| Copyright | (C) 2013-2014 Richard Eisenberg, Jan Stolarek |
|---|---|
| License | BSD-style (see LICENSE) |
| Maintainer | Richard Eisenberg (eir@cis.upenn.edu) |
| Stability | experimental |
| Portability | non-portable |
| Safe Haskell | None |
| Language | Haskell2010 |
Data.Singletons.Prelude.List
Contents
Description
Defines functions and datatypes relating to the singleton for '[]',
including a singletons version of a few of the definitions in Data.List.
Because many of these definitions are produced by Template Haskell,
it is not possible to create proper Haddock documentation. Please look
up the corresponding operation in Data.List. Also, please excuse
the apparent repeated variable names. This is due to an interaction
between Template Haskell and Haddock.
- data family Sing a
- type SList z = Sing z
- type family a :++ a :: [a]
- (%:++) :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply (:++$) t) t)
- type family Head a :: a
- sHead :: forall t. Sing t -> Sing (Apply HeadSym0 t)
- type family Last a :: a
- sLast :: forall t. Sing t -> Sing (Apply LastSym0 t)
- type family Tail a :: [a]
- sTail :: forall t. Sing t -> Sing (Apply TailSym0 t)
- type family Init a :: [a]
- sInit :: forall t. Sing t -> Sing (Apply InitSym0 t)
- type family Null a :: Bool
- sNull :: forall t. Sing t -> Sing (Apply NullSym0 t)
- type family Map a a :: [b]
- sMap :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply MapSym0 t) t)
- type family Reverse a :: [a]
- sReverse :: forall t. Sing t -> Sing (Apply ReverseSym0 t)
- type family Intersperse a a :: [a]
- sIntersperse :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply IntersperseSym0 t) t)
- type family Intercalate a a :: [a]
- sIntercalate :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply IntercalateSym0 t) t)
- type family Subsequences a :: [[a]]
- sSubsequences :: forall t. Sing t -> Sing (Apply SubsequencesSym0 t)
- type family Permutations a :: [[a]]
- sPermutations :: forall t. Sing t -> Sing (Apply PermutationsSym0 t)
- type family Foldl a a a :: b
- sFoldl :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t)
- type family Foldl' a a a :: b
- sFoldl' :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t)
- type family Foldl1 a a :: a
- sFoldl1 :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t)
- type family Foldl1' a a :: a
- sFoldl1' :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Foldl1'Sym0 t) t)
- type family Foldr a a a :: b
- sFoldr :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t)
- type family Foldr1 a a :: a
- sFoldr1 :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t)
- type family Concat a :: [a]
- sConcat :: forall t. Sing t -> Sing (Apply ConcatSym0 t)
- type family ConcatMap a a :: [b]
- sConcatMap :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t)
- type family And a :: Bool
- sAnd :: forall t. Sing t -> Sing (Apply AndSym0 t)
- type family Or a :: Bool
- sOr :: forall t. Sing t -> Sing (Apply OrSym0 t)
- type family Any_ a a :: Bool
- sAny_ :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Any_Sym0 t) t)
- type family All a a :: Bool
- sAll :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t)
- any_ :: forall a. (a -> Bool) -> [a] -> Bool
- type family Scanl a a a :: [b]
- sScanl :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t)
- type family Scanl1 a a :: [a]
- sScanl1 :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Scanl1Sym0 t) t)
- type family Scanr a a a :: [b]
- sScanr :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t)
- type family Scanr1 a a :: [a]
- sScanr1 :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Scanr1Sym0 t) t)
- type family MapAccumL a a a :: (acc, [y])
- sMapAccumL :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumLSym0 t) t) t)
- type family MapAccumR a a a :: (acc, [y])
- sMapAccumR :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumRSym0 t) t) t)
- type family Unfoldr a a :: [a]
- sUnfoldr :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply UnfoldrSym0 t) t)
- type family Inits a :: [[a]]
- sInits :: forall t. Sing t -> Sing (Apply InitsSym0 t)
- type family Tails a :: [[a]]
- sTails :: forall t. Sing t -> Sing (Apply TailsSym0 t)
- type family IsPrefixOf a a :: Bool
- sIsPrefixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsPrefixOfSym0 t) t)
- type family IsSuffixOf a a :: Bool
- sIsSuffixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsSuffixOfSym0 t) t)
- type family IsInfixOf a a :: Bool
- sIsInfixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsInfixOfSym0 t) t)
- type family Elem a a :: Bool
- sElem :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t)
- type family NotElem a a :: Bool
- sNotElem :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t)
- type family Zip a a :: [(a, b)]
- sZip :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply ZipSym0 t) t)
- type family Zip3 a a a :: [(a, b, c)]
- sZip3 :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t)
- type family ZipWith a a a :: [c]
- sZipWith :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t)
- type family ZipWith3 a a a a :: [d]
- sZipWith3 :: forall t t t t. Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t)
- type family Unzip a :: ([a], [b])
- sUnzip :: forall t. Sing t -> Sing (Apply UnzipSym0 t)
- type family Unzip3 a :: ([a], [b], [c])
- sUnzip3 :: forall t. Sing t -> Sing (Apply Unzip3Sym0 t)
- type family Unzip4 a :: ([a], [b], [c], [d])
- sUnzip4 :: forall t. Sing t -> Sing (Apply Unzip4Sym0 t)
- type family Unzip5 a :: ([a], [b], [c], [d], [e])
- sUnzip5 :: forall t. Sing t -> Sing (Apply Unzip5Sym0 t)
- type family Unzip6 a :: ([a], [b], [c], [d], [e], [f])
- sUnzip6 :: forall t. Sing t -> Sing (Apply Unzip6Sym0 t)
- type family Unzip7 a :: ([a], [b], [c], [d], [e], [f], [g])
- sUnzip7 :: forall t. Sing t -> Sing (Apply Unzip7Sym0 t)
- type family Delete a a :: [a]
- sDelete :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply DeleteSym0 t) t)
- type family a :\\ a :: [a]
- (%:\\) :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply (:\\$) t) t)
- type family DeleteBy a a a :: [a]
- sDeleteBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteBySym0 t) t) t)
- type family DeleteFirstsBy a a a :: [a]
- sDeleteFirstsBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteFirstsBySym0 t) t) t)
- type family SortBy a a :: [a]
- sSortBy :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply SortBySym0 t) t)
- type family InsertBy a a a :: [a]
- sInsertBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply InsertBySym0 t) t) t)
- type family MaximumBy a a :: a
- sMaximumBy :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t)
- type family MinimumBy a a :: a
- sMinimumBy :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t)
- type NilSym0 = `[]`
- data (:$) l
- data l :$$ l
- type (:$$$) t t = (:) t t
- data l :++$$ l
- data (:++$) l
- data HeadSym0 l
- type HeadSym1 t = Head t
- data LastSym0 l
- type LastSym1 t = Last t
- data TailSym0 l
- type TailSym1 t = Tail t
- data InitSym0 l
- type InitSym1 t = Init t
- data NullSym0 l
- type NullSym1 t = Null t
- data MapSym0 l
- data MapSym1 l l
- type MapSym2 t t = Map t t
- data ReverseSym0 l
- type ReverseSym1 t = Reverse t
- data IntersperseSym0 l
- data IntersperseSym1 l l
- type IntersperseSym2 t t = Intersperse t t
- data IntercalateSym0 l
- data IntercalateSym1 l l
- type IntercalateSym2 t t = Intercalate t t
- data SubsequencesSym0 l
- type SubsequencesSym1 t = Subsequences t
- data PermutationsSym0 l
- type PermutationsSym1 t = Permutations t
- data FoldlSym0 l
- data FoldlSym1 l l
- data FoldlSym2 l l l
- type FoldlSym3 t t t = Foldl t t t
- data Foldl'Sym0 l
- data Foldl'Sym1 l l
- data Foldl'Sym2 l l l
- type Foldl'Sym3 t t t = Foldl' t t t
- data Foldl1Sym0 l
- data Foldl1Sym1 l l
- type Foldl1Sym2 t t = Foldl1 t t
- data Foldl1'Sym0 l
- data Foldl1'Sym1 l l
- type Foldl1'Sym2 t t = Foldl1' t t
- data FoldrSym0 l
- data FoldrSym1 l l
- data FoldrSym2 l l l
- type FoldrSym3 t t t = Foldr t t t
- data Foldr1Sym0 l
- data Foldr1Sym1 l l
- type Foldr1Sym2 t t = Foldr1 t t
- data ConcatSym0 l
- type ConcatSym1 t = Concat t
- data ConcatMapSym0 l
- data ConcatMapSym1 l l
- type ConcatMapSym2 t t = ConcatMap t t
- data AndSym0 l
- type AndSym1 t = And t
- data OrSym0 l
- type OrSym1 t = Or t
- data Any_Sym0 l
- data Any_Sym1 l l
- type Any_Sym2 t t = Any_ t t
- data AllSym0 l
- data AllSym1 l l
- type AllSym2 t t = All t t
- data ScanlSym0 l
- data ScanlSym1 l l
- data ScanlSym2 l l l
- type ScanlSym3 t t t = Scanl t t t
- data Scanl1Sym0 l
- data Scanl1Sym1 l l
- type Scanl1Sym2 t t = Scanl1 t t
- data ScanrSym0 l
- data ScanrSym1 l l
- data ScanrSym2 l l l
- type ScanrSym3 t t t = Scanr t t t
- data Scanr1Sym0 l
- data Scanr1Sym1 l l
- type Scanr1Sym2 t t = Scanr1 t t
- data MapAccumLSym0 l
- data MapAccumLSym1 l l
- data MapAccumLSym2 l l l
- type MapAccumLSym3 t t t = MapAccumL t t t
- data MapAccumRSym0 l
- data MapAccumRSym1 l l
- data MapAccumRSym2 l l l
- type MapAccumRSym3 t t t = MapAccumR t t t
- data UnfoldrSym0 l
- data UnfoldrSym1 l l
- type UnfoldrSym2 t t = Unfoldr t t
- data InitsSym0 l
- type InitsSym1 t = Inits t
- data TailsSym0 l
- type TailsSym1 t = Tails t
- data IsPrefixOfSym0 l
- data IsPrefixOfSym1 l l
- type IsPrefixOfSym2 t t = IsPrefixOf t t
- data IsSuffixOfSym0 l
- data IsSuffixOfSym1 l l
- type IsSuffixOfSym2 t t = IsSuffixOf t t
- data IsInfixOfSym0 l
- data IsInfixOfSym1 l l
- type IsInfixOfSym2 t t = IsInfixOf t t
- data ElemSym0 l
- data ElemSym1 l l
- type ElemSym2 t t = Elem t t
- data NotElemSym0 l
- data NotElemSym1 l l
- type NotElemSym2 t t = NotElem t t
- data ZipSym0 l
- data ZipSym1 l l
- type ZipSym2 t t = Zip t t
- data Zip3Sym0 l
- data Zip3Sym1 l l
- data Zip3Sym2 l l l
- type Zip3Sym3 t t t = Zip3 t t t
- data ZipWithSym0 l
- data ZipWithSym1 l l
- data ZipWithSym2 l l l
- type ZipWithSym3 t t t = ZipWith t t t
- data ZipWith3Sym0 l
- data ZipWith3Sym1 l l
- data ZipWith3Sym2 l l l
- data ZipWith3Sym3 l l l l
- data UnzipSym0 l
- type UnzipSym1 t = Unzip t
- data Unzip3Sym0 l
- type Unzip3Sym1 t = Unzip3 t
- data Unzip4Sym0 l
- type Unzip4Sym1 t = Unzip4 t
- data Unzip5Sym0 l
- type Unzip5Sym1 t = Unzip5 t
- data Unzip6Sym0 l
- type Unzip6Sym1 t = Unzip6 t
- data Unzip7Sym0 l
- type Unzip7Sym1 t = Unzip7 t
- data DeleteSym0 l
- data DeleteSym1 l l
- type DeleteSym2 t t = Delete t t
- data (:\\$) l
- data l :\\$$ l
- type (:\\$$$) t t = (:\\) t t
- data DeleteBySym0 l
- data DeleteBySym1 l l
- data DeleteBySym2 l l l
- type DeleteBySym3 t t t = DeleteBy t t t
- data DeleteFirstsBySym0 l
- data DeleteFirstsBySym1 l l
- data DeleteFirstsBySym2 l l l
- type DeleteFirstsBySym3 t t t = DeleteFirstsBy t t t
- data SortBySym0 l
- data SortBySym1 l l
- type SortBySym2 t t = SortBy t t
- data InsertBySym0 l
- data InsertBySym1 l l
- data InsertBySym2 l l l
- type InsertBySym3 t t t = InsertBy t t t
- data MaximumBySym0 l
- data MaximumBySym1 l l
- type MaximumBySym2 t t = MaximumBy t t
- data MinimumBySym0 l
- data MinimumBySym1 l l
- type MinimumBySym2 t t = MinimumBy t t
The singleton for lists
The singleton kind-indexed data family.
Instances
| TestCoercion * (Sing *) | |
| SDecide k (KProxy k) => TestEquality k (Sing k) | |
| data Sing Bool where | |
| data Sing Ordering where | |
| data Sing * where | |
| data Sing Nat where | |
data Sing Symbol where
| |
| data Sing () where | |
| data Sing [a0] where | |
| data Sing (Maybe a0) where | |
| data Sing (TyFun k1 k2 -> *) = SLambda {} | |
| data Sing (Either a0 b0) where | |
| data Sing ((,) a0 b0) where | |
| data Sing ((,,) a0 b0 c0) where | |
| data Sing ((,,,) a0 b0 c0 d0) where | |
| data Sing ((,,,,) a0 b0 c0 d0 e0) where | |
| data Sing ((,,,,,) a0 b0 c0 d0 e0 f0) where | |
| data Sing ((,,,,,,) a0 b0 c0 d0 e0 f0 g0) where |
Though Haddock doesn't show it, the Sing instance above declares
constructors
SNil :: Sing '[] SCons :: Sing (h :: k) -> Sing (t :: [k]) -> Sing (h ': t)
Basic functions
List transformations
type family Intersperse a a :: [a] Source
Equations
| Intersperse z `[]` = `[]` | |
| Intersperse sep ((:) x xs) = Apply (Apply (:$) x) (Apply (Apply PrependToAllSym0 sep) xs) |
sIntersperse :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply IntersperseSym0 t) t) Source
type family Intercalate a a :: [a] Source
Equations
| Intercalate xs xss = Apply ConcatSym0 (Apply (Apply IntersperseSym0 xs) xss) |
sIntercalate :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply IntercalateSym0 t) t) Source
type family Subsequences a :: [[a]] Source
Equations
| Subsequences xs = Apply (Apply (:$) `[]`) (Apply NonEmptySubsequencesSym0 xs) |
sSubsequences :: forall t. Sing t -> Sing (Apply SubsequencesSym0 t) Source
type family Permutations a :: [[a]] Source
sPermutations :: forall t. Sing t -> Sing (Apply PermutationsSym0 t) Source
Reducing lists (folds)
sFoldl :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source
sFoldl' :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source
sFoldr :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source
Special folds
sConcatMap :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t) Source
Building lists
Scans
sScanl :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t) Source
sScanr :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t) Source
Accumulating maps
sMapAccumL :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumLSym0 t) t) t) Source
sMapAccumR :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumRSym0 t) t) t) Source
Unfolding
type family Unfoldr a a :: [a] Source
Equations
| Unfoldr f b = Case_1627596321 f b (Let1627596313Scrutinee_1627595678Sym2 f b) |
Sublists
Extracting sublists
Predicates
type family IsPrefixOf a a :: Bool Source
Equations
| IsPrefixOf `[]` `[]` = TrueSym0 | |
| IsPrefixOf `[]` ((:) z z) = TrueSym0 | |
| IsPrefixOf ((:) z z) `[]` = FalseSym0 | |
| IsPrefixOf ((:) x xs) ((:) y ys) = Apply (Apply (:&&$) (Apply (Apply (:==$) x) y)) (Apply (Apply IsPrefixOfSym0 xs) ys) |
sIsPrefixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsPrefixOfSym0 t) t) Source
type family IsSuffixOf a a :: Bool Source
Equations
| IsSuffixOf x y = Apply (Apply IsPrefixOfSym0 (Apply ReverseSym0 x)) (Apply ReverseSym0 y) |
sIsSuffixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsSuffixOfSym0 t) t) Source
sIsInfixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsInfixOfSym0 t) t) Source
Searching lists
Searching by equality
sElem :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source
sNotElem :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t) Source
Zipping and unzipping lists
type family Zip3 a a a :: [(a, b, c)] Source
Equations
| Zip3 ((:) a as) ((:) b bs) ((:) c cs) = Apply (Apply (:$) (Apply (Apply (Apply Tuple3Sym0 a) b) c)) (Apply (Apply (Apply Zip3Sym0 as) bs) cs) | |
| Zip3 `[]` `[]` `[]` = `[]` | |
| Zip3 `[]` `[]` ((:) z z) = `[]` | |
| Zip3 `[]` ((:) z z) `[]` = `[]` | |
| Zip3 `[]` ((:) z z) ((:) z z) = `[]` | |
| Zip3 ((:) z z) `[]` `[]` = `[]` | |
| Zip3 ((:) z z) `[]` ((:) z z) = `[]` | |
| Zip3 ((:) z z) ((:) z z) `[]` = `[]` |
sZip3 :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t) Source
sZipWith :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t) Source
type family ZipWith3 a a a a :: [d] Source
Equations
| ZipWith3 z ((:) a as) ((:) b bs) ((:) c cs) = Apply (Apply (:$) (Apply (Apply (Apply z a) b) c)) (Apply (Apply (Apply (Apply ZipWith3Sym0 z) as) bs) cs) | |
| ZipWith3 z `[]` `[]` `[]` = `[]` | |
| ZipWith3 z `[]` `[]` ((:) z z) = `[]` | |
| ZipWith3 z `[]` ((:) z z) `[]` = `[]` | |
| ZipWith3 z `[]` ((:) z z) ((:) z z) = `[]` | |
| ZipWith3 z ((:) z z) `[]` `[]` = `[]` | |
| ZipWith3 z ((:) z z) `[]` ((:) z z) = `[]` | |
| ZipWith3 z ((:) z z) ((:) z z) `[]` = `[]` |
sZipWith3 :: forall t t t t. Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t) Source
Special lists
"Set" operations
sDelete :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply DeleteSym0 t) t) Source
(%:\\) :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply (:\\$) t) t) Source
Ordered lists
Generalized functions
The "By" operations
sDeleteBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteBySym0 t) t) t) Source
type family DeleteFirstsBy a a a :: [a] Source
Equations
| DeleteFirstsBy eq a_1627597257 a_1627597259 = Apply (Apply (Apply FoldlSym0 (Apply FlipSym0 (Apply DeleteBySym0 eq))) a_1627597257) a_1627597259 |
sDeleteFirstsBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteFirstsBySym0 t) t) t) Source
sInsertBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply InsertBySym0 t) t) t) Source
sMaximumBy :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t) Source
sMinimumBy :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t) Source
Defunctionalization symbols
Instances
| SuppressUnusedWarnings ([k] -> TyFun [k] [k] -> *) ((:++$$) k) | |
| type Apply [k] [k] ((:++$$) k l1) l0 |
data ReverseSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [k] [k] -> *) (ReverseSym0 k) | |
| type Apply [k] [k] (ReverseSym0 k) l0 = ReverseSym1 k l0 |
type ReverseSym1 t = Reverse t Source
data IntersperseSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun k (TyFun [k] [k] -> *) -> *) (IntersperseSym0 k) | |
| type Apply (TyFun [k] [k] -> *) k (IntersperseSym0 k) l0 = IntersperseSym1 k l0 |
data IntersperseSym1 l l Source
Instances
| SuppressUnusedWarnings (k -> TyFun [k] [k] -> *) (IntersperseSym1 k) | |
| type Apply [k] [k] (IntersperseSym1 k l1) l0 = IntersperseSym2 k l1 l0 |
type IntersperseSym2 t t = Intersperse t t Source
data IntercalateSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [k] (TyFun [[k]] [k] -> *) -> *) (IntercalateSym0 k) | |
| type Apply (TyFun [[k]] [k] -> *) [k] (IntercalateSym0 k) l0 = IntercalateSym1 k l0 |
data IntercalateSym1 l l Source
Instances
| SuppressUnusedWarnings ([k] -> TyFun [[k]] [k] -> *) (IntercalateSym1 k) | |
| type Apply [k] [[k]] (IntercalateSym1 k l1) l0 = IntercalateSym2 k l1 l0 |
type IntercalateSym2 t t = Intercalate t t Source
data SubsequencesSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [k] [[k]] -> *) (SubsequencesSym0 k) | |
| type Apply [[k]] [k] (SubsequencesSym0 k) l0 = SubsequencesSym1 k l0 |
type SubsequencesSym1 t = Subsequences t Source
data PermutationsSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [k] [[k]] -> *) (PermutationsSym0 k) | |
| type Apply [[k]] [k] (PermutationsSym0 k) l0 = PermutationsSym1 k l0 |
type PermutationsSym1 t = Permutations t Source
data Foldl'Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun k (TyFun [k] k -> *) -> *) -> *) (Foldl'Sym0 k k) | |
| type Apply (TyFun k (TyFun [k1] k -> *) -> *) (TyFun k (TyFun k1 k -> *) -> *) (Foldl'Sym0 k k1) l0 = Foldl'Sym1 k k1 l0 |
data Foldl'Sym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun k (TyFun [k] k -> *) -> *) (Foldl'Sym1 k k) | |
| type Apply (TyFun [k1] k -> *) k (Foldl'Sym1 k k1 l1) l0 = Foldl'Sym2 k k1 l1 l0 |
data Foldl'Sym2 l l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> k -> TyFun [k] k -> *) (Foldl'Sym2 k k) | |
| type Apply k [k1] (Foldl'Sym2 k k1 l1 l2) l0 = Foldl'Sym3 k k1 l1 l2 l0 |
type Foldl'Sym3 t t t = Foldl' t t t Source
data Foldl1Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] k -> *) -> *) (Foldl1Sym0 k) | |
| type Apply (TyFun [k] k -> *) (TyFun k (TyFun k k -> *) -> *) (Foldl1Sym0 k) l0 = Foldl1Sym1 k l0 |
data Foldl1Sym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] k -> *) (Foldl1Sym1 k) | |
| type Apply k [k] (Foldl1Sym1 k l1) l0 = Foldl1Sym2 k l1 l0 |
type Foldl1Sym2 t t = Foldl1 t t Source
data Foldl1'Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] k -> *) -> *) (Foldl1'Sym0 k) | |
| type Apply (TyFun [k] k -> *) (TyFun k (TyFun k k -> *) -> *) (Foldl1'Sym0 k) l0 = Foldl1'Sym1 k l0 |
data Foldl1'Sym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] k -> *) (Foldl1'Sym1 k) | |
| type Apply k [k] (Foldl1'Sym1 k l1) l0 = Foldl1'Sym2 k l1 l0 |
type Foldl1'Sym2 t t = Foldl1' t t Source
data Foldr1Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] k -> *) -> *) (Foldr1Sym0 k) | |
| type Apply (TyFun [k] k -> *) (TyFun k (TyFun k k -> *) -> *) (Foldr1Sym0 k) l0 = Foldr1Sym1 k l0 |
data Foldr1Sym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] k -> *) (Foldr1Sym1 k) | |
| type Apply k [k] (Foldr1Sym1 k l1) l0 = Foldr1Sym2 k l1 l0 |
type Foldr1Sym2 t t = Foldr1 t t Source
data ConcatSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [[k]] [k] -> *) (ConcatSym0 k) | |
| type Apply [k] [[k]] (ConcatSym0 k) l0 = ConcatSym1 k l0 |
type ConcatSym1 t = Concat t Source
data ConcatMapSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k [k] -> *) (TyFun [k] [k] -> *) -> *) (ConcatMapSym0 k k) | |
| type Apply (TyFun [k] [k1] -> *) (TyFun k [k1] -> *) (ConcatMapSym0 k k1) l0 = ConcatMapSym1 k k1 l0 |
data ConcatMapSym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k [k] -> *) -> TyFun [k] [k] -> *) (ConcatMapSym1 k k) | |
| type Apply [k1] [k] (ConcatMapSym1 k k1 l1) l0 = ConcatMapSym2 k k1 l1 l0 |
type ConcatMapSym2 t t = ConcatMap t t Source
data Scanl1Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] [k] -> *) -> *) (Scanl1Sym0 k) | |
| type Apply (TyFun [k] [k] -> *) (TyFun k (TyFun k k -> *) -> *) (Scanl1Sym0 k) l0 = Scanl1Sym1 k l0 |
data Scanl1Sym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] [k] -> *) (Scanl1Sym1 k) | |
| type Apply [k] [k] (Scanl1Sym1 k l1) l0 = Scanl1Sym2 k l1 l0 |
type Scanl1Sym2 t t = Scanl1 t t Source
data Scanr1Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] [k] -> *) -> *) (Scanr1Sym0 k) | |
| type Apply (TyFun [k] [k] -> *) (TyFun k (TyFun k k -> *) -> *) (Scanr1Sym0 k) l0 = Scanr1Sym1 k l0 |
data Scanr1Sym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] [k] -> *) (Scanr1Sym1 k) | |
| type Apply [k] [k] (Scanr1Sym1 k l1) l0 = Scanr1Sym2 k l1 l0 |
type Scanr1Sym2 t t = Scanr1 t t Source
data MapAccumLSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k ((,) k k) -> *) -> *) (TyFun k (TyFun [k] ((,) k [k]) -> *) -> *) -> *) (MapAccumLSym0 k k k) | |
| type Apply (TyFun k (TyFun [k1] ((,) k [k2]) -> *) -> *) (TyFun k (TyFun k1 ((,) k k2) -> *) -> *) (MapAccumLSym0 k k1 k2) l0 = MapAccumLSym1 k k1 k2 l0 |
data MapAccumLSym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k ((,) k k) -> *) -> *) -> TyFun k (TyFun [k] ((,) k [k]) -> *) -> *) (MapAccumLSym1 k k k) | |
| type Apply (TyFun [k1] ((,) k [k2]) -> *) k (MapAccumLSym1 k k1 k2 l1) l0 = MapAccumLSym2 k k1 k2 l1 l0 |
data MapAccumLSym2 l l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k ((,) k k) -> *) -> *) -> k -> TyFun [k] ((,) k [k]) -> *) (MapAccumLSym2 k k k) | |
| type Apply ((,) k [k2]) [k1] (MapAccumLSym2 k k1 k2 l1 l2) l0 = MapAccumLSym3 k k1 k2 l1 l2 l0 |
type MapAccumLSym3 t t t = MapAccumL t t t Source
data MapAccumRSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k ((,) k k) -> *) -> *) (TyFun k (TyFun [k] ((,) k [k]) -> *) -> *) -> *) (MapAccumRSym0 k k k) | |
| type Apply (TyFun k (TyFun [k1] ((,) k [k2]) -> *) -> *) (TyFun k (TyFun k1 ((,) k k2) -> *) -> *) (MapAccumRSym0 k k1 k2) l0 = MapAccumRSym1 k k1 k2 l0 |
data MapAccumRSym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k ((,) k k) -> *) -> *) -> TyFun k (TyFun [k] ((,) k [k]) -> *) -> *) (MapAccumRSym1 k k k) | |
| type Apply (TyFun [k1] ((,) k [k2]) -> *) k (MapAccumRSym1 k k1 k2 l1) l0 = MapAccumRSym2 k k1 k2 l1 l0 |
data MapAccumRSym2 l l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k ((,) k k) -> *) -> *) -> k -> TyFun [k] ((,) k [k]) -> *) (MapAccumRSym2 k k k) | |
| type Apply ((,) k [k2]) [k1] (MapAccumRSym2 k k1 k2 l1 l2) l0 = MapAccumRSym3 k k1 k2 l1 l2 l0 |
type MapAccumRSym3 t t t = MapAccumR t t t Source
data UnfoldrSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (Maybe ((,) k k)) -> *) (TyFun k [k] -> *) -> *) (UnfoldrSym0 k k) | |
| type Apply (TyFun k [k1] -> *) (TyFun k (Maybe ((,) k1 k)) -> *) (UnfoldrSym0 k k1) l0 = UnfoldrSym1 k k1 l0 |
data UnfoldrSym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (Maybe ((,) k k)) -> *) -> TyFun k [k] -> *) (UnfoldrSym1 k k) | |
| type Apply [k1] k (UnfoldrSym1 k k1 l1) l0 = UnfoldrSym2 k k1 l1 l0 |
type UnfoldrSym2 t t = Unfoldr t t Source
data IsPrefixOfSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [k] (TyFun [k] Bool -> *) -> *) (IsPrefixOfSym0 k) | |
| type Apply (TyFun [k] Bool -> *) [k] (IsPrefixOfSym0 k) l0 = IsPrefixOfSym1 k l0 |
data IsPrefixOfSym1 l l Source
Instances
| SuppressUnusedWarnings ([k] -> TyFun [k] Bool -> *) (IsPrefixOfSym1 k) | |
| type Apply Bool [k] (IsPrefixOfSym1 k l1) l0 = IsPrefixOfSym2 k l1 l0 |
type IsPrefixOfSym2 t t = IsPrefixOf t t Source
data IsSuffixOfSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [k] (TyFun [k] Bool -> *) -> *) (IsSuffixOfSym0 k) | |
| type Apply (TyFun [k] Bool -> *) [k] (IsSuffixOfSym0 k) l0 = IsSuffixOfSym1 k l0 |
data IsSuffixOfSym1 l l Source
Instances
| SuppressUnusedWarnings ([k] -> TyFun [k] Bool -> *) (IsSuffixOfSym1 k) | |
| type Apply Bool [k] (IsSuffixOfSym1 k l1) l0 = IsSuffixOfSym2 k l1 l0 |
type IsSuffixOfSym2 t t = IsSuffixOf t t Source
data IsInfixOfSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [k] (TyFun [k] Bool -> *) -> *) (IsInfixOfSym0 k) | |
| type Apply (TyFun [k] Bool -> *) [k] (IsInfixOfSym0 k) l0 = IsInfixOfSym1 k l0 |
data IsInfixOfSym1 l l Source
Instances
| SuppressUnusedWarnings ([k] -> TyFun [k] Bool -> *) (IsInfixOfSym1 k) | |
| type Apply Bool [k] (IsInfixOfSym1 k l1) l0 = IsInfixOfSym2 k l1 l0 |
type IsInfixOfSym2 t t = IsInfixOf t t Source
data NotElemSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun k (TyFun [k] Bool -> *) -> *) (NotElemSym0 k) | |
| type Apply (TyFun [k] Bool -> *) k (NotElemSym0 k) l0 = NotElemSym1 k l0 |
data NotElemSym1 l l Source
Instances
| SuppressUnusedWarnings (k -> TyFun [k] Bool -> *) (NotElemSym1 k) | |
| type Apply Bool [k] (NotElemSym1 k l1) l0 = NotElemSym2 k l1 l0 |
type NotElemSym2 t t = NotElem t t Source
data ZipWithSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] (TyFun [k] [k] -> *) -> *) -> *) (ZipWithSym0 k k k) | |
| type Apply (TyFun [k] (TyFun [k1] [k2] -> *) -> *) (TyFun k (TyFun k1 k2 -> *) -> *) (ZipWithSym0 k k1 k2) l0 = ZipWithSym1 k k1 k2 l0 |
data ZipWithSym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] (TyFun [k] [k] -> *) -> *) (ZipWithSym1 k k k) | |
| type Apply (TyFun [k1] [k2] -> *) [k] (ZipWithSym1 k k1 k2 l1) l0 = ZipWithSym2 k k1 k2 l1 l0 |
data ZipWithSym2 l l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> [k] -> TyFun [k] [k] -> *) (ZipWithSym2 k k k) | |
| type Apply [k2] [k1] (ZipWithSym2 k k1 k2 l1 l2) l0 = ZipWithSym3 k k1 k2 l1 l2 l0 |
type ZipWithSym3 t t t = ZipWith t t t Source
data ZipWith3Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) (TyFun [k] (TyFun [k] (TyFun [k] [k] -> *) -> *) -> *) -> *) (ZipWith3Sym0 k k k k) | |
| type Apply (TyFun [k] (TyFun [k1] (TyFun [k2] [k3] -> *) -> *) -> *) (TyFun k (TyFun k1 (TyFun k2 k3 -> *) -> *) -> *) (ZipWith3Sym0 k k1 k2 k3) l0 = ZipWith3Sym1 k k1 k2 k3 l0 |
data ZipWith3Sym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) -> TyFun [k] (TyFun [k] (TyFun [k] [k] -> *) -> *) -> *) (ZipWith3Sym1 k k k k) | |
| type Apply (TyFun [k1] (TyFun [k2] [k3] -> *) -> *) [k] (ZipWith3Sym1 k k1 k2 k3 l1) l0 = ZipWith3Sym2 k k1 k2 k3 l1 l0 |
data ZipWith3Sym2 l l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) -> [k] -> TyFun [k] (TyFun [k] [k] -> *) -> *) (ZipWith3Sym2 k k k k) | |
| type Apply (TyFun [k2] [k3] -> *) [k1] (ZipWith3Sym2 k k1 k2 k3 l1 l2) l0 = ZipWith3Sym3 k k1 k2 k3 l1 l2 l0 |
data ZipWith3Sym3 l l l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) -> [k] -> [k] -> TyFun [k] [k] -> *) (ZipWith3Sym3 k k k k) | |
| type Apply [k3] [k2] (ZipWith3Sym3 k k1 k2 k3 l1 l2 l3) l0 |
data Unzip3Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [(,,) k k k] ((,,) [k] [k] [k]) -> *) (Unzip3Sym0 k k k) | |
| type Apply ((,,) [k] [k1] [k2]) [(,,) k k1 k2] (Unzip3Sym0 k k1 k2) l0 = Unzip3Sym1 k k1 k2 l0 |
type Unzip3Sym1 t = Unzip3 t Source
data Unzip4Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [(,,,) k k k k] ((,,,) [k] [k] [k] [k]) -> *) (Unzip4Sym0 k k k k) | |
| type Apply ((,,,) [k] [k1] [k2] [k3]) [(,,,) k k1 k2 k3] (Unzip4Sym0 k k1 k2 k3) l0 = Unzip4Sym1 k k1 k2 k3 l0 |
type Unzip4Sym1 t = Unzip4 t Source
data Unzip5Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [(,,,,) k k k k k] ((,,,,) [k] [k] [k] [k] [k]) -> *) (Unzip5Sym0 k k k k k) | |
| type Apply ((,,,,) [k] [k1] [k2] [k3] [k4]) [(,,,,) k k1 k2 k3 k4] (Unzip5Sym0 k k1 k2 k3 k4) l0 = Unzip5Sym1 k k1 k2 k3 k4 l0 |
type Unzip5Sym1 t = Unzip5 t Source
data Unzip6Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [(,,,,,) k k k k k k] ((,,,,,) [k] [k] [k] [k] [k] [k]) -> *) (Unzip6Sym0 k k k k k k) | |
| type Apply ((,,,,,) [k] [k1] [k2] [k3] [k4] [k5]) [(,,,,,) k k1 k2 k3 k4 k5] (Unzip6Sym0 k k1 k2 k3 k4 k5) l0 = Unzip6Sym1 k k1 k2 k3 k4 k5 l0 |
type Unzip6Sym1 t = Unzip6 t Source
data Unzip7Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [(,,,,,,) k k k k k k k] ((,,,,,,) [k] [k] [k] [k] [k] [k] [k]) -> *) (Unzip7Sym0 k k k k k k k) | |
| type Apply ((,,,,,,) [k] [k1] [k2] [k3] [k4] [k5] [k6]) [(,,,,,,) k k1 k2 k3 k4 k5 k6] (Unzip7Sym0 k k1 k2 k3 k4 k5 k6) l0 = Unzip7Sym1 k k1 k2 k3 k4 k5 k6 l0 |
type Unzip7Sym1 t = Unzip7 t Source
data DeleteSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun k (TyFun [k] [k] -> *) -> *) (DeleteSym0 k) | |
| type Apply (TyFun [k] [k] -> *) k (DeleteSym0 k) l0 = DeleteSym1 k l0 |
data DeleteSym1 l l Source
Instances
| SuppressUnusedWarnings (k -> TyFun [k] [k] -> *) (DeleteSym1 k) | |
| type Apply [k] [k] (DeleteSym1 k l1) l0 = DeleteSym2 k l1 l0 |
type DeleteSym2 t t = Delete t t Source
data DeleteBySym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Bool -> *) -> *) (TyFun k (TyFun [k] [k] -> *) -> *) -> *) (DeleteBySym0 k) | |
| type Apply (TyFun k (TyFun [k] [k] -> *) -> *) (TyFun k (TyFun k Bool -> *) -> *) (DeleteBySym0 k) l0 = DeleteBySym1 k l0 |
data DeleteBySym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k Bool -> *) -> *) -> TyFun k (TyFun [k] [k] -> *) -> *) (DeleteBySym1 k) | |
| type Apply (TyFun [k] [k] -> *) k (DeleteBySym1 k l1) l0 = DeleteBySym2 k l1 l0 |
data DeleteBySym2 l l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k Bool -> *) -> *) -> k -> TyFun [k] [k] -> *) (DeleteBySym2 k) | |
| type Apply [k] [k] (DeleteBySym2 k l1 l2) l0 = DeleteBySym3 k l1 l2 l0 |
type DeleteBySym3 t t t = DeleteBy t t t Source
data DeleteFirstsBySym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Bool -> *) -> *) (TyFun [k] (TyFun [k] [k] -> *) -> *) -> *) (DeleteFirstsBySym0 k) | |
| type Apply (TyFun [k] (TyFun [k] [k] -> *) -> *) (TyFun k (TyFun k Bool -> *) -> *) (DeleteFirstsBySym0 k) l0 = DeleteFirstsBySym1 k l0 |
data DeleteFirstsBySym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k Bool -> *) -> *) -> TyFun [k] (TyFun [k] [k] -> *) -> *) (DeleteFirstsBySym1 k) | |
| type Apply (TyFun [k] [k] -> *) [k] (DeleteFirstsBySym1 k l1) l0 = DeleteFirstsBySym2 k l1 l0 |
data DeleteFirstsBySym2 l l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k Bool -> *) -> *) -> [k] -> TyFun [k] [k] -> *) (DeleteFirstsBySym2 k) | |
| type Apply [k] [k] (DeleteFirstsBySym2 k l1 l2) l0 = DeleteFirstsBySym3 k l1 l2 l0 |
type DeleteFirstsBySym3 t t t = DeleteFirstsBy t t t Source
data SortBySym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Ordering -> *) -> *) (TyFun [k] [k] -> *) -> *) (SortBySym0 k) | |
| type Apply (TyFun [k] [k] -> *) (TyFun k (TyFun k Ordering -> *) -> *) (SortBySym0 k) l0 = SortBySym1 k l0 |
data SortBySym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> TyFun [k] [k] -> *) (SortBySym1 k) | |
| type Apply [k] [k] (SortBySym1 k l1) l0 = SortBySym2 k l1 l0 |
type SortBySym2 t t = SortBy t t Source
data InsertBySym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Ordering -> *) -> *) (TyFun k (TyFun [k] [k] -> *) -> *) -> *) (InsertBySym0 k) | |
| type Apply (TyFun k (TyFun [k] [k] -> *) -> *) (TyFun k (TyFun k Ordering -> *) -> *) (InsertBySym0 k) l0 = InsertBySym1 k l0 |
data InsertBySym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> TyFun k (TyFun [k] [k] -> *) -> *) (InsertBySym1 k) | |
| type Apply (TyFun [k] [k] -> *) k (InsertBySym1 k l1) l0 = InsertBySym2 k l1 l0 |
data InsertBySym2 l l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> k -> TyFun [k] [k] -> *) (InsertBySym2 k) | |
| type Apply [k] [k] (InsertBySym2 k l1 l2) l0 = InsertBySym3 k l1 l2 l0 |
type InsertBySym3 t t t = InsertBy t t t Source
data MaximumBySym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Ordering -> *) -> *) (TyFun [k] k -> *) -> *) (MaximumBySym0 k) | |
| type Apply (TyFun [k] k -> *) (TyFun k (TyFun k Ordering -> *) -> *) (MaximumBySym0 k) l0 = MaximumBySym1 k l0 |
data MaximumBySym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> TyFun [k] k -> *) (MaximumBySym1 k) | |
| type Apply k [k] (MaximumBySym1 k l1) l0 = MaximumBySym2 k l1 l0 |
type MaximumBySym2 t t = MaximumBy t t Source
data MinimumBySym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Ordering -> *) -> *) (TyFun [k] k -> *) -> *) (MinimumBySym0 k) | |
| type Apply (TyFun [k] k -> *) (TyFun k (TyFun k Ordering -> *) -> *) (MinimumBySym0 k) l0 = MinimumBySym1 k l0 |
data MinimumBySym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> TyFun [k] k -> *) (MinimumBySym1 k) | |
| type Apply k [k] (MinimumBySym1 k l1) l0 = MinimumBySym2 k l1 l0 |
type MinimumBySym2 t t = MinimumBy t t Source