Copyright | (C) 2013-2014 Richard Eisenberg Jan Stolarek |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | Richard Eisenberg (rae@cs.brynmawr.edu) |
Stability | experimental |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
Defines functions and datatypes relating to the singleton for Bool
,
including a singletons version of all the definitions in Data.Bool
.
Because many of these definitions are produced by Template Haskell,
it is not possible to create proper Haddock documentation. Please look
up the corresponding operation in Data.Bool
. Also, please excuse
the apparent repeated variable names. This is due to an interaction
between Template Haskell and Haddock.
- data family Sing (a :: k)
- type SBool = (Sing :: Bool -> Type)
- type family If k (cond :: Bool) (tru :: k) (fls :: k) :: k where ...
- sIf :: Sing a -> Sing b -> Sing c -> Sing (If a b c)
- type family Not (a :: Bool) :: Bool where ...
- sNot :: forall (t :: Bool). Sing t -> Sing (Apply NotSym0 t :: Bool)
- type family (a :: Bool) :&& (a :: Bool) :: Bool where ...
- type family (a :: Bool) :|| (a :: Bool) :: Bool where ...
- (%:&&) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (:&&$) t) t :: Bool)
- (%:||) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (:||$) t) t :: Bool)
- bool_ :: a -> a -> Bool -> a
- type family Bool_ (a :: a) (a :: a) (a :: Bool) :: a where ...
- sBool_ :: forall (t :: a) (t :: a) (t :: Bool). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Bool_Sym0 t) t) t :: a)
- type family Otherwise :: Bool where ...
- sOtherwise :: Sing (OtherwiseSym0 :: Bool)
- type TrueSym0 = True
- type FalseSym0 = False
- data NotSym0 (l :: TyFun Bool Bool)
- type NotSym1 (t :: Bool) = Not t
- data (:&&$) (l :: TyFun Bool (TyFun Bool Bool -> Type))
- data (l :: Bool) :&&$$ (l :: TyFun Bool Bool)
- type (:&&$$$) (t :: Bool) (t :: Bool) = (:&&) t t
- data (:||$) (l :: TyFun Bool (TyFun Bool Bool -> Type))
- data (l :: Bool) :||$$ (l :: TyFun Bool Bool)
- type (:||$$$) (t :: Bool) (t :: Bool) = (:||) t t
- data Bool_Sym0 (l :: TyFun a6989586621679277161 (TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type) -> Type))
- data Bool_Sym1 (l :: a6989586621679277161) (l :: TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type))
- data Bool_Sym2 (l :: a6989586621679277161) (l :: a6989586621679277161) (l :: TyFun Bool a6989586621679277161)
- type Bool_Sym3 (t :: a6989586621679277161) (t :: a6989586621679277161) (t :: Bool) = Bool_ t t t
- type OtherwiseSym0 = Otherwise
The Bool
singleton
data family Sing (a :: k) Source #
The singleton kind-indexed data family.
data Sing Bool Source # | |
data Sing Ordering Source # | |
data Sing * Source # | |
data Sing Nat Source # | |
data Sing Symbol Source # | |
data Sing () Source # | |
data Sing [a] Source # | |
data Sing (Maybe a) Source # | |
data Sing (NonEmpty a) Source # | |
data Sing (Either a b) Source # | |
data Sing (a, b) Source # | |
data Sing ((~>) k1 k2) Source # | |
data Sing (a, b, c) Source # | |
data Sing (a, b, c, d) Source # | |
data Sing (a, b, c, d, e) Source # | |
data Sing (a, b, c, d, e, f) Source # | |
data Sing (a, b, c, d, e, f, g) Source # | |
Though Haddock doesn't show it, the Sing
instance above declares
constructors
SFalse :: Sing False STrue :: Sing True
Conditionals
type family If k (cond :: Bool) (tru :: k) (fls :: k) :: k where ... #
Type-level If. If True a b
==> a
; If False a b
==> b
Singletons from Data.Bool
(%:&&) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (:&&$) t) t :: Bool) infixr 3 Source #
(%:||) :: forall (t :: Bool) (t :: Bool). Sing t -> Sing t -> Sing (Apply (Apply (:||$) t) t :: Bool) infixr 2 Source #
The following are derived from the function bool
in Data.Bool
. The extra
underscore is to avoid name clashes with the type Bool
.
sBool_ :: forall (t :: a) (t :: a) (t :: Bool). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Bool_Sym0 t) t) t :: a) Source #
sOtherwise :: Sing (OtherwiseSym0 :: Bool) Source #
Defunctionalization symbols
data Bool_Sym0 (l :: TyFun a6989586621679277161 (TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type) -> Type)) Source #
SuppressUnusedWarnings (TyFun a6989586621679277161 (TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type) -> Type) -> *) (Bool_Sym0 a6989586621679277161) Source # | |
type Apply a6989586621679277161 (TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type) -> Type) (Bool_Sym0 a6989586621679277161) l Source # | |
data Bool_Sym1 (l :: a6989586621679277161) (l :: TyFun a6989586621679277161 (TyFun Bool a6989586621679277161 -> Type)) Source #
data Bool_Sym2 (l :: a6989586621679277161) (l :: a6989586621679277161) (l :: TyFun Bool a6989586621679277161) Source #
type Bool_Sym3 (t :: a6989586621679277161) (t :: a6989586621679277161) (t :: Bool) = Bool_ t t t Source #
type OtherwiseSym0 = Otherwise Source #