| Copyright | (C) 2013-2014 Richard Eisenberg Jan Stolarek |
|---|---|
| License | BSD-style (see LICENSE) |
| Maintainer | Richard Eisenberg (rae@cs.brynmawr.edu) |
| Stability | experimental |
| Portability | non-portable |
| Safe Haskell | None |
| Language | Haskell2010 |
Data.Singletons.Prelude.Either
Description
Defines functions and datatypes relating to the singleton for Either,
including a singletons version of all the definitions in Data.Either.
Because many of these definitions are produced by Template Haskell,
it is not possible to create proper Haddock documentation. Please look
up the corresponding operation in Data.Either. Also, please excuse
the apparent repeated variable names. This is due to an interaction
between Template Haskell and Haddock.
- data family Sing (a :: k)
- type SEither = (Sing :: Either a b -> Type)
- either_ :: (a -> c) -> (b -> c) -> Either a b -> c
- type family Either_ (a :: TyFun a c -> Type) (a :: TyFun b c -> Type) (a :: Either a b) :: c where ...
- sEither_ :: forall (t :: TyFun a c -> Type) (t :: TyFun b c -> Type) (t :: Either a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c)
- type family Lefts (a :: [Either a b]) :: [a] where ...
- sLefts :: forall (t :: [Either a b]). Sing t -> Sing (Apply LeftsSym0 t :: [a])
- type family Rights (a :: [Either a b]) :: [b] where ...
- sRights :: forall (t :: [Either a b]). Sing t -> Sing (Apply RightsSym0 t :: [b])
- type family PartitionEithers (a :: [Either a b]) :: ([a], [b]) where ...
- sPartitionEithers :: forall (t :: [Either a b]). Sing t -> Sing (Apply PartitionEithersSym0 t :: ([a], [b]))
- type family IsLeft (a :: Either a b) :: Bool where ...
- sIsLeft :: forall (t :: Either a b). Sing t -> Sing (Apply IsLeftSym0 t :: Bool)
- type family IsRight (a :: Either a b) :: Bool where ...
- sIsRight :: forall (t :: Either a b). Sing t -> Sing (Apply IsRightSym0 t :: Bool)
- data LeftSym0 (l :: TyFun a6989586621679075399 (Either a6989586621679075399 b6989586621679075400))
- type LeftSym1 (t :: a6989586621679075399) = Left t
- data RightSym0 (l :: TyFun b6989586621679075400 (Either a6989586621679075399 b6989586621679075400))
- type RightSym1 (t :: b6989586621679075400) = Right t
- data Either_Sym0 (l :: TyFun (TyFun a6989586621679436289 c6989586621679436290 -> Type) (TyFun (TyFun b6989586621679436291 c6989586621679436290 -> Type) (TyFun (Either a6989586621679436289 b6989586621679436291) c6989586621679436290 -> Type) -> Type))
- data Either_Sym1 (l :: TyFun a6989586621679436289 c6989586621679436290 -> Type) (l :: TyFun (TyFun b6989586621679436291 c6989586621679436290 -> Type) (TyFun (Either a6989586621679436289 b6989586621679436291) c6989586621679436290 -> Type))
- data Either_Sym2 (l :: TyFun a6989586621679436289 c6989586621679436290 -> Type) (l :: TyFun b6989586621679436291 c6989586621679436290 -> Type) (l :: TyFun (Either a6989586621679436289 b6989586621679436291) c6989586621679436290)
- type Either_Sym3 (t :: TyFun a6989586621679436289 c6989586621679436290 -> Type) (t :: TyFun b6989586621679436291 c6989586621679436290 -> Type) (t :: Either a6989586621679436289 b6989586621679436291) = Either_ t t t
- data LeftsSym0 (l :: TyFun [Either a6989586621679437401 b6989586621679437402] [a6989586621679437401])
- type LeftsSym1 (t :: [Either a6989586621679437401 b6989586621679437402]) = Lefts t
- data RightsSym0 (l :: TyFun [Either a6989586621679437399 b6989586621679437400] [b6989586621679437400])
- type RightsSym1 (t :: [Either a6989586621679437399 b6989586621679437400]) = Rights t
- data IsLeftSym0 (l :: TyFun (Either a6989586621679437395 b6989586621679437396) Bool)
- type IsLeftSym1 (t :: Either a6989586621679437395 b6989586621679437396) = IsLeft t
- data IsRightSym0 (l :: TyFun (Either a6989586621679437393 b6989586621679437394) Bool)
- type IsRightSym1 (t :: Either a6989586621679437393 b6989586621679437394) = IsRight t
The Either singleton
data family Sing (a :: k) Source #
The singleton kind-indexed data family.
Instances
| data Sing Bool Source # | |
| data Sing Ordering Source # | |
| data Sing * Source # | |
| data Sing Nat Source # | |
| data Sing Symbol Source # | |
| data Sing () Source # | |
| data Sing [a] Source # | |
| data Sing (Maybe a) Source # | |
| data Sing (NonEmpty a) Source # | |
| data Sing (Either a b) Source # | |
| data Sing (a, b) Source # | |
| data Sing ((~>) k1 k2) Source # | |
| data Sing (a, b, c) Source # | |
| data Sing (a, b, c, d) Source # | |
| data Sing (a, b, c, d, e) Source # | |
| data Sing (a, b, c, d, e, f) Source # | |
| data Sing (a, b, c, d, e, f, g) Source # | |
Though Haddock doesn't show it, the Sing instance above declares
constructors
SLeft :: Sing a -> Sing (Left a) SRight :: Sing b -> Sing (Right b)
Singletons from Data.Either
type family Either_ (a :: TyFun a c -> Type) (a :: TyFun b c -> Type) (a :: Either a b) :: c where ... Source #
sEither_ :: forall (t :: TyFun a c -> Type) (t :: TyFun b c -> Type) (t :: Either a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c) Source #
The preceding two definitions are derived from the function either in
Data.Either. The extra underscore is to avoid name clashes with the type
Either.
type family PartitionEithers (a :: [Either a b]) :: ([a], [b]) where ... Source #
Equations
| PartitionEithers a_6989586621679437442 = Apply (Apply (Apply FoldrSym0 (Apply (Apply Either_Sym0 (Let6989586621679437449LeftSym1 a_6989586621679437442)) (Let6989586621679437449RightSym1 a_6989586621679437442))) (Apply (Apply Tuple2Sym0 '[]) '[])) a_6989586621679437442 |
sPartitionEithers :: forall (t :: [Either a b]). Sing t -> Sing (Apply PartitionEithersSym0 t :: ([a], [b])) Source #
Defunctionalization symbols
data LeftSym0 (l :: TyFun a6989586621679075399 (Either a6989586621679075399 b6989586621679075400)) Source #
data RightSym0 (l :: TyFun b6989586621679075400 (Either a6989586621679075399 b6989586621679075400)) Source #
data Either_Sym0 (l :: TyFun (TyFun a6989586621679436289 c6989586621679436290 -> Type) (TyFun (TyFun b6989586621679436291 c6989586621679436290 -> Type) (TyFun (Either a6989586621679436289 b6989586621679436291) c6989586621679436290 -> Type) -> Type)) Source #
Instances
| SuppressUnusedWarnings (TyFun (TyFun a6989586621679436289 c6989586621679436290 -> Type) (TyFun (TyFun b6989586621679436291 c6989586621679436290 -> Type) (TyFun (Either a6989586621679436289 b6989586621679436291) c6989586621679436290 -> Type) -> Type) -> *) (Either_Sym0 a6989586621679436289 b6989586621679436291 c6989586621679436290) Source # | |
| type Apply (TyFun a6989586621679436289 c6989586621679436290 -> Type) (TyFun (TyFun b6989586621679436291 c6989586621679436290 -> Type) (TyFun (Either a6989586621679436289 b6989586621679436291) c6989586621679436290 -> Type) -> Type) (Either_Sym0 a6989586621679436289 b6989586621679436291 c6989586621679436290) l Source # | |
data Either_Sym1 (l :: TyFun a6989586621679436289 c6989586621679436290 -> Type) (l :: TyFun (TyFun b6989586621679436291 c6989586621679436290 -> Type) (TyFun (Either a6989586621679436289 b6989586621679436291) c6989586621679436290 -> Type)) Source #
Instances
| SuppressUnusedWarnings ((TyFun a6989586621679436289 c6989586621679436290 -> Type) -> TyFun (TyFun b6989586621679436291 c6989586621679436290 -> Type) (TyFun (Either a6989586621679436289 b6989586621679436291) c6989586621679436290 -> Type) -> *) (Either_Sym1 a6989586621679436289 b6989586621679436291 c6989586621679436290) Source # | |
| type Apply (TyFun b6989586621679436291 c6989586621679436290 -> Type) (TyFun (Either a6989586621679436289 b6989586621679436291) c6989586621679436290 -> Type) (Either_Sym1 a6989586621679436289 b6989586621679436291 c6989586621679436290 l1) l2 Source # | |
data Either_Sym2 (l :: TyFun a6989586621679436289 c6989586621679436290 -> Type) (l :: TyFun b6989586621679436291 c6989586621679436290 -> Type) (l :: TyFun (Either a6989586621679436289 b6989586621679436291) c6989586621679436290) Source #
Instances
| SuppressUnusedWarnings ((TyFun a6989586621679436289 c6989586621679436290 -> Type) -> (TyFun b6989586621679436291 c6989586621679436290 -> Type) -> TyFun (Either a6989586621679436289 b6989586621679436291) c6989586621679436290 -> *) (Either_Sym2 a6989586621679436289 b6989586621679436291 c6989586621679436290) Source # | |
| type Apply (Either a b) c (Either_Sym2 a b c l1 l2) l3 Source # | |
type Either_Sym3 (t :: TyFun a6989586621679436289 c6989586621679436290 -> Type) (t :: TyFun b6989586621679436291 c6989586621679436290 -> Type) (t :: Either a6989586621679436289 b6989586621679436291) = Either_ t t t Source #
data LeftsSym0 (l :: TyFun [Either a6989586621679437401 b6989586621679437402] [a6989586621679437401]) Source #
data RightsSym0 (l :: TyFun [Either a6989586621679437399 b6989586621679437400] [b6989586621679437400]) Source #
Instances
| SuppressUnusedWarnings (TyFun [Either a6989586621679437399 b6989586621679437400] [b6989586621679437400] -> *) (RightsSym0 a6989586621679437399 b6989586621679437400) Source # | |
| type Apply [Either a b] [b] (RightsSym0 a b) l Source # | |
type RightsSym1 (t :: [Either a6989586621679437399 b6989586621679437400]) = Rights t Source #
data IsLeftSym0 (l :: TyFun (Either a6989586621679437395 b6989586621679437396) Bool) Source #
Instances
| SuppressUnusedWarnings (TyFun (Either a6989586621679437395 b6989586621679437396) Bool -> *) (IsLeftSym0 a6989586621679437395 b6989586621679437396) Source # | |
| type Apply (Either a b) Bool (IsLeftSym0 a b) l Source # | |
type IsLeftSym1 (t :: Either a6989586621679437395 b6989586621679437396) = IsLeft t Source #
data IsRightSym0 (l :: TyFun (Either a6989586621679437393 b6989586621679437394) Bool) Source #
Instances
| SuppressUnusedWarnings (TyFun (Either a6989586621679437393 b6989586621679437394) Bool -> *) (IsRightSym0 a6989586621679437393 b6989586621679437394) Source # | |
| type Apply (Either a b) Bool (IsRightSym0 a b) l Source # | |
type IsRightSym1 (t :: Either a6989586621679437393 b6989586621679437394) = IsRight t Source #