singletons-1.1.2.1: A framework for generating singleton types

Copyright(C) 2014 Jan Stolarek
LicenseBSD-style (see LICENSE)
MaintainerJan Stolarek (jan.stolarek@p.lodz.pl)
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Promotion.Prelude

Contents

Description

Mimics the Haskell Prelude, but with promoted types.

Synopsis

Standard types, classes and related functions

Basic data types

type family If cond tru fls :: k

Type-level If. If True a b ==> a; If False a b ==> b

Equations

If k True tru fls = tru 
If k False tru fls = fls 

type family Not a :: Bool Source

type family a :&& a :: Bool Source

Equations

False :&& z = FalseSym0 
True :&& x = x 

type family a :|| a :: Bool Source

Equations

False :|| x = x 
True :|| z = TrueSym0 

maybe_ :: forall b a. b -> (a -> b) -> Maybe a -> b Source

type family Maybe_ a a a :: b Source

Equations

Maybe_ n z Nothing = n 
Maybe_ z f (Just x) = Apply f x 

either_ :: forall a c b. (a -> c) -> (b -> c) -> Either a b -> c Source

type family Either_ a a a :: c Source

Equations

Either_ f z (Left x) = Apply f x 
Either_ z g (Right y) = Apply g y 

data Symbol :: *

(Kind) This is the kind of type-level symbols.

type family Fst a :: a Source

Equations

Fst `(x, z)` = x 

type family Snd a :: b Source

Equations

Snd `(z, y)` = y 

type family Curry a a a :: c Source

Equations

Curry f x y = Apply f (Apply (Apply Tuple2Sym0 x) y) 

type family Uncurry a a :: c Source

Equations

Uncurry f p = Apply (Apply f (Apply FstSym0 p)) (Apply SndSym0 p) 

Error reporting

type family Error str :: k Source

The promotion of error

data ErrorSym0 t1 Source

Instances

type Apply k Symbol (ErrorSym0 Symbol k) a = Error k a 

Promoted equality

Promoted comparisons

Promoted bounds

Promoted arithmetic operations

data Nat :: *

(Kind) This is the kind of type-level natural numbers.

Instances

KnownNat n => SingI Nat n 
SingKind Nat (KProxy Nat) 
SDecide Nat (KProxy Nat) 
PEq Nat (KProxy Nat) 
SEq Nat (KProxy Nat) 
POrd Nat (KProxy Nat) 
SuppressUnusedWarnings (Nat -> TyFun Nat Nat -> *) (:^$$) 
SuppressUnusedWarnings (Nat -> TyFun Nat Nat -> *) (:*$$) 
SuppressUnusedWarnings (Nat -> TyFun Nat Nat -> *) (:-$$) 
SuppressUnusedWarnings (Nat -> TyFun Nat Nat -> *) (:+$$) 
SuppressUnusedWarnings (TyFun [Nat] Nat -> *) SumSym0 
SuppressUnusedWarnings (TyFun [Nat] Nat -> *) ProductSym0 
SuppressUnusedWarnings (TyFun Nat (TyFun Nat Nat -> *) -> *) (:^$) 
SuppressUnusedWarnings (TyFun Nat (TyFun Nat Nat -> *) -> *) (:*$) 
SuppressUnusedWarnings (TyFun Nat (TyFun Nat Nat -> *) -> *) (:-$) 
SuppressUnusedWarnings (TyFun Nat (TyFun Nat Nat -> *) -> *) (:+$) 
SuppressUnusedWarnings ((TyFun k Bool -> *) -> TyFun [k] (Maybe Nat) -> *) (FindIndexSym1 k) 
SuppressUnusedWarnings ((TyFun k Bool -> *) -> TyFun [k] [Nat] -> *) (FindIndicesSym1 k) 
SuppressUnusedWarnings ([k] -> TyFun Nat k -> *) ((:!!$$) k) 
SuppressUnusedWarnings (Nat -> TyFun [k] ((,) [k] [k]) -> *) (SplitAtSym1 k) 
SuppressUnusedWarnings (Nat -> TyFun [k] [k] -> *) (TakeSym1 k) 
SuppressUnusedWarnings (Nat -> TyFun [k] [k] -> *) (DropSym1 k) 
SuppressUnusedWarnings (Nat -> TyFun k [k] -> *) (ReplicateSym1 k) 
SuppressUnusedWarnings (k -> TyFun [k] (Maybe Nat) -> *) (ElemIndexSym1 k) 
SuppressUnusedWarnings (k -> TyFun [k] [Nat] -> *) (ElemIndicesSym1 k) 
SuppressUnusedWarnings (TyFun (TyFun k Bool -> *) (TyFun [k] (Maybe Nat) -> *) -> *) (FindIndexSym0 k) 
SuppressUnusedWarnings (TyFun (TyFun k Bool -> *) (TyFun [k] [Nat] -> *) -> *) (FindIndicesSym0 k) 
SuppressUnusedWarnings (TyFun [k] Nat -> *) (LengthSym0 k) 
SuppressUnusedWarnings (TyFun [k] (TyFun Nat k -> *) -> *) ((:!!$) k) 
SuppressUnusedWarnings (TyFun Nat (TyFun [k] ((,) [k] [k]) -> *) -> *) (SplitAtSym0 k) 
SuppressUnusedWarnings (TyFun Nat (TyFun [k] [k] -> *) -> *) (TakeSym0 k) 
SuppressUnusedWarnings (TyFun Nat (TyFun [k] [k] -> *) -> *) (DropSym0 k) 
SuppressUnusedWarnings (TyFun Nat (TyFun k [k] -> *) -> *) (ReplicateSym0 k) 
SuppressUnusedWarnings (TyFun k (TyFun [k] (Maybe Nat) -> *) -> *) (ElemIndexSym0 k) 
SuppressUnusedWarnings (TyFun k (TyFun [k] [Nat] -> *) -> *) (ElemIndicesSym0 k) 
data Sing Nat where 
type (==) Nat a b = EqNat a b 
type (:==) Nat a b = (==) Nat a b 
type Compare Nat a b = CmpNat a b 
type Apply Nat Nat ((:^$$) l1) l0 
type Apply Nat Nat ((:*$$) l1) l0 
type Apply Nat Nat ((:-$$) l1) l0 
type Apply Nat Nat ((:+$$) l1) l0 
type Apply k Nat ((:!!$$) k l1) l0 = (:!!$$$) k l1 l0 
type DemoteRep Nat (KProxy Nat) = Integer 
type Apply Nat [Nat] SumSym0 l0 = SumSym1 l0 
type Apply Nat [Nat] ProductSym0 l0 = ProductSym1 l0 
type Apply Nat [k] (LengthSym0 k) l0 = LengthSym1 k l0 
type Apply [Nat] [k] (ElemIndicesSym1 k l1) l0 = ElemIndicesSym2 k l1 l0 
type Apply [Nat] [k] (FindIndicesSym1 k l1) l0 = FindIndicesSym2 k l1 l0 
type Apply (Maybe Nat) [k] (ElemIndexSym1 k l1) l0 = ElemIndexSym2 k l1 l0 
type Apply (Maybe Nat) [k] (FindIndexSym1 k l1) l0 = FindIndexSym2 k l1 l0 
type Apply (TyFun Nat Nat -> *) Nat (:^$) l0 = (:^$$) l0 
type Apply (TyFun Nat Nat -> *) Nat (:*$) l0 = (:*$$) l0 
type Apply (TyFun Nat Nat -> *) Nat (:-$) l0 = (:-$$) l0 
type Apply (TyFun Nat Nat -> *) Nat (:+$) l0 = (:+$$) l0 
type Apply (TyFun [k] (Maybe Nat) -> *) k (ElemIndexSym0 k) l0 = ElemIndexSym1 k l0 
type Apply (TyFun [k] [Nat] -> *) k (ElemIndicesSym0 k) l0 = ElemIndicesSym1 k l0 
type Apply (TyFun [k] ((,) [k] [k]) -> *) Nat (SplitAtSym0 k) l0 = SplitAtSym1 k l0 
type Apply (TyFun [k] [k] -> *) Nat (TakeSym0 k) l0 = TakeSym1 k l0 
type Apply (TyFun [k] [k] -> *) Nat (DropSym0 k) l0 = DropSym1 k l0 
type Apply (TyFun k [k] -> *) Nat (ReplicateSym0 k) l0 = ReplicateSym1 k l0 
type Apply (TyFun Nat k -> *) [k] ((:!!$) k) l0 = (:!!$$) k l0 
type Apply (TyFun [k] (Maybe Nat) -> *) (TyFun k Bool -> *) (FindIndexSym0 k) l0 = FindIndexSym1 k l0 
type Apply (TyFun [k] [Nat] -> *) (TyFun k Bool -> *) (FindIndicesSym0 k) l0 = FindIndicesSym1 k l0 

type (:+) x y = x + y Source

type (:-) x y = x - y Source

type (:*) x y = x * y Source

type (:^) x y = x ^ y Source

Miscellaneous functions

type family Id a :: a Source

Equations

Id x = x 

type family Const a a :: a Source

Equations

Const x z = x 

type family (a :. a) a :: c Source

Equations

(f :. g) a_1627560600 = Apply (Apply (Apply (Apply Lambda_1627560605Sym0 f) g) a_1627560600) a_1627560600 

type family f $ x :: b Source

Instances

type ($) k k1 f x = (@@) k k1 f x 

type family f $! x :: b Source

Instances

type ($!) k k1 f x = (@@) k k1 f x 

type family Flip a a a :: c Source

Equations

Flip f x y = Apply (Apply f y) x 

type family AsTypeOf a a :: a Source

Equations

AsTypeOf a_1627560639 a_1627560641 = Apply (Apply ConstSym0 a_1627560639) a_1627560641 

type family Until a a a :: a Source

Equations

Until p f a_1627585961 = Apply (Let1627585966GoSym3 p f a_1627585961) a_1627585961 

type family Seq a a :: b Source

Equations

Seq z x = x 

List operations

type family Map a a :: [b] Source

Equations

Map z `[]` = `[]` 
Map f ((:) x xs) = Apply (Apply (:$) (Apply f x)) (Apply (Apply MapSym0 f) xs) 

type family a :++ a :: [a] Source

Equations

`[]` :++ ys = ys 
((:) x xs) :++ ys = Apply (Apply (:$) x) (Apply (Apply (:++$) xs) ys) 

type family Filter a a :: [a] Source

Equations

Filter _p `[]` = `[]` 
Filter arg_1627770461 arg_1627770463 = Case_1627771158 arg_1627770461 arg_1627770463 (Apply (Apply Tuple2Sym0 arg_1627770461) arg_1627770463) 

type family Head a :: a Source

Equations

Head ((:) a z) = a 
Head `[]` = Apply ErrorSym0 "Data.Singletons.List.head: empty list" 

type family Last a :: a Source

Equations

Last `[]` = Apply ErrorSym0 "Data.Singletons.List.last: empty list" 
Last ((:) x xs) = Apply (Apply (Let1627597784Last'Sym2 x xs) x) xs 

type family Tail a :: [a] Source

Equations

Tail ((:) z t) = t 
Tail `[]` = Apply ErrorSym0 "Data.Singletons.List.tail: empty list" 

type family Init a :: [a] Source

Equations

Init `[]` = Apply ErrorSym0 "Data.Singletons.List.init: empty list" 
Init ((:) x xs) = Apply (Apply (Let1627597747Init'Sym2 x xs) x) xs 

type family Null a :: Bool Source

Equations

Null `[]` = TrueSym0 
Null ((:) z z) = FalseSym0 

type family Length a :: Nat Source

Equations

Length `[]` = 0 
Length ((:) z xs) = Apply (Apply (:+$) 1) (Apply LengthSym0 xs) 

type family a :!! a :: a Source

Equations

`[]` :!! z = Apply ErrorSym0 "Data.Singletons.List.!!: index too large" 
((:) x xs) :!! n = Case_1627771086 x xs n (Apply (Apply (:==$) n) 0) 

type family Reverse a :: [a] Source

Equations

Reverse l = Apply (Apply (Let1627597705RevSym1 l) l) `[]` 

Reducing lists (folds)

type family Foldl a a a :: b Source

Equations

Foldl f z0 xs0 = Apply (Apply (Let1627597010LgoSym3 f z0 xs0) z0) xs0 

type family Foldl1 a a :: a Source

Equations

Foldl1 f ((:) x xs) = Apply (Apply (Apply FoldlSym0 f) x) xs 
Foldl1 z `[]` = Apply ErrorSym0 "Data.Singletons.List.foldl1: empty list" 

type family Foldr a a a :: b Source

Equations

Foldr k z a_1627560700 = Apply (Let1627560705GoSym3 k z a_1627560700) a_1627560700 

type family Foldr1 a a :: a Source

Equations

Foldr1 z `[x]` = x 
Foldr1 f ((:) x ((:) wild_1627595664 wild_1627595666)) = Apply (Apply f x) (Apply (Apply Foldr1Sym0 f) (Let1627596875XsSym4 f x wild_1627595664 wild_1627595666)) 
Foldr1 z `[]` = Apply ErrorSym0 "Data.Singletons.List.foldr1: empty list" 

Special folds

type family And a :: Bool Source

Equations

And `[]` = TrueSym0 
And ((:) x xs) = Apply (Apply (:&&$) x) (Apply AndSym0 xs) 

type family Or a :: Bool Source

Equations

Or `[]` = FalseSym0 
Or ((:) x xs) = Apply (Apply (:||$) x) (Apply OrSym0 xs) 

any_ :: forall a. (a -> Bool) -> [a] -> Bool Source

type family Any_ a a :: Bool Source

Equations

Any_ z `[]` = FalseSym0 
Any_ p ((:) x xs) = Apply (Apply (:||$) (Apply p x)) (Apply (Apply Any_Sym0 p) xs) 

type family All a a :: Bool Source

Equations

All z `[]` = TrueSym0 
All p ((:) x xs) = Apply (Apply (:&&$) (Apply p x)) (Apply (Apply AllSym0 p) xs) 

type family Sum a :: Nat Source

Equations

Sum l = Apply (Apply (Let1627771981Sum'Sym1 l) l) 0 

type family Product a :: Nat Source

Equations

Product l = Apply (Apply (Let1627771957ProdSym1 l) l) 1 

type family Concat a :: [a] Source

Equations

Concat a_1627596853 = Apply (Apply (Apply FoldrSym0 (:++$)) `[]`) a_1627596853 

type family ConcatMap a a :: [b] Source

Equations

ConcatMap f a_1627596849 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (:.$) (:++$)) f)) `[]`) a_1627596849 

type family Maximum a :: a Source

Equations

Maximum `[]` = Apply ErrorSym0 "Data.Singletons.List.maximum: empty list" 
Maximum xs = Apply (Apply Foldl1Sym0 MaxSym0) xs 

type family Minimum a :: a Source

Equations

Minimum `[]` = Apply ErrorSym0 "Data.Singletons.List.minimum: empty list" 
Minimum xs = Apply (Apply Foldl1Sym0 MinSym0) xs 

Building lists

Scans

type family Scanl a a a :: [b] Source

Equations

Scanl f q ls = Apply (Apply (:$) q) (Case_1627596796 f q ls (Let1627596783Scrutinee_1627595668Sym3 f q ls)) 

type family Scanl1 a a :: [a] Source

Equations

Scanl1 f ((:) x xs) = Apply (Apply (Apply ScanlSym0 f) x) xs 
Scanl1 z `[]` = `[]` 

type family Scanr a a a :: [b] Source

Equations

Scanr z q0 `[]` = Apply (Apply (:$) q0) `[]` 
Scanr f q0 ((:) x xs) = Case_1627596759 f q0 x xs (Let1627596740Scrutinee_1627595670Sym4 f q0 x xs) 

type family Scanr1 a a :: [a] Source

Equations

Scanr1 z `[]` = `[]` 
Scanr1 z `[x]` = Apply (Apply (:$) x) `[]` 
Scanr1 f ((:) x ((:) wild_1627595674 wild_1627595676)) = Case_1627596713 f x wild_1627595674 wild_1627595676 (Let1627596694Scrutinee_1627595672Sym4 f x wild_1627595674 wild_1627595676) 

Infinite lists

type family Replicate a a :: [a] Source

Equations

Replicate 0 z = `[]` 
Replicate n x = Apply (Apply (:$) x) (Apply (Apply ReplicateSym0 (Apply (Apply (:-$) n) 1)) x) 

Sublists

type family Take a a :: [a] Source

Equations

Take z `[]` = `[]` 
Take 0 ((:) z z) = `[]` 
Take n ((:) x xs) = Apply (Apply (:$) x) (Apply (Apply TakeSym0 (Apply (Apply (:-$) n) 1)) xs) 

type family Drop a a :: [a] Source

Equations

Drop z `[]` = `[]` 
Drop 0 ((:) wild_1627770431 wild_1627770433) = Let1627771835XsSym2 wild_1627770431 wild_1627770433 
Drop n ((:) z xs) = Apply (Apply DropSym0 (Apply (Apply (:-$) n) 1)) xs 

type family SplitAt a a :: ([a], [a]) Source

Equations

SplitAt n xs = Apply (Apply Tuple2Sym0 (Apply (Apply TakeSym0 n) xs)) (Apply (Apply DropSym0 n) xs) 

type family TakeWhile a a :: [a] Source

Equations

TakeWhile z `[]` = `[]` 
TakeWhile arg_1627770435 arg_1627770437 = Case_1627771812 arg_1627770435 arg_1627770437 (Apply (Apply Tuple2Sym0 arg_1627770435) arg_1627770437) 

type family DropWhile a a :: [a] Source

Equations

DropWhile z `[]` = `[]` 
DropWhile arg_1627770439 arg_1627770441 = Case_1627771763 arg_1627770439 arg_1627770441 (Apply (Apply Tuple2Sym0 arg_1627770439) arg_1627770441) 

type family Span a a :: ([a], [a]) Source

Equations

Span z `[]` = Apply (Apply Tuple2Sym0 Let1627771483XsSym0) Let1627771483XsSym0 
Span arg_1627770445 arg_1627770447 = Case_1627771486 arg_1627770445 arg_1627770447 (Apply (Apply Tuple2Sym0 arg_1627770445) arg_1627770447) 

type family Break a a :: ([a], [a]) Source

Equations

Break z `[]` = Apply (Apply Tuple2Sym0 Let1627771339XsSym0) Let1627771339XsSym0 
Break arg_1627770449 arg_1627770451 = Case_1627771342 arg_1627770449 arg_1627770451 (Apply (Apply Tuple2Sym0 arg_1627770449) arg_1627770451) 

Searching lists

type family Elem a a :: Bool Source

Equations

Elem z `[]` = FalseSym0 
Elem x ((:) y ys) = Apply (Apply (:||$) (Apply (Apply (:==$) x) y)) (Apply (Apply ElemSym0 x) ys) 

type family NotElem a a :: Bool Source

Equations

NotElem z `[]` = TrueSym0 
NotElem x ((:) y ys) = Apply (Apply (:&&$) (Apply (Apply (:/=$) x) y)) (Apply (Apply NotElemSym0 x) ys) 

type family Lookup a a :: Maybe b Source

Equations

Lookup _key `[]` = NothingSym0 
Lookup arg_1627770457 arg_1627770459 = Case_1627771257 arg_1627770457 arg_1627770459 (Apply (Apply Tuple2Sym0 arg_1627770457) arg_1627770459) 

Zipping and unzipping lists

type family Zip a a :: [(a, b)] Source

Equations

Zip ((:) x xs) ((:) y ys) = Apply (Apply (:$) (Apply (Apply Tuple2Sym0 x) y)) (Apply (Apply ZipSym0 xs) ys) 
Zip `[]` `[]` = `[]` 
Zip ((:) z z) `[]` = `[]` 
Zip `[]` ((:) z z) = `[]` 

type family Zip3 a a a :: [(a, b, c)] Source

Equations

Zip3 ((:) a as) ((:) b bs) ((:) c cs) = Apply (Apply (:$) (Apply (Apply (Apply Tuple3Sym0 a) b) c)) (Apply (Apply (Apply Zip3Sym0 as) bs) cs) 
Zip3 `[]` `[]` `[]` = `[]` 
Zip3 `[]` `[]` ((:) z z) = `[]` 
Zip3 `[]` ((:) z z) `[]` = `[]` 
Zip3 `[]` ((:) z z) ((:) z z) = `[]` 
Zip3 ((:) z z) `[]` `[]` = `[]` 
Zip3 ((:) z z) `[]` ((:) z z) = `[]` 
Zip3 ((:) z z) ((:) z z) `[]` = `[]` 

type family ZipWith a a a :: [c] Source

Equations

ZipWith f ((:) x xs) ((:) y ys) = Apply (Apply (:$) (Apply (Apply f x) y)) (Apply (Apply (Apply ZipWithSym0 f) xs) ys) 
ZipWith z `[]` `[]` = `[]` 
ZipWith z ((:) z z) `[]` = `[]` 
ZipWith z `[]` ((:) z z) = `[]` 

type family ZipWith3 a a a a :: [d] Source

Equations

ZipWith3 z ((:) a as) ((:) b bs) ((:) c cs) = Apply (Apply (:$) (Apply (Apply (Apply z a) b) c)) (Apply (Apply (Apply (Apply ZipWith3Sym0 z) as) bs) cs) 
ZipWith3 z `[]` `[]` `[]` = `[]` 
ZipWith3 z `[]` `[]` ((:) z z) = `[]` 
ZipWith3 z `[]` ((:) z z) `[]` = `[]` 
ZipWith3 z `[]` ((:) z z) ((:) z z) = `[]` 
ZipWith3 z ((:) z z) `[]` `[]` = `[]` 
ZipWith3 z ((:) z z) `[]` ((:) z z) = `[]` 
ZipWith3 z ((:) z z) ((:) z z) `[]` = `[]` 

type family Unzip a :: ([a], [b]) Source

Equations

Unzip xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_1627596054Sym0 xs)) (Apply (Apply Tuple2Sym0 `[]`) `[]`)) xs 

type family Unzip3 a :: ([a], [b], [c]) Source

Equations

Unzip3 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_1627596020Sym0 xs)) (Apply (Apply (Apply Tuple3Sym0 `[]`) `[]`) `[]`)) xs 

Other datatypes

data KProxy t :: * -> *

A concrete, promotable proxy type, for use at the kind level There are no instances for this because it is intended at the kind level only

Constructors

KProxy 

Defunctionalization symbols

type NotSym1 t = Not t Source

data (:&&$) l Source

Instances

data l :&&$$ l Source

Instances

type (:&&$$$) t t = (:&&) t t Source

data (:||$) l Source

Instances

data l :||$$ l Source

Instances

type (:||$$$) t t = (:||) t t Source

data JustSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (Maybe k) -> *) (JustSym0 k) 
type Apply (Maybe k) k (JustSym0 k) l0 = JustSym1 k l0 

type JustSym1 t = Just t Source

data Maybe_Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun (TyFun k k -> *) (TyFun (Maybe k) k -> *) -> *) -> *) (Maybe_Sym0 k k) 
type Apply (TyFun (TyFun k1 k -> *) (TyFun (Maybe k1) k -> *) -> *) k (Maybe_Sym0 k k1) l0 = Maybe_Sym1 k k1 l0 

data Maybe_Sym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun (TyFun k k -> *) (TyFun (Maybe k) k -> *) -> *) (Maybe_Sym1 k k) 
type Apply (TyFun (Maybe k) k1 -> *) (TyFun k k1 -> *) (Maybe_Sym1 k1 k l1) l0 = Maybe_Sym2 k1 k l1 l0 

data Maybe_Sym2 l l l Source

Instances

SuppressUnusedWarnings (k -> (TyFun k k -> *) -> TyFun (Maybe k) k -> *) (Maybe_Sym2 k k) 
type Apply k (Maybe k1) (Maybe_Sym2 k k1 l1 l2) l0 = Maybe_Sym3 k k1 l1 l2 l0 

type Maybe_Sym3 t t t = Maybe_ t t t Source

data LeftSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (Either k k) -> *) (LeftSym0 k k) 
type Apply (Either k k1) k (LeftSym0 k k1) l0 = LeftSym1 k k1 l0 

type LeftSym1 t = Left t Source

data RightSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (Either k k) -> *) (RightSym0 k k) 
type Apply (Either k1 k) k (RightSym0 k k1) l0 = RightSym1 k k1 l0 

data Either_Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k k -> *) (TyFun (TyFun k k -> *) (TyFun (Either k k) k -> *) -> *) -> *) (Either_Sym0 k k k) 
type Apply (TyFun (TyFun k2 k1 -> *) (TyFun (Either k k2) k1 -> *) -> *) (TyFun k k1 -> *) (Either_Sym0 k k1 k2) l0 = Either_Sym1 k k1 k2 l0 

data Either_Sym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k k -> *) -> TyFun (TyFun k k -> *) (TyFun (Either k k) k -> *) -> *) (Either_Sym1 k k k) 
type Apply (TyFun (Either k1 k) k2 -> *) (TyFun k k2 -> *) (Either_Sym1 k1 k2 k l1) l0 = Either_Sym2 k1 k2 k l1 l0 

data Either_Sym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k k -> *) -> (TyFun k k -> *) -> TyFun (Either k k) k -> *) (Either_Sym2 k k k) 
type Apply k1 (Either k k2) (Either_Sym2 k k1 k2 l1 l2) l0 = Either_Sym3 k k1 k2 l1 l2 l0 

type Either_Sym3 t t t = Either_ t t t Source

type Tuple0Sym0 = `()` Source

data Tuple2Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k ((,) k k) -> *) -> *) (Tuple2Sym0 k k) 
type Apply (TyFun k1 ((,) k k1) -> *) k (Tuple2Sym0 k k1) l0 = Tuple2Sym1 k k1 l0 

data Tuple2Sym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k ((,) k k) -> *) (Tuple2Sym1 k k) 
type Apply ((,) k1 k) k (Tuple2Sym1 k1 k l1) l0 = Tuple2Sym2 k1 k l1 l0 

type Tuple2Sym2 t t = `(t, t)` Source

data Tuple3Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k (TyFun k ((,,) k k k) -> *) -> *) -> *) (Tuple3Sym0 k k k) 
type Apply (TyFun k1 (TyFun k2 ((,,) k k1 k2) -> *) -> *) k (Tuple3Sym0 k k1 k2) l0 = Tuple3Sym1 k k1 k2 l0 

data Tuple3Sym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k (TyFun k ((,,) k k k) -> *) -> *) (Tuple3Sym1 k k k) 
type Apply (TyFun k1 ((,,) k2 k k1) -> *) k (Tuple3Sym1 k2 k k1 l1) l0 = Tuple3Sym2 k2 k k1 l1 l0 

data Tuple3Sym2 l l l Source

Instances

SuppressUnusedWarnings (k -> k -> TyFun k ((,,) k k k) -> *) (Tuple3Sym2 k k k) 
type Apply ((,,) k1 k2 k) k (Tuple3Sym2 k1 k2 k l1 l2) l0 = Tuple3Sym3 k1 k2 k l1 l2 l0 

type Tuple3Sym3 t t t = `(t, t, t)` Source

data Tuple4Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k (TyFun k (TyFun k ((,,,) k k k k) -> *) -> *) -> *) -> *) (Tuple4Sym0 k k k k) 
type Apply (TyFun k1 (TyFun k2 (TyFun k3 ((,,,) k k1 k2 k3) -> *) -> *) -> *) k (Tuple4Sym0 k k1 k2 k3) l0 = Tuple4Sym1 k k1 k2 k3 l0 

data Tuple4Sym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k (TyFun k (TyFun k ((,,,) k k k k) -> *) -> *) -> *) (Tuple4Sym1 k k k k) 
type Apply (TyFun k1 (TyFun k2 ((,,,) k3 k k1 k2) -> *) -> *) k (Tuple4Sym1 k3 k k1 k2 l1) l0 = Tuple4Sym2 k3 k k1 k2 l1 l0 

data Tuple4Sym2 l l l Source

Instances

SuppressUnusedWarnings (k -> k -> TyFun k (TyFun k ((,,,) k k k k) -> *) -> *) (Tuple4Sym2 k k k k) 
type Apply (TyFun k1 ((,,,) k2 k3 k k1) -> *) k (Tuple4Sym2 k2 k3 k k1 l1 l2) l0 = Tuple4Sym3 k2 k3 k k1 l1 l2 l0 

data Tuple4Sym3 l l l l Source

Instances

SuppressUnusedWarnings (k -> k -> k -> TyFun k ((,,,) k k k k) -> *) (Tuple4Sym3 k k k k) 
type Apply ((,,,) k1 k2 k3 k) k (Tuple4Sym3 k1 k2 k3 k l1 l2 l3) l0 = Tuple4Sym4 k1 k2 k3 k l1 l2 l3 l0 

type Tuple4Sym4 t t t t = `(t, t, t, t)` Source

data Tuple5Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k (TyFun k (TyFun k (TyFun k ((,,,,) k k k k k) -> *) -> *) -> *) -> *) -> *) (Tuple5Sym0 k k k k k) 
type Apply (TyFun k1 (TyFun k2 (TyFun k3 (TyFun k4 ((,,,,) k k1 k2 k3 k4) -> *) -> *) -> *) -> *) k (Tuple5Sym0 k k1 k2 k3 k4) l0 = Tuple5Sym1 k k1 k2 k3 k4 l0 

data Tuple5Sym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k (TyFun k (TyFun k (TyFun k ((,,,,) k k k k k) -> *) -> *) -> *) -> *) (Tuple5Sym1 k k k k k) 
type Apply (TyFun k1 (TyFun k2 (TyFun k3 ((,,,,) k4 k k1 k2 k3) -> *) -> *) -> *) k (Tuple5Sym1 k4 k k1 k2 k3 l1) l0 = Tuple5Sym2 k4 k k1 k2 k3 l1 l0 

data Tuple5Sym2 l l l Source

Instances

SuppressUnusedWarnings (k -> k -> TyFun k (TyFun k (TyFun k ((,,,,) k k k k k) -> *) -> *) -> *) (Tuple5Sym2 k k k k k) 
type Apply (TyFun k1 (TyFun k2 ((,,,,) k3 k4 k k1 k2) -> *) -> *) k (Tuple5Sym2 k3 k4 k k1 k2 l1 l2) l0 = Tuple5Sym3 k3 k4 k k1 k2 l1 l2 l0 

data Tuple5Sym3 l l l l Source

Instances

SuppressUnusedWarnings (k -> k -> k -> TyFun k (TyFun k ((,,,,) k k k k k) -> *) -> *) (Tuple5Sym3 k k k k k) 
type Apply (TyFun k1 ((,,,,) k2 k3 k4 k k1) -> *) k (Tuple5Sym3 k2 k3 k4 k k1 l1 l2 l3) l0 = Tuple5Sym4 k2 k3 k4 k k1 l1 l2 l3 l0 

data Tuple5Sym4 l l l l l Source

Instances

SuppressUnusedWarnings (k -> k -> k -> k -> TyFun k ((,,,,) k k k k k) -> *) (Tuple5Sym4 k k k k k) 
type Apply ((,,,,) k1 k2 k3 k4 k) k (Tuple5Sym4 k1 k2 k3 k4 k l1 l2 l3 l4) l0 = Tuple5Sym5 k1 k2 k3 k4 k l1 l2 l3 l4 l0 

type Tuple5Sym5 t t t t t = `(t, t, t, t, t)` Source

data Tuple6Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k (TyFun k (TyFun k (TyFun k (TyFun k ((,,,,,) k k k k k k) -> *) -> *) -> *) -> *) -> *) -> *) (Tuple6Sym0 k k k k k k) 
type Apply (TyFun k1 (TyFun k2 (TyFun k3 (TyFun k4 (TyFun k5 ((,,,,,) k k1 k2 k3 k4 k5) -> *) -> *) -> *) -> *) -> *) k (Tuple6Sym0 k k1 k2 k3 k4 k5) l0 = Tuple6Sym1 k k1 k2 k3 k4 k5 l0 

data Tuple6Sym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k (TyFun k (TyFun k (TyFun k (TyFun k ((,,,,,) k k k k k k) -> *) -> *) -> *) -> *) -> *) (Tuple6Sym1 k k k k k k) 
type Apply (TyFun k1 (TyFun k2 (TyFun k3 (TyFun k4 ((,,,,,) k5 k k1 k2 k3 k4) -> *) -> *) -> *) -> *) k (Tuple6Sym1 k5 k k1 k2 k3 k4 l1) l0 = Tuple6Sym2 k5 k k1 k2 k3 k4 l1 l0 

data Tuple6Sym2 l l l Source

Instances

SuppressUnusedWarnings (k -> k -> TyFun k (TyFun k (TyFun k (TyFun k ((,,,,,) k k k k k k) -> *) -> *) -> *) -> *) (Tuple6Sym2 k k k k k k) 
type Apply (TyFun k1 (TyFun k2 (TyFun k3 ((,,,,,) k4 k5 k k1 k2 k3) -> *) -> *) -> *) k (Tuple6Sym2 k4 k5 k k1 k2 k3 l1 l2) l0 = Tuple6Sym3 k4 k5 k k1 k2 k3 l1 l2 l0 

data Tuple6Sym3 l l l l Source

Instances

SuppressUnusedWarnings (k -> k -> k -> TyFun k (TyFun k (TyFun k ((,,,,,) k k k k k k) -> *) -> *) -> *) (Tuple6Sym3 k k k k k k) 
type Apply (TyFun k1 (TyFun k2 ((,,,,,) k3 k4 k5 k k1 k2) -> *) -> *) k (Tuple6Sym3 k3 k4 k5 k k1 k2 l1 l2 l3) l0 = Tuple6Sym4 k3 k4 k5 k k1 k2 l1 l2 l3 l0 

data Tuple6Sym4 l l l l l Source

Instances

SuppressUnusedWarnings (k -> k -> k -> k -> TyFun k (TyFun k ((,,,,,) k k k k k k) -> *) -> *) (Tuple6Sym4 k k k k k k) 
type Apply (TyFun k1 ((,,,,,) k2 k3 k4 k5 k k1) -> *) k (Tuple6Sym4 k2 k3 k4 k5 k k1 l1 l2 l3 l4) l0 = Tuple6Sym5 k2 k3 k4 k5 k k1 l1 l2 l3 l4 l0 

data Tuple6Sym5 l l l l l l Source

Instances

SuppressUnusedWarnings (k -> k -> k -> k -> k -> TyFun k ((,,,,,) k k k k k k) -> *) (Tuple6Sym5 k k k k k k) 
type Apply ((,,,,,) k1 k2 k3 k4 k5 k) k (Tuple6Sym5 k1 k2 k3 k4 k5 k l1 l2 l3 l4 l5) l0 = Tuple6Sym6 k1 k2 k3 k4 k5 k l1 l2 l3 l4 l5 l0 

type Tuple6Sym6 t t t t t t = `(t, t, t, t, t, t)` Source

data Tuple7Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k (TyFun k (TyFun k (TyFun k (TyFun k (TyFun k ((,,,,,,) k k k k k k k) -> *) -> *) -> *) -> *) -> *) -> *) -> *) (Tuple7Sym0 k k k k k k k) 
type Apply (TyFun k1 (TyFun k2 (TyFun k3 (TyFun k4 (TyFun k5 (TyFun k6 ((,,,,,,) k k1 k2 k3 k4 k5 k6) -> *) -> *) -> *) -> *) -> *) -> *) k (Tuple7Sym0 k k1 k2 k3 k4 k5 k6) l0 = Tuple7Sym1 k k1 k2 k3 k4 k5 k6 l0 

data Tuple7Sym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k (TyFun k (TyFun k (TyFun k (TyFun k (TyFun k ((,,,,,,) k k k k k k k) -> *) -> *) -> *) -> *) -> *) -> *) (Tuple7Sym1 k k k k k k k) 
type Apply (TyFun k1 (TyFun k2 (TyFun k3 (TyFun k4 (TyFun k5 ((,,,,,,) k6 k k1 k2 k3 k4 k5) -> *) -> *) -> *) -> *) -> *) k (Tuple7Sym1 k6 k k1 k2 k3 k4 k5 l1) l0 = Tuple7Sym2 k6 k k1 k2 k3 k4 k5 l1 l0 

data Tuple7Sym2 l l l Source

Instances

SuppressUnusedWarnings (k -> k -> TyFun k (TyFun k (TyFun k (TyFun k (TyFun k ((,,,,,,) k k k k k k k) -> *) -> *) -> *) -> *) -> *) (Tuple7Sym2 k k k k k k k) 
type Apply (TyFun k1 (TyFun k2 (TyFun k3 (TyFun k4 ((,,,,,,) k5 k6 k k1 k2 k3 k4) -> *) -> *) -> *) -> *) k (Tuple7Sym2 k5 k6 k k1 k2 k3 k4 l1 l2) l0 = Tuple7Sym3 k5 k6 k k1 k2 k3 k4 l1 l2 l0 

data Tuple7Sym3 l l l l Source

Instances

SuppressUnusedWarnings (k -> k -> k -> TyFun k (TyFun k (TyFun k (TyFun k ((,,,,,,) k k k k k k k) -> *) -> *) -> *) -> *) (Tuple7Sym3 k k k k k k k) 
type Apply (TyFun k1 (TyFun k2 (TyFun k3 ((,,,,,,) k4 k5 k6 k k1 k2 k3) -> *) -> *) -> *) k (Tuple7Sym3 k4 k5 k6 k k1 k2 k3 l1 l2 l3) l0 = Tuple7Sym4 k4 k5 k6 k k1 k2 k3 l1 l2 l3 l0 

data Tuple7Sym4 l l l l l Source

Instances

SuppressUnusedWarnings (k -> k -> k -> k -> TyFun k (TyFun k (TyFun k ((,,,,,,) k k k k k k k) -> *) -> *) -> *) (Tuple7Sym4 k k k k k k k) 
type Apply (TyFun k1 (TyFun k2 ((,,,,,,) k3 k4 k5 k6 k k1 k2) -> *) -> *) k (Tuple7Sym4 k3 k4 k5 k6 k k1 k2 l1 l2 l3 l4) l0 = Tuple7Sym5 k3 k4 k5 k6 k k1 k2 l1 l2 l3 l4 l0 

data Tuple7Sym5 l l l l l l Source

Instances

SuppressUnusedWarnings (k -> k -> k -> k -> k -> TyFun k (TyFun k ((,,,,,,) k k k k k k k) -> *) -> *) (Tuple7Sym5 k k k k k k k) 
type Apply (TyFun k1 ((,,,,,,) k2 k3 k4 k5 k6 k k1) -> *) k (Tuple7Sym5 k2 k3 k4 k5 k6 k k1 l1 l2 l3 l4 l5) l0 = Tuple7Sym6 k2 k3 k4 k5 k6 k k1 l1 l2 l3 l4 l5 l0 

data Tuple7Sym6 l l l l l l l Source

Instances

SuppressUnusedWarnings (k -> k -> k -> k -> k -> k -> TyFun k ((,,,,,,) k k k k k k k) -> *) (Tuple7Sym6 k k k k k k k) 
type Apply ((,,,,,,) k1 k2 k3 k4 k5 k6 k) k (Tuple7Sym6 k1 k2 k3 k4 k5 k6 k l1 l2 l3 l4 l5 l6) l0 = Tuple7Sym7 k1 k2 k3 k4 k5 k6 k l1 l2 l3 l4 l5 l6 l0 

type Tuple7Sym7 t t t t t t t = `(t, t, t, t, t, t, t)` Source

data FstSym0 l Source

Instances

SuppressUnusedWarnings (TyFun ((,) k k) k -> *) (FstSym0 k k) 
type Apply k ((,) k k1) (FstSym0 k k1) l0 = FstSym1 k k1 l0 

type FstSym1 t = Fst t Source

data SndSym0 l Source

Instances

SuppressUnusedWarnings (TyFun ((,) k k) k -> *) (SndSym0 k k) 
type Apply k ((,) k1 k) (SndSym0 k1 k) l0 = SndSym1 k1 k l0 

type SndSym1 t = Snd t Source

data CurrySym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun ((,) k k) k -> *) (TyFun k (TyFun k k -> *) -> *) -> *) (CurrySym0 k k k) 
type Apply (TyFun k (TyFun k1 k2 -> *) -> *) (TyFun ((,) k k1) k2 -> *) (CurrySym0 k k1 k2) l0 = CurrySym1 k k1 k2 l0 

data CurrySym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun ((,) k k) k -> *) -> TyFun k (TyFun k k -> *) -> *) (CurrySym1 k k k) 
type Apply (TyFun k1 k2 -> *) k (CurrySym1 k k1 k2 l1) l0 = CurrySym2 k k1 k2 l1 l0 

data CurrySym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun ((,) k k) k -> *) -> k -> TyFun k k -> *) (CurrySym2 k k k) 
type Apply k2 k (CurrySym2 k1 k k2 l1 l2) l0 = CurrySym3 k1 k k2 l1 l2 l0 

type CurrySym3 t t t = Curry t t t Source

data UncurrySym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun ((,) k k) k -> *) -> *) (UncurrySym0 k k k) 
type Apply (TyFun ((,) k k1) k2 -> *) (TyFun k (TyFun k1 k2 -> *) -> *) (UncurrySym0 k k1 k2) l0 = UncurrySym1 k k1 k2 l0 

data UncurrySym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun ((,) k k) k -> *) (UncurrySym1 k k k) 
type Apply k2 ((,) k k1) (UncurrySym1 k k1 k2 l1) l0 = UncurrySym2 k k1 k2 l1 l0 

type UncurrySym2 t t = Uncurry t t Source

data (:+$) l Source

Instances

data l :+$$ l Source

Instances

data (:-$) l Source

Instances

data l :-$$ l Source

Instances

data (:*$) l Source

Instances

data l :*$$ l Source

Instances

data (:^$) l Source

Instances

data l :^$$ l Source

Instances

data IdSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k k -> *) (IdSym0 k) 
type Apply k k (IdSym0 k) l0 = IdSym1 k l0 

type IdSym1 t = Id t Source

data ConstSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k k -> *) -> *) (ConstSym0 k k) 
type Apply (TyFun k1 k -> *) k (ConstSym0 k k1) l0 = ConstSym1 k k1 l0 

data ConstSym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k k -> *) (ConstSym1 k k) 
type Apply k1 k (ConstSym1 k1 k l1) l0 = ConstSym2 k1 k l1 l0 

type ConstSym2 t t = Const t t Source

data (:.$) l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k k -> *) (TyFun (TyFun k k -> *) (TyFun k k -> *) -> *) -> *) ((:.$) k k k) 
type Apply (TyFun (TyFun k2 k -> *) (TyFun k2 k1 -> *) -> *) (TyFun k k1 -> *) ((:.$) k k1 k2) l0 = (:.$$) k k1 k2 l0 

data l :.$$ l Source

Instances

SuppressUnusedWarnings ((TyFun k k -> *) -> TyFun (TyFun k k -> *) (TyFun k k -> *) -> *) ((:.$$) k k k) 
type Apply (TyFun k k2 -> *) (TyFun k k1 -> *) ((:.$$) k1 k2 k l1) l0 = (:.$$$) k1 k2 k l1 l0 

data (l :.$$$ l) l Source

Instances

SuppressUnusedWarnings ((TyFun k k -> *) -> (TyFun k k -> *) -> TyFun k k -> *) ((:.$$$) k k k) 
type Apply k2 k ((:.$$$) k1 k2 k l1 l2) l0 

data ($$) :: TyFun (TyFun a b -> *) (TyFun a b -> *) -> * Source

Instances

type Apply (TyFun k k1 -> *) (TyFun k k1 -> *) (($$) k k1) arg = ($$$) k k1 arg 

data ($$$) :: (TyFun a b -> *) -> TyFun a b -> * Source

Instances

type Apply k1 k (($$$) k k1 f) arg = ($$$$) k1 k f arg 

type ($$$$) a b = ($) a b Source

data ($!$) :: TyFun (TyFun a b -> *) (TyFun a b -> *) -> * Source

Instances

type Apply (TyFun k k1 -> *) (TyFun k k1 -> *) (($!$) k k1) arg = ($!$$) k k1 arg 

data ($!$$) :: (TyFun a b -> *) -> TyFun a b -> * Source

Instances

type Apply k1 k (($!$$) k k1 f) arg = ($!$$$) k1 k f arg 

type ($!$$$) a b = ($!) a b Source

data FlipSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun k (TyFun k k -> *) -> *) -> *) (FlipSym0 k k k) 
type Apply (TyFun k1 (TyFun k k2 -> *) -> *) (TyFun k (TyFun k1 k2 -> *) -> *) (FlipSym0 k k1 k2) l0 = FlipSym1 k k1 k2 l0 

data FlipSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun k (TyFun k k -> *) -> *) (FlipSym1 k k k) 
type Apply (TyFun k1 k2 -> *) k (FlipSym1 k1 k k2 l1) l0 = FlipSym2 k1 k k2 l1 l0 

data FlipSym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> k -> TyFun k k -> *) (FlipSym2 k k k) 
type Apply k2 k (FlipSym2 k k1 k2 l1 l2) l0 

data AsTypeOfSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k k -> *) -> *) (AsTypeOfSym0 k) 
type Apply (TyFun k k -> *) k (AsTypeOfSym0 k) l0 = AsTypeOfSym1 k l0 

data AsTypeOfSym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k k -> *) (AsTypeOfSym1 k) 
type Apply k k (AsTypeOfSym1 k l1) l0 = AsTypeOfSym2 k l1 l0 

data SeqSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun k k -> *) -> *) (SeqSym0 k k) 
type Apply (TyFun k1 k1 -> *) k (SeqSym0 k k1) l0 = SeqSym1 k k1 l0 

data SeqSym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun k k -> *) (SeqSym1 k k) 
type Apply k k (SeqSym1 k1 k l1) l0 = SeqSym2 k1 k l1 l0 

type SeqSym2 t t = Seq t t Source

data (:$) l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun [k] [k] -> *) -> *) ((:$) k) 
type Apply (TyFun [k] [k] -> *) k ((:$) k) l0 = (:$$) k l0 

data l :$$ l Source

Instances

SuppressUnusedWarnings (k -> TyFun [k] [k] -> *) ((:$$) k) 
type Apply [k] [k] ((:$$) k l1) l0 = (:$$$) k l1 l0 

type (:$$$) t t = (:) t t Source

type NilSym0 = `[]` Source

data MapSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k k -> *) (TyFun [k] [k] -> *) -> *) (MapSym0 k k) 
type Apply (TyFun [k] [k1] -> *) (TyFun k k1 -> *) (MapSym0 k k1) l0 = MapSym1 k k1 l0 

data MapSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k k -> *) -> TyFun [k] [k] -> *) (MapSym1 k k) 
type Apply [k1] [k] (MapSym1 k k1 l1) l0 = MapSym2 k k1 l1 l0 

type MapSym2 t t = Map t t Source

data ReverseSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [k] [k] -> *) (ReverseSym0 k) 
type Apply [k] [k] (ReverseSym0 k) l0 = ReverseSym1 k l0 

data l :++$$ l Source

Instances

SuppressUnusedWarnings ([k] -> TyFun [k] [k] -> *) ((:++$$) k) 
type Apply [k] [k] ((:++$$) k l1) l0 

data (:++$) l Source

Instances

SuppressUnusedWarnings (TyFun [k] (TyFun [k] [k] -> *) -> *) ((:++$) k) 
type Apply (TyFun [k] [k] -> *) [k] ((:++$) k) l0 = (:++$$) k l0 

data HeadSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [k] k -> *) (HeadSym0 k) 
type Apply k [k] (HeadSym0 k) l0 = HeadSym1 k l0 

type HeadSym1 t = Head t Source

data LastSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [k] k -> *) (LastSym0 k) 
type Apply k [k] (LastSym0 k) l0 = LastSym1 k l0 

type LastSym1 t = Last t Source

data TailSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [k] [k] -> *) (TailSym0 k) 
type Apply [k] [k] (TailSym0 k) l0 = TailSym1 k l0 

type TailSym1 t = Tail t Source

data InitSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [k] [k] -> *) (InitSym0 k) 
type Apply [k] [k] (InitSym0 k) l0 = InitSym1 k l0 

type InitSym1 t = Init t Source

data NullSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [k] Bool -> *) (NullSym0 k) 
type Apply Bool [k] (NullSym0 k) l0 = NullSym1 k l0 

type NullSym1 t = Null t Source

data FoldlSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun k (TyFun [k] k -> *) -> *) -> *) (FoldlSym0 k k) 
type Apply (TyFun k (TyFun [k1] k -> *) -> *) (TyFun k (TyFun k1 k -> *) -> *) (FoldlSym0 k k1) l0 = FoldlSym1 k k1 l0 

data FoldlSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun k (TyFun [k] k -> *) -> *) (FoldlSym1 k k) 
type Apply (TyFun [k1] k -> *) k (FoldlSym1 k k1 l1) l0 = FoldlSym2 k k1 l1 l0 

data FoldlSym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> k -> TyFun [k] k -> *) (FoldlSym2 k k) 
type Apply k [k1] (FoldlSym2 k k1 l1 l2) l0 = FoldlSym3 k k1 l1 l2 l0 

type FoldlSym3 t t t = Foldl t t t Source

data Foldl1Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] k -> *) -> *) (Foldl1Sym0 k) 
type Apply (TyFun [k] k -> *) (TyFun k (TyFun k k -> *) -> *) (Foldl1Sym0 k) l0 = Foldl1Sym1 k l0 

data Foldl1Sym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] k -> *) (Foldl1Sym1 k) 
type Apply k [k] (Foldl1Sym1 k l1) l0 = Foldl1Sym2 k l1 l0 

type Foldl1Sym2 t t = Foldl1 t t Source

data FoldrSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun k (TyFun [k] k -> *) -> *) -> *) (FoldrSym0 k k) 
type Apply (TyFun k1 (TyFun [k] k1 -> *) -> *) (TyFun k (TyFun k1 k1 -> *) -> *) (FoldrSym0 k k1) l0 = FoldrSym1 k k1 l0 

data FoldrSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun k (TyFun [k] k -> *) -> *) (FoldrSym1 k k) 
type Apply (TyFun [k1] k -> *) k (FoldrSym1 k1 k l1) l0 = FoldrSym2 k1 k l1 l0 

data FoldrSym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> k -> TyFun [k] k -> *) (FoldrSym2 k k) 
type Apply k1 [k] (FoldrSym2 k k1 l1 l2) l0 = FoldrSym3 k k1 l1 l2 l0 

type FoldrSym3 t t t = Foldr t t t Source

data Foldr1Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] k -> *) -> *) (Foldr1Sym0 k) 
type Apply (TyFun [k] k -> *) (TyFun k (TyFun k k -> *) -> *) (Foldr1Sym0 k) l0 = Foldr1Sym1 k l0 

data Foldr1Sym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] k -> *) (Foldr1Sym1 k) 
type Apply k [k] (Foldr1Sym1 k l1) l0 = Foldr1Sym2 k l1 l0 

type Foldr1Sym2 t t = Foldr1 t t Source

data ConcatSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [[k]] [k] -> *) (ConcatSym0 k) 
type Apply [k] [[k]] (ConcatSym0 k) l0 = ConcatSym1 k l0 

data ConcatMapSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k [k] -> *) (TyFun [k] [k] -> *) -> *) (ConcatMapSym0 k k) 
type Apply (TyFun [k] [k1] -> *) (TyFun k [k1] -> *) (ConcatMapSym0 k k1) l0 = ConcatMapSym1 k k1 l0 

data ConcatMapSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k [k] -> *) -> TyFun [k] [k] -> *) (ConcatMapSym1 k k) 
type Apply [k1] [k] (ConcatMapSym1 k k1 l1) l0 = ConcatMapSym2 k k1 l1 l0 

data MaximumBySym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Ordering -> *) -> *) (TyFun [k] k -> *) -> *) (MaximumBySym0 k) 
type Apply (TyFun [k] k -> *) (TyFun k (TyFun k Ordering -> *) -> *) (MaximumBySym0 k) l0 = MaximumBySym1 k l0 

data MaximumBySym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> TyFun [k] k -> *) (MaximumBySym1 k) 
type Apply k [k] (MaximumBySym1 k l1) l0 = MaximumBySym2 k l1 l0 

data MinimumBySym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Ordering -> *) -> *) (TyFun [k] k -> *) -> *) (MinimumBySym0 k) 
type Apply (TyFun [k] k -> *) (TyFun k (TyFun k Ordering -> *) -> *) (MinimumBySym0 k) l0 = MinimumBySym1 k l0 

data MinimumBySym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> TyFun [k] k -> *) (MinimumBySym1 k) 
type Apply k [k] (MinimumBySym1 k l1) l0 = MinimumBySym2 k l1 l0 

type AndSym1 t = And t Source

data OrSym0 l Source

Instances

type OrSym1 t = Or t Source

data Any_Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k Bool -> *) (TyFun [k] Bool -> *) -> *) (Any_Sym0 k) 
type Apply (TyFun [k] Bool -> *) (TyFun k Bool -> *) (Any_Sym0 k) l0 = Any_Sym1 k l0 

data Any_Sym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k Bool -> *) -> TyFun [k] Bool -> *) (Any_Sym1 k) 
type Apply Bool [k] (Any_Sym1 k l1) l0 = Any_Sym2 k l1 l0 

type Any_Sym2 t t = Any_ t t Source

data AllSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k Bool -> *) (TyFun [k] Bool -> *) -> *) (AllSym0 k) 
type Apply (TyFun [k] Bool -> *) (TyFun k Bool -> *) (AllSym0 k) l0 = AllSym1 k l0 

data AllSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k Bool -> *) -> TyFun [k] Bool -> *) (AllSym1 k) 
type Apply Bool [k] (AllSym1 k l1) l0 = AllSym2 k l1 l0 

type AllSym2 t t = All t t Source

data ScanlSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun k (TyFun [k] [k] -> *) -> *) -> *) (ScanlSym0 k k) 
type Apply (TyFun k (TyFun [k1] [k] -> *) -> *) (TyFun k (TyFun k1 k -> *) -> *) (ScanlSym0 k k1) l0 = ScanlSym1 k k1 l0 

data ScanlSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun k (TyFun [k] [k] -> *) -> *) (ScanlSym1 k k) 
type Apply (TyFun [k1] [k] -> *) k (ScanlSym1 k k1 l1) l0 = ScanlSym2 k k1 l1 l0 

data ScanlSym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> k -> TyFun [k] [k] -> *) (ScanlSym2 k k) 
type Apply [k] [k1] (ScanlSym2 k k1 l1 l2) l0 = ScanlSym3 k k1 l1 l2 l0 

type ScanlSym3 t t t = Scanl t t t Source

data Scanl1Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] [k] -> *) -> *) (Scanl1Sym0 k) 
type Apply (TyFun [k] [k] -> *) (TyFun k (TyFun k k -> *) -> *) (Scanl1Sym0 k) l0 = Scanl1Sym1 k l0 

data Scanl1Sym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] [k] -> *) (Scanl1Sym1 k) 
type Apply [k] [k] (Scanl1Sym1 k l1) l0 = Scanl1Sym2 k l1 l0 

type Scanl1Sym2 t t = Scanl1 t t Source

data ScanrSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun k (TyFun [k] [k] -> *) -> *) -> *) (ScanrSym0 k k) 
type Apply (TyFun k1 (TyFun [k] [k1] -> *) -> *) (TyFun k (TyFun k1 k1 -> *) -> *) (ScanrSym0 k k1) l0 = ScanrSym1 k k1 l0 

data ScanrSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun k (TyFun [k] [k] -> *) -> *) (ScanrSym1 k k) 
type Apply (TyFun [k1] [k] -> *) k (ScanrSym1 k1 k l1) l0 = ScanrSym2 k1 k l1 l0 

data ScanrSym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> k -> TyFun [k] [k] -> *) (ScanrSym2 k k) 
type Apply [k1] [k] (ScanrSym2 k k1 l1 l2) l0 = ScanrSym3 k k1 l1 l2 l0 

type ScanrSym3 t t t = Scanr t t t Source

data Scanr1Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] [k] -> *) -> *) (Scanr1Sym0 k) 
type Apply (TyFun [k] [k] -> *) (TyFun k (TyFun k k -> *) -> *) (Scanr1Sym0 k) l0 = Scanr1Sym1 k l0 

data Scanr1Sym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] [k] -> *) (Scanr1Sym1 k) 
type Apply [k] [k] (Scanr1Sym1 k l1) l0 = Scanr1Sym2 k l1 l0 

type Scanr1Sym2 t t = Scanr1 t t Source

data ElemSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun [k] Bool -> *) -> *) (ElemSym0 k) 
type Apply (TyFun [k] Bool -> *) k (ElemSym0 k) l0 = ElemSym1 k l0 

data ElemSym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun [k] Bool -> *) (ElemSym1 k) 
type Apply Bool [k] (ElemSym1 k l1) l0 = ElemSym2 k l1 l0 

type ElemSym2 t t = Elem t t Source

data NotElemSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun [k] Bool -> *) -> *) (NotElemSym0 k) 
type Apply (TyFun [k] Bool -> *) k (NotElemSym0 k) l0 = NotElemSym1 k l0 

data NotElemSym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun [k] Bool -> *) (NotElemSym1 k) 
type Apply Bool [k] (NotElemSym1 k l1) l0 = NotElemSym2 k l1 l0 

type NotElemSym2 t t = NotElem t t Source

data ZipSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [k] (TyFun [k] [(,) k k] -> *) -> *) (ZipSym0 k k) 
type Apply (TyFun [k1] [(,) k k1] -> *) [k] (ZipSym0 k k1) l0 = ZipSym1 k k1 l0 

data ZipSym1 l l Source

Instances

SuppressUnusedWarnings ([k] -> TyFun [k] [(,) k k] -> *) (ZipSym1 k k) 
type Apply [(,) k1 k] [k] (ZipSym1 k1 k l1) l0 = ZipSym2 k1 k l1 l0 

type ZipSym2 t t = Zip t t Source

data Zip3Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun [k] (TyFun [k] (TyFun [k] [(,,) k k k] -> *) -> *) -> *) (Zip3Sym0 k k k) 
type Apply (TyFun [k1] (TyFun [k2] [(,,) k k1 k2] -> *) -> *) [k] (Zip3Sym0 k k1 k2) l0 = Zip3Sym1 k k1 k2 l0 

data Zip3Sym1 l l Source

Instances

SuppressUnusedWarnings ([k] -> TyFun [k] (TyFun [k] [(,,) k k k] -> *) -> *) (Zip3Sym1 k k k) 
type Apply (TyFun [k1] [(,,) k2 k k1] -> *) [k] (Zip3Sym1 k2 k k1 l1) l0 = Zip3Sym2 k2 k k1 l1 l0 

data Zip3Sym2 l l l Source

Instances

SuppressUnusedWarnings ([k] -> [k] -> TyFun [k] [(,,) k k k] -> *) (Zip3Sym2 k k k) 
type Apply [(,,) k1 k2 k] [k] (Zip3Sym2 k1 k2 k l1 l2) l0 = Zip3Sym3 k1 k2 k l1 l2 l0 

type Zip3Sym3 t t t = Zip3 t t t Source

data ZipWithSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] (TyFun [k] [k] -> *) -> *) -> *) (ZipWithSym0 k k k) 
type Apply (TyFun [k] (TyFun [k1] [k2] -> *) -> *) (TyFun k (TyFun k1 k2 -> *) -> *) (ZipWithSym0 k k1 k2) l0 = ZipWithSym1 k k1 k2 l0 

data ZipWithSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] (TyFun [k] [k] -> *) -> *) (ZipWithSym1 k k k) 
type Apply (TyFun [k1] [k2] -> *) [k] (ZipWithSym1 k k1 k2 l1) l0 = ZipWithSym2 k k1 k2 l1 l0 

data ZipWithSym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> [k] -> TyFun [k] [k] -> *) (ZipWithSym2 k k k) 
type Apply [k2] [k1] (ZipWithSym2 k k1 k2 l1 l2) l0 = ZipWithSym3 k k1 k2 l1 l2 l0 

type ZipWithSym3 t t t = ZipWith t t t Source

data ZipWith3Sym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) (TyFun [k] (TyFun [k] (TyFun [k] [k] -> *) -> *) -> *) -> *) (ZipWith3Sym0 k k k k) 
type Apply (TyFun [k] (TyFun [k1] (TyFun [k2] [k3] -> *) -> *) -> *) (TyFun k (TyFun k1 (TyFun k2 k3 -> *) -> *) -> *) (ZipWith3Sym0 k k1 k2 k3) l0 = ZipWith3Sym1 k k1 k2 k3 l0 

data ZipWith3Sym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) -> TyFun [k] (TyFun [k] (TyFun [k] [k] -> *) -> *) -> *) (ZipWith3Sym1 k k k k) 
type Apply (TyFun [k1] (TyFun [k2] [k3] -> *) -> *) [k] (ZipWith3Sym1 k k1 k2 k3 l1) l0 = ZipWith3Sym2 k k1 k2 k3 l1 l0 

data ZipWith3Sym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) -> [k] -> TyFun [k] (TyFun [k] [k] -> *) -> *) (ZipWith3Sym2 k k k k) 
type Apply (TyFun [k2] [k3] -> *) [k1] (ZipWith3Sym2 k k1 k2 k3 l1 l2) l0 = ZipWith3Sym3 k k1 k2 k3 l1 l2 l0 

data ZipWith3Sym3 l l l l Source

Instances

SuppressUnusedWarnings ((TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) -> [k] -> [k] -> TyFun [k] [k] -> *) (ZipWith3Sym3 k k k k) 
type Apply [k3] [k2] (ZipWith3Sym3 k k1 k2 k3 l1 l2 l3) l0 

data UnzipSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [(,) k k] ((,) [k] [k]) -> *) (UnzipSym0 k k) 
type Apply ((,) [k] [k1]) [(,) k k1] (UnzipSym0 k k1) l0 = UnzipSym1 k k1 l0 

data UntilSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k Bool -> *) (TyFun (TyFun k k -> *) (TyFun k k -> *) -> *) -> *) (UntilSym0 k) 
type Apply (TyFun (TyFun k k -> *) (TyFun k k -> *) -> *) (TyFun k Bool -> *) (UntilSym0 k) l0 = UntilSym1 k l0 

data UntilSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k Bool -> *) -> TyFun (TyFun k k -> *) (TyFun k k -> *) -> *) (UntilSym1 k) 
type Apply (TyFun k k -> *) (TyFun k k -> *) (UntilSym1 k l1) l0 = UntilSym2 k l1 l0 

data UntilSym2 l l l Source

Instances

SuppressUnusedWarnings ((TyFun k Bool -> *) -> (TyFun k k -> *) -> TyFun k k -> *) (UntilSym2 k) 
type Apply k k (UntilSym2 k l1 l2) l0 = UntilSym3 k l1 l2 l0 

type UntilSym3 t t t = Until t t t Source

data LengthSym0 l Source

Instances

SuppressUnusedWarnings (TyFun [k] Nat -> *) (LengthSym0 k) 
type Apply Nat [k] (LengthSym0 k) l0 = LengthSym1 k l0 

data SumSym0 l Source

Instances

type SumSym1 t = Sum t Source

data ReplicateSym0 l Source

Instances

SuppressUnusedWarnings (TyFun Nat (TyFun k [k] -> *) -> *) (ReplicateSym0 k) 
type Apply (TyFun k [k] -> *) Nat (ReplicateSym0 k) l0 = ReplicateSym1 k l0 

data ReplicateSym1 l l Source

Instances

SuppressUnusedWarnings (Nat -> TyFun k [k] -> *) (ReplicateSym1 k) 
type Apply [k] k (ReplicateSym1 k l1) l0 = ReplicateSym2 k l1 l0 

data TakeSym0 l Source

Instances

SuppressUnusedWarnings (TyFun Nat (TyFun [k] [k] -> *) -> *) (TakeSym0 k) 
type Apply (TyFun [k] [k] -> *) Nat (TakeSym0 k) l0 = TakeSym1 k l0 

data TakeSym1 l l Source

Instances

SuppressUnusedWarnings (Nat -> TyFun [k] [k] -> *) (TakeSym1 k) 
type Apply [k] [k] (TakeSym1 k l1) l0 = TakeSym2 k l1 l0 

type TakeSym2 t t = Take t t Source

data DropSym0 l Source

Instances

SuppressUnusedWarnings (TyFun Nat (TyFun [k] [k] -> *) -> *) (DropSym0 k) 
type Apply (TyFun [k] [k] -> *) Nat (DropSym0 k) l0 = DropSym1 k l0 

data DropSym1 l l Source

Instances

SuppressUnusedWarnings (Nat -> TyFun [k] [k] -> *) (DropSym1 k) 
type Apply [k] [k] (DropSym1 k l1) l0 = DropSym2 k l1 l0 

type DropSym2 t t = Drop t t Source

data SplitAtSym0 l Source

Instances

SuppressUnusedWarnings (TyFun Nat (TyFun [k] ((,) [k] [k]) -> *) -> *) (SplitAtSym0 k) 
type Apply (TyFun [k] ((,) [k] [k]) -> *) Nat (SplitAtSym0 k) l0 = SplitAtSym1 k l0 

data SplitAtSym1 l l Source

Instances

SuppressUnusedWarnings (Nat -> TyFun [k] ((,) [k] [k]) -> *) (SplitAtSym1 k) 
type Apply ((,) [k] [k]) [k] (SplitAtSym1 k l1) l0 = SplitAtSym2 k l1 l0 

type SplitAtSym2 t t = SplitAt t t Source

data TakeWhileSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k Bool -> *) (TyFun [k] [k] -> *) -> *) (TakeWhileSym0 k) 
type Apply (TyFun [k] [k] -> *) (TyFun k Bool -> *) (TakeWhileSym0 k) l0 = TakeWhileSym1 k l0 

data TakeWhileSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k Bool -> *) -> TyFun [k] [k] -> *) (TakeWhileSym1 k) 
type Apply [k] [k] (TakeWhileSym1 k l1) l0 = TakeWhileSym2 k l1 l0 

data DropWhileSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k Bool -> *) (TyFun [k] [k] -> *) -> *) (DropWhileSym0 k) 
type Apply (TyFun [k] [k] -> *) (TyFun k Bool -> *) (DropWhileSym0 k) l0 = DropWhileSym1 k l0 

data DropWhileSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k Bool -> *) -> TyFun [k] [k] -> *) (DropWhileSym1 k) 
type Apply [k] [k] (DropWhileSym1 k l1) l0 = DropWhileSym2 k l1 l0 

data SpanSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k Bool -> *) (TyFun [k] ((,) [k] [k]) -> *) -> *) (SpanSym0 k) 
type Apply (TyFun [k] ((,) [k] [k]) -> *) (TyFun k Bool -> *) (SpanSym0 k) l0 = SpanSym1 k l0 

data SpanSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k Bool -> *) -> TyFun [k] ((,) [k] [k]) -> *) (SpanSym1 k) 
type Apply ((,) [k] [k]) [k] (SpanSym1 k l1) l0 = SpanSym2 k l1 l0 

type SpanSym2 t t = Span t t Source

data BreakSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k Bool -> *) (TyFun [k] ((,) [k] [k]) -> *) -> *) (BreakSym0 k) 
type Apply (TyFun [k] ((,) [k] [k]) -> *) (TyFun k Bool -> *) (BreakSym0 k) l0 = BreakSym1 k l0 

data BreakSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k Bool -> *) -> TyFun [k] ((,) [k] [k]) -> *) (BreakSym1 k) 
type Apply ((,) [k] [k]) [k] (BreakSym1 k l1) l0 = BreakSym2 k l1 l0 

type BreakSym2 t t = Break t t Source

data LookupSym0 l Source

Instances

SuppressUnusedWarnings (TyFun k (TyFun [(,) k k] (Maybe k) -> *) -> *) (LookupSym0 k k) 
type Apply (TyFun [(,) k k1] (Maybe k1) -> *) k (LookupSym0 k k1) l0 = LookupSym1 k k1 l0 

data LookupSym1 l l Source

Instances

SuppressUnusedWarnings (k -> TyFun [(,) k k] (Maybe k) -> *) (LookupSym1 k k) 
type Apply (Maybe k) [(,) k1 k] (LookupSym1 k1 k l1) l0 = LookupSym2 k1 k l1 l0 

type LookupSym2 t t = Lookup t t Source

data FilterSym0 l Source

Instances

SuppressUnusedWarnings (TyFun (TyFun k Bool -> *) (TyFun [k] [k] -> *) -> *) (FilterSym0 k) 
type Apply (TyFun [k] [k] -> *) (TyFun k Bool -> *) (FilterSym0 k) l0 = FilterSym1 k l0 

data FilterSym1 l l Source

Instances

SuppressUnusedWarnings ((TyFun k Bool -> *) -> TyFun [k] [k] -> *) (FilterSym1 k) 
type Apply [k] [k] (FilterSym1 k l1) l0 = FilterSym2 k l1 l0 

type FilterSym2 t t = Filter t t Source

data (:!!$) l Source

Instances

SuppressUnusedWarnings (TyFun [k] (TyFun Nat k -> *) -> *) ((:!!$) k) 
type Apply (TyFun Nat k -> *) [k] ((:!!$) k) l0 = (:!!$$) k l0 

data l :!!$$ l Source

Instances

SuppressUnusedWarnings ([k] -> TyFun Nat k -> *) ((:!!$$) k) 
type Apply k Nat ((:!!$$) k l1) l0 = (:!!$$$) k l1 l0 

type (:!!$$$) t t = (:!!) t t Source