (Fold m a' b))
-> a
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
forall b.
DemuxState s c (Map k b) (Map k (Fold m a' b))
-> a
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
step m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
initial DemuxState s c (Map k b) (Map k (Fold m a' b)) -> m (Map k b, c)
forall k a a.
Ord k =>
DemuxState s c (Map k a) (Map k (Fold m a a)) -> m (Map k a, c)
extract
where
initial :: m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
initial = do
let runInit :: Fold m a b -> m (Either' b (Fold m a b))
runInit (Fold s -> a -> m (Step s b)
step1 m (Step s b)
initial1 s -> m b
done1) = do
Step s b
r <- m (Step s b)
initial1
Either' b (Fold m a b) -> m (Either' b (Fold m a b))
forall (m :: * -> *) a. Monad m => a -> m a
return
(Either' b (Fold m a b) -> m (Either' b (Fold m a b)))
-> Either' b (Fold m a b) -> m (Either' b (Fold m a b))
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
Partial s
_ -> Fold m a b -> Either' b (Fold m a b)
forall a b. b -> Either' a b
Right' ((s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
Fold s -> a -> m (Step s b)
step1 (Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step s b
r) s -> m b
done1)
Done b
b -> b -> Either' b (Fold m a b)
forall a b. a -> Either' a b
Left' b
b
Map k (Either' b (Fold m a' b))
kv1 <- (Fold m a' b -> m (Either' b (Fold m a' b)))
-> Map k (Fold m a' b) -> m (Map k (Either' b (Fold m a' b)))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
Prelude.mapM Fold m a' b -> m (Either' b (Fold m a' b))
forall (m :: * -> *) a b.
Monad m =>
Fold m a b -> m (Either' b (Fold m a b))
runInit Map k (Fold m a' b)
kv
let runMap :: Map k (Fold m a' b)
runMap = (Either' b (Fold m a' b) -> Fold m a' b)
-> Map k (Either' b (Fold m a' b)) -> Map k (Fold m a' b)
forall a b k. (a -> b) -> Map k a -> Map k b
Map.map Either' b (Fold m a' b) -> Fold m a' b
forall a b. Either' a b -> b
fromRight' (Map k (Either' b (Fold m a' b)) -> Map k (Fold m a' b))
-> Map k (Either' b (Fold m a' b)) -> Map k (Fold m a' b)
forall a b. (a -> b) -> a -> b
$ (Either' b (Fold m a' b) -> Bool)
-> Map k (Either' b (Fold m a' b))
-> Map k (Either' b (Fold m a' b))
forall a k. (a -> Bool) -> Map k a -> Map k a
Map.filter Either' b (Fold m a' b) -> Bool
forall a b. Either' a b -> Bool
isRight' Map k (Either' b (Fold m a' b))
kv1
doneMap :: Map k b
doneMap = (Either' b (Fold m a' b) -> b)
-> Map k (Either' b (Fold m a' b)) -> Map k b
forall a b k. (a -> b) -> Map k a -> Map k b
Map.map Either' b (Fold m a' b) -> b
forall a b. Either' a b -> a
fromLeft' (Map k (Either' b (Fold m a' b)) -> Map k b)
-> Map k (Either' b (Fold m a' b)) -> Map k b
forall a b. (a -> b) -> a -> b
$ (Either' b (Fold m a' b) -> Bool)
-> Map k (Either' b (Fold m a' b))
-> Map k (Either' b (Fold m a' b))
forall a k. (a -> Bool) -> Map k a -> Map k a
Map.filter Either' b (Fold m a' b) -> Bool
forall a b. Either' a b -> Bool
isLeft' Map k (Either' b (Fold m a' b))
kv1
Step s c
dres <- m (Step s c)
dinitial
Step (DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
forall a b. (a -> b) -> a -> b
$ case Step s c
dres of
Partial s
s ->
DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall s b. s -> Step s b
Partial
(DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall a b. (a -> b) -> a -> b
$ if Map k (Fold m a' b) -> Int
forall k a. Map k a -> Int
Map.size Map k (Fold m a' b)
runMap Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0
then s
-> Map k b
-> Map k (Fold m a' b)
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
forall s b doneMap runMap.
s -> doneMap -> runMap -> DemuxState s b doneMap runMap
DemuxMapAndDefault s
s Map k b
doneMap Map k (Fold m a' b)
runMap
else s -> Map k b -> DemuxState s c (Map k b) (Map k (Fold m a' b))
forall s b doneMap runMap.
s -> doneMap -> DemuxState s b doneMap runMap
DemuxOnlyDefault s
s Map k b
doneMap
Done c
b ->
if Map k (Fold m a' b) -> Int
forall k a. Map k a -> Int
Map.size Map k (Fold m a' b)
runMap Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0
then DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall s b. s -> Step s b
Partial (DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall a b. (a -> b) -> a -> b
$ c
-> Map k b
-> Map k (Fold m a' b)
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
forall s b doneMap runMap.
b -> doneMap -> runMap -> DemuxState s b doneMap runMap
DemuxOnlyMap c
b Map k b
doneMap Map k (Fold m a' b)
runMap
else (Map k b, c)
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall s b. b -> Step s b
Done (Map k b
doneMap, c
b)
{-# INLINE runFold #-}
runFold :: (Map p b -> Map p (Fold m a b) -> s)
-> (Map p b -> Step s b)
-> Map p b
-> Map p (Fold m a b)
-> Fold m a b
-> p
-> a
-> m (Step s b)
runFold Map p b -> Map p (Fold m a b) -> s
fPartial Map p b -> Step s b
fDone Map p b
doneMap Map p (Fold m a b)
runMap (Fold s -> a -> m (Step s b)
step1 m (Step s b)
initial1 s -> m b
done1) p
k a
a1 = do
Step s b
resi <- m (Step s b)
initial1
case Step s b
resi of
Partial s
st -> do
Step s b
res <- s -> a -> m (Step s b)
step1 s
st a
a1
Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ case Step s b
res of
Partial s
s ->
let fld :: Fold m a b
fld = (s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
Fold s -> a -> m (Step s b)
step1 (Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ s -> Step s b
forall s b. s -> Step s b
Partial s
s) s -> m b
done1
runMap1 :: Map p (Fold m a b)
runMap1 = p -> Fold m a b -> Map p (Fold m a b) -> Map p (Fold m a b)
forall k a. Ord k => k -> a -> Map k a -> Map k a
Map.insert p
k Fold m a b
fld Map p (Fold m a b)
runMap
in s -> Step s b
forall s b. s -> Step s b
Partial (s -> Step s b) -> s -> Step s b
forall a b. (a -> b) -> a -> b
$ Map p b -> Map p (Fold m a b) -> s
fPartial Map p b
doneMap Map p (Fold m a b)
runMap1
Done b
b -> do
let runMap1 :: Map p (Fold m a b)
runMap1 = p -> Map p (Fold m a b) -> Map p (Fold m a b)
forall k a. Ord k => k -> Map k a -> Map k a
Map.delete p
k Map p (Fold m a b)
runMap
doneMap1 :: Map p b
doneMap1 = p -> b -> Map p b -> Map p b
forall k a. Ord k => k -> a -> Map k a -> Map k a
Map.insert p
k b
b Map p b
doneMap
if Map p (Fold m a b) -> Int
forall k a. Map k a -> Int
Map.size Map p (Fold m a b)
runMap1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
then Map p b -> Step s b
fDone Map p b
doneMap1
else s -> Step s b
forall s b. s -> Step s b
Partial (s -> Step s b) -> s -> Step s b
forall a b. (a -> b) -> a -> b
$ Map p b -> Map p (Fold m a b) -> s
fPartial Map p b
doneMap1 Map p (Fold m a b)
runMap1
Done b
_ -> [Char] -> m (Step s b)
forall a. HasCallStack => [Char] -> a
error [Char]
"Bug: demuxDefaultWith: Done fold"
step :: DemuxState s c (Map k b) (Map k (Fold m a' b))
-> a
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
step (DemuxMapAndDefault s
dacc Map k b
doneMap Map k (Fold m a' b)
runMap) a
a = do
let (k
k, a'
a1) = a -> (k, a')
f a
a
case k -> Map k (Fold m a' b) -> Maybe (Fold m a' b)
forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup k
k Map k (Fold m a' b)
runMap of
Maybe (Fold m a' b)
Nothing -> do
Step s c
res <- s -> (k, a') -> m (Step s c)
dstep s
dacc (k
k, a'
a1)
Step (DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
forall a b. (a -> b) -> a -> b
$ DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall s b. s -> Step s b
Partial
(DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall a b. (a -> b) -> a -> b
$ case Step s c
res of
Partial s
s -> s
-> Map k b
-> Map k (Fold m a' b)
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
forall s b doneMap runMap.
s -> doneMap -> runMap -> DemuxState s b doneMap runMap
DemuxMapAndDefault s
s Map k b
doneMap Map k (Fold m a' b)
runMap
Done c
b -> c
-> Map k b
-> Map k (Fold m a' b)
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
forall s b doneMap runMap.
b -> doneMap -> runMap -> DemuxState s b doneMap runMap
DemuxOnlyMap c
b Map k b
doneMap Map k (Fold m a' b)
runMap
Just Fold m a' b
fld ->
(Map k b
-> Map k (Fold m a' b)
-> DemuxState s c (Map k b) (Map k (Fold m a' b)))
-> (Map k b
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
-> Map k b
-> Map k (Fold m a' b)
-> Fold m a' b
-> k
-> a'
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
forall (m :: * -> *) p b a s b.
(Monad m, Ord p) =>
(Map p b -> Map p (Fold m a b) -> s)
-> (Map p b -> Step s b)
-> Map p b
-> Map p (Fold m a b)
-> Fold m a b
-> p
-> a
-> m (Step s b)
runFold
(s
-> Map k b
-> Map k (Fold m a' b)
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
forall s b doneMap runMap.
s -> doneMap -> runMap -> DemuxState s b doneMap runMap
DemuxMapAndDefault s
dacc)
(DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall s b. s -> Step s b
Partial (DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
-> (Map k b -> DemuxState s c (Map k b) (Map k (Fold m a' b)))
-> Map k b
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> Map k b -> DemuxState s c (Map k b) (Map k (Fold m a' b))
forall s b doneMap runMap.
s -> doneMap -> DemuxState s b doneMap runMap
DemuxOnlyDefault s
dacc)
Map k b
doneMap Map k (Fold m a' b)
runMap Fold m a' b
fld k
k a'
a1
step (DemuxOnlyMap c
dval Map k b
doneMap Map k (Fold m a' b)
runMap) a
a = do
let (k
k, a'
a1) = a -> (k, a')
f a
a
case k -> Map k (Fold m a' b) -> Maybe (Fold m a' b)
forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup k
k Map k (Fold m a' b)
runMap of
Maybe (Fold m a' b)
Nothing -> Step (DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
forall a b. (a -> b) -> a -> b
$ DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall s b. s -> Step s b
Partial (DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall a b. (a -> b) -> a -> b
$ c
-> Map k b
-> Map k (Fold m a' b)
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
forall s b doneMap runMap.
b -> doneMap -> runMap -> DemuxState s b doneMap runMap
DemuxOnlyMap c
dval Map k b
doneMap Map k (Fold m a' b)
runMap
Just Fold m a' b
fld ->
(Map k b
-> Map k (Fold m a' b)
-> DemuxState s c (Map k b) (Map k (Fold m a' b)))
-> (Map k b
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
-> Map k b
-> Map k (Fold m a' b)
-> Fold m a' b
-> k
-> a'
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
forall (m :: * -> *) p b a s b.
(Monad m, Ord p) =>
(Map p b -> Map p (Fold m a b) -> s)
-> (Map p b -> Step s b)
-> Map p b
-> Map p (Fold m a b)
-> Fold m a b
-> p
-> a
-> m (Step s b)
runFold
(c
-> Map k b
-> Map k (Fold m a' b)
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
forall s b doneMap runMap.
b -> doneMap -> runMap -> DemuxState s b doneMap runMap
DemuxOnlyMap c
dval)
((Map k b, c)
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall s b. b -> Step s b
Done ((Map k b, c)
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
-> (Map k b -> (Map k b, c))
-> Map k b
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (, c
dval))
Map k b
doneMap Map k (Fold m a' b)
runMap Fold m a' b
fld k
k a'
a1
step (DemuxOnlyDefault s
dacc Map k b
doneMap) a
a = do
let (k
k, a'
a1) = a -> (k, a')
f a
a
Step s c
res <- s -> (k, a') -> m (Step s c)
dstep s
dacc (k
k, a'
a1)
Step (DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
-> m (Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
forall a b. (a -> b) -> a -> b
$ case Step s c
res of
Partial s
s -> DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall s b. s -> Step s b
Partial (DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c))
-> DemuxState s c (Map k b) (Map k (Fold m a' b))
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall a b. (a -> b) -> a -> b
$ s -> Map k b -> DemuxState s c (Map k b) (Map k (Fold m a' b))
forall s b doneMap runMap.
s -> doneMap -> DemuxState s b doneMap runMap
DemuxOnlyDefault s
s Map k b
doneMap
Done c
b -> (Map k b, c)
-> Step
(DemuxState s c (Map k b) (Map k (Fold m a' b))) (Map k b, c)
forall s b. b -> Step s b
Done (Map k b
doneMap, c
b)
runExtract :: Fold m a b -> m b
runExtract (Fold s -> a -> m (Step s b)
_ m (Step s b)
initial1 s -> m b
done1) = do
Step s b
res <- m (Step s b)
initial1
case Step s b
res of
Partial s
s -> s -> m b
done1 s
s
Done b
b -> b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
b
extract :: DemuxState s c (Map k a) (Map k (Fold m a a)) -> m (Map k a, c)
extract (DemuxMapAndDefault s
dacc Map k a
doneMap Map k (Fold m a a)
runMap) = do
c
b <- s -> m c
dextract s
dacc
Map k a
runMap1 <- (Fold m a a -> m a) -> Map k (Fold m a a) -> m (Map k a)
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
Prelude.mapM Fold m a a -> m a
forall (m :: * -> *) a b. Monad m => Fold m a b -> m b
runExtract Map k (Fold m a a)
runMap
(Map k a, c) -> m (Map k a, c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Map k a
doneMap Map k a -> Map k a -> Map k a
forall k a. Ord k => Map k a -> Map k a -> Map k a
`Map.union` Map k a
runMap1, c
b)
extract (DemuxOnlyMap c
dval Map k a
doneMap Map k (Fold m a a)
runMap) = do
Map k a
runMap1 <- (Fold m a a -> m a) -> Map k (Fold m a a) -> m (Map k a)
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
Prelude.mapM Fold m a a -> m a
forall (m :: * -> *) a b. Monad m => Fold m a b -> m b
runExtract Map k (Fold m a a)
runMap
(Map k a, c) -> m (Map k a, c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Map k a
doneMap Map k a -> Map k a -> Map k a
forall k a. Ord k => Map k a -> Map k a -> Map k a
`Map.union` Map k a
runMap1, c
dval)
extract (DemuxOnlyDefault s
dacc Map k a
doneMap) = do
c
b <- s -> m c
dextract s
dacc
(Map k a, c) -> m (Map k a, c)
forall (m :: * -> *) a. Monad m => a -> m a
return (Map k a
doneMap, c
b)
{-# INLINE demuxDefault #-}
demuxDefault :: (Monad m, Ord k)
=> Map k (Fold m a b) -> Fold m (k, a) b -> Fold m (k, a) (Map k b, b)
demuxDefault :: Map k (Fold m a b) -> Fold m (k, a) b -> Fold m (k, a) (Map k b, b)
demuxDefault = ((k, a) -> (k, a))
-> Map k (Fold m a b)
-> Fold m (k, a) b
-> Fold m (k, a) (Map k b, b)
forall (m :: * -> *) k a a' b c.
(Monad m, Ord k) =>
(a -> (k, a'))
-> Map k (Fold m a' b) -> Fold m (k, a') c -> Fold m a (Map k b, c)
demuxDefaultWith (k, a) -> (k, a)
forall a. a -> a
id
{-# INLINE classifyWith #-}
classifyWith :: (Monad m, Ord k) => (a -> k) -> Fold m a b -> Fold m a (Map k b)
classifyWith :: (a -> k) -> Fold m a b -> Fold m a (Map k b)
classifyWith a -> k
f (Fold s -> a -> m (Step s b)
step1 m (Step s b)
initial1 s -> m b
extract1) =
(Map k (Either' s b) -> m (Map k b))
-> Fold m a (Map k (Either' s b)) -> Fold m a (Map k b)
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> Fold m a b -> Fold m a c
rmapM Map k (Either' s b) -> m (Map k b)
extract (Fold m a (Map k (Either' s b)) -> Fold m a (Map k b))
-> Fold m a (Map k (Either' s b)) -> Fold m a (Map k b)
forall a b. (a -> b) -> a -> b
$ (Map k (Either' s b) -> a -> m (Map k (Either' s b)))
-> m (Map k (Either' s b)) -> Fold m a (Map k (Either' s b))
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> m b) -> m b -> Fold m a b
foldlM' Map k (Either' s b) -> a -> m (Map k (Either' s b))
step m (Map k (Either' s b))
forall k a. m (Map k a)
initial
where
initial :: m (Map k a)
initial = Map k a -> m (Map k a)
forall (m :: * -> *) a. Monad m => a -> m a
return Map k a
forall k a. Map k a
Map.empty
step :: Map k (Either' s b) -> a -> m (Map k (Either' s b))
step Map k (Either' s b)
kv a
a =
case k -> Map k (Either' s b) -> Maybe (Either' s b)
forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup k
k Map k (Either' s b)
kv of
Maybe (Either' s b)
Nothing -> do
Step s b
x <- m (Step s b)
initial1
case Step s b
x of
Partial s
s -> do
Step s b
r <- s -> a -> m (Step s b)
step1 s
s a
a
Map k (Either' s b) -> m (Map k (Either' s b))
forall (m :: * -> *) a. Monad m => a -> m a
return
(Map k (Either' s b) -> m (Map k (Either' s b)))
-> Map k (Either' s b) -> m (Map k (Either' s b))
forall a b. (a -> b) -> a -> b
$ (Either' s b -> Map k (Either' s b) -> Map k (Either' s b))
-> Map k (Either' s b) -> Either' s b -> Map k (Either' s b)
forall a b c. (a -> b -> c) -> b -> a -> c
flip (k -> Either' s b -> Map k (Either' s b) -> Map k (Either' s b)
forall k a. Ord k => k -> a -> Map k a -> Map k a
Map.insert k
k) Map k (Either' s b)
kv
(Either' s b -> Map k (Either' s b))
-> Either' s b -> Map k (Either' s b)
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
Partial s
s1 -> s -> Either' s b
forall a b. a -> Either' a b
Left' s
s1
Done b
b -> b -> Either' s b
forall a b. b -> Either' a b
Right' b
b
Done b
b -> Map k (Either' s b) -> m (Map k (Either' s b))
forall (m :: * -> *) a. Monad m => a -> m a
return (Map k (Either' s b) -> m (Map k (Either' s b)))
-> Map k (Either' s b) -> m (Map k (Either' s b))
forall a b. (a -> b) -> a -> b
$ k -> Either' s b -> Map k (Either' s b) -> Map k (Either' s b)
forall k a. Ord k => k -> a -> Map k a -> Map k a
Map.insert k
k (b -> Either' s b
forall a b. b -> Either' a b
Right' b
b) Map k (Either' s b)
kv
Just Either' s b
x -> do
case Either' s b
x of
Left' s
s -> do
Step s b
r <- s -> a -> m (Step s b)
step1 s
s a
a
Map k (Either' s b) -> m (Map k (Either' s b))
forall (m :: * -> *) a. Monad m => a -> m a
return
(Map k (Either' s b) -> m (Map k (Either' s b)))
-> Map k (Either' s b) -> m (Map k (Either' s b))
forall a b. (a -> b) -> a -> b
$ (Either' s b -> Map k (Either' s b) -> Map k (Either' s b))
-> Map k (Either' s b) -> Either' s b -> Map k (Either' s b)
forall a b c. (a -> b -> c) -> b -> a -> c
flip (k -> Either' s b -> Map k (Either' s b) -> Map k (Either' s b)
forall k a. Ord k => k -> a -> Map k a -> Map k a
Map.insert k
k) Map k (Either' s b)
kv
(Either' s b -> Map k (Either' s b))
-> Either' s b -> Map k (Either' s b)
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
Partial s
s1 -> s -> Either' s b
forall a b. a -> Either' a b
Left' s
s1
Done b
b -> b -> Either' s b
forall a b. b -> Either' a b
Right' b
b
Right' b
_ -> Map k (Either' s b) -> m (Map k (Either' s b))
forall (m :: * -> *) a. Monad m => a -> m a
return Map k (Either' s b)
kv
where
k :: k
k = a -> k
f a
a
extract :: Map k (Either' s b) -> m (Map k b)
extract =
(Either' s b -> m b) -> Map k (Either' s b) -> m (Map k b)
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
Prelude.mapM
(\case
Left' s
s -> s -> m b
extract1 s
s
Right' b
b -> b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
b)
{-# INLINE classify #-}
classify :: (Monad m, Ord k) => Fold m a b -> Fold m (k, a) (Map k b)
classify :: Fold m a b -> Fold m (k, a) (Map k b)
classify Fold m a b
fld = ((k, a) -> k) -> Fold m (k, a) b -> Fold m (k, a) (Map k b)
forall (m :: * -> *) k a b.
(Monad m, Ord k) =>
(a -> k) -> Fold m a b -> Fold m a (Map k b)
classifyWith (k, a) -> k
forall a b. (a, b) -> a
fst (((k, a) -> a) -> Fold m a b -> Fold m (k, a) b
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap (k, a) -> a
forall a b. (a, b) -> b
snd Fold m a b
fld)
{-# INLINE unzipWithMUsing #-}
unzipWithMUsing :: Monad m =>
( (x -> y -> (x, y))
-> Fold m (b, c) x
-> Fold m (b, c) y
-> Fold m (b, c) (x, y)
)
-> (a -> m (b, c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
unzipWithMUsing :: ((x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithMUsing (x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y)
t a -> m (b, c)
f Fold m b x
fld1 Fold m c y
fld2 =
let f1 :: Fold m (b, b) x
f1 = ((b, b) -> b) -> Fold m b x -> Fold m (b, b) x
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap (b, b) -> b
forall a b. (a, b) -> a
fst Fold m b x
fld1
f2 :: Fold m (a, c) y
f2 = ((a, c) -> c) -> Fold m c y -> Fold m (a, c) y
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap (a, c) -> c
forall a b. (a, b) -> b
snd Fold m c y
fld2
in (a -> m (b, c)) -> Fold m (b, c) (x, y) -> Fold m a (x, y)
forall (m :: * -> *) a b r.
Monad m =>
(a -> m b) -> Fold m b r -> Fold m a r
lmapM a -> m (b, c)
f ((x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y)
t (,) Fold m (b, c) x
forall b. Fold m (b, b) x
f1 Fold m (b, c) y
forall a. Fold m (a, c) y
f2)
{-# INLINE unzipWithM #-}
unzipWithM :: Monad m
=> (a -> m (b,c)) -> Fold m b x -> Fold m c y -> Fold m a (x,y)
unzipWithM :: (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithM = ((x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithMUsing (x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWith
{-# INLINE unzipWithFstM #-}
unzipWithFstM :: Monad m =>
(a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithFstM :: (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithFstM = ((x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithMUsing (x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWithFst
{-# INLINE unzipWithMinM #-}
unzipWithMinM :: Monad m =>
(a -> m (b,c)) -> Fold m b x -> Fold m c y -> Fold m a (x,y)
unzipWithMinM :: (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithMinM = ((x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithMUsing (x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWithMin
{-# INLINE unzipWith #-}
unzipWith :: Monad m
=> (a -> (b,c)) -> Fold m b x -> Fold m c y -> Fold m a (x,y)
unzipWith :: (a -> (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWith a -> (b, c)
f = (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
forall (m :: * -> *) a b c x y.
Monad m =>
(a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithM ((b, c) -> m (b, c)
forall (m :: * -> *) a. Monad m => a -> m a
return ((b, c) -> m (b, c)) -> (a -> (b, c)) -> a -> m (b, c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (b, c)
f)
{-# INLINE unzip #-}
unzip :: Monad m => Fold m a x -> Fold m b y -> Fold m (a,b) (x,y)
unzip :: Fold m a x -> Fold m b y -> Fold m (a, b) (x, y)
unzip = ((a, b) -> (a, b))
-> Fold m a x -> Fold m b y -> Fold m (a, b) (x, y)
forall (m :: * -> *) a b c x y.
Monad m =>
(a -> (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWith (a, b) -> (a, b)
forall a. a -> a
id
{-# INLINE zipWithM #-}
zipWithM ::
(a -> b -> m c) -> t m a -> Fold m c x -> Fold m b x
zipWithM :: (a -> b -> m c) -> t m a -> Fold m c x -> Fold m b x
zipWithM = (a -> b -> m c) -> t m a -> Fold m c x -> Fold m b x
forall a. HasCallStack => a
undefined
{-# INLINE zip #-}
zip :: Monad m => t m a -> Fold m (a, b) x -> Fold m b x
zip :: t m a -> Fold m (a, b) x -> Fold m b x
zip = (a -> b -> m (a, b)) -> t m a -> Fold m (a, b) x -> Fold m b x
forall a b (m :: * -> *) c (t :: (* -> *) -> * -> *) x.
(a -> b -> m c) -> t m a -> Fold m c x -> Fold m b x
zipWithM (((a, b) -> m (a, b)) -> a -> b -> m (a, b)
forall a b c. ((a, b) -> c) -> a -> b -> c
curry (a, b) -> m (a, b)
forall (m :: * -> *) a. Monad m => a -> m a
return)
{-# INLINE indexed #-}
indexed ::
Fold m (Int, a) b -> Fold m a b
indexed :: Fold m (Int, a) b -> Fold m a b
indexed = Fold m (Int, a) b -> Fold m a b
forall a. HasCallStack => a
undefined
{-# INLINE with #-}
with ::
(Fold m (s, a) b -> Fold m a b)
-> (((s, a) -> c) -> Fold m (s, a) b -> Fold m (s, a) b)
-> (((s, a) -> c) -> Fold m a b -> Fold m a b)
with :: (Fold m (s, a) b -> Fold m a b)
-> (((s, a) -> c) -> Fold m (s, a) b -> Fold m (s, a) b)
-> ((s, a) -> c)
-> Fold m a b
-> Fold m a b
with Fold m (s, a) b -> Fold m a b
f ((s, a) -> c) -> Fold m (s, a) b -> Fold m (s, a) b
comb (s, a) -> c
g = Fold m (s, a) b -> Fold m a b
f (Fold m (s, a) b -> Fold m a b)
-> (Fold m a b -> Fold m (s, a) b) -> Fold m a b -> Fold m a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((s, a) -> c) -> Fold m (s, a) b -> Fold m (s, a) b
comb (s, a) -> c
g (Fold m (s, a) b -> Fold m (s, a) b)
-> (Fold m a b -> Fold m (s, a) b) -> Fold m a b -> Fold m (s, a) b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((s, a) -> a) -> Fold m a b -> Fold m (s, a) b
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap (s, a) -> a
forall a b. (a, b) -> b
snd
{-# INLINE sampleFromthen #-}
sampleFromthen :: Monad m => Int -> Int -> Fold m a b -> Fold m a b
sampleFromthen :: Int -> Int -> Fold m a b -> Fold m a b
sampleFromthen Int
offset Int
size =
(Fold m (Int, a) b -> Fold m a b)
-> (((Int, a) -> Bool) -> Fold m (Int, a) b -> Fold m (Int, a) b)
-> ((Int, a) -> Bool)
-> Fold m a b
-> Fold m a b
forall (m :: * -> *) s a b c.
(Fold m (s, a) b -> Fold m a b)
-> (((s, a) -> c) -> Fold m (s, a) b -> Fold m (s, a) b)
-> ((s, a) -> c)
-> Fold m a b
-> Fold m a b
with Fold m (Int, a) b -> Fold m a b
forall (m :: * -> *) a b. Fold m (Int, a) b -> Fold m a b
indexed ((Int, a) -> Bool) -> Fold m (Int, a) b -> Fold m (Int, a) b
forall (m :: * -> *) a r.
Monad m =>
(a -> Bool) -> Fold m a r -> Fold m a r
filter (\(Int
i, a
_) -> (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
offset) Int -> Int -> Int
forall a. Integral a => a -> a -> a
`mod` Int
size Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0)
{-# INLINE concatSequence #-}
concatSequence ::
Fold m b c -> t (Fold m a b) -> Fold m a c
concatSequence :: Fold m b c -> t (Fold m a b) -> Fold m a c
concatSequence Fold m b c
_f t (Fold m a b)
_p = Fold m a c
forall a. HasCallStack => a
undefined
{-# INLINE chunksBetween #-}
chunksBetween ::
Int -> Int -> Fold m a b -> Fold m b c -> Fold m a c
chunksBetween :: Int -> Int -> Fold m a b -> Fold m b c -> Fold m a c
chunksBetween Int
_low Int
_high Fold m a b
_f1 Fold m b c
_f2 = Fold m a c
forall a. HasCallStack => a
undefined
{-# INLINE toStream #-}
toStream :: Monad m => Fold m a (SerialT n a)
toStream :: Fold m a (SerialT n a)
toStream = (Stream n a -> SerialT n a)
-> Fold m a (Stream n a) -> Fold m a (SerialT n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Stream n a -> SerialT n a
forall (m :: * -> *) a. Stream m a -> SerialT m a
SerialT Fold m a (Stream n a)
forall (m :: * -> *) a (n :: * -> *).
Monad m =>
Fold m a (Stream n a)
toStreamK
{-# INLINABLE toStreamRev #-}
toStreamRev :: Monad m => Fold m a (SerialT n a)
toStreamRev :: Fold m a (SerialT n a)
toStreamRev = (Stream n a -> SerialT n a)
-> Fold m a (Stream n a) -> Fold m a (SerialT n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Stream n a -> SerialT n a
forall (m :: * -> *) a. Stream m a -> SerialT m a
SerialT Fold m a (Stream n a)
forall (m :: * -> *) a (n :: * -> *).
Monad m =>
Fold m a (Stream n a)
toStreamKRev