should-not-typecheck
should-not-typecheck
is a Haskell library which allows you to assert that an expression does not typecheck in your unit tests. It provides one function, shouldNotTypecheck :: a -> Assertion
, which takes an expression and will fail the test if it typechecks. shouldNotTypecheck
returns an HUnit Assertion
(so it can be used with both HUnit
and hspec
).
Avaliable on Hackage as should-not-typecheck
.
Example (hspec)
The secret sauce is the Deferred Type Errors GHC extension. This allows you to write a non-typechecking expression which will throw an exception at run time (rather than erroring out at compile time). shouldNotTypecheck
tries to catch that exception and fails the test if no deferred type error is caught.
{-# OPTIONS_GHC -fdefer-type-errors #-} -- Very important!
module Main where
import Test.Hspec (hspec, describe, it)
import Test.ShouldNotTypecheck (shouldNotTypecheck)
main :: IO ()
main = hspec $ do
describe "Type Tests" $ do
it "should not allow an Int to be a String" $
shouldNotTypecheck (4 :: String)
It can be used similarly with HUnit.
Motivation
Sometimes you want to ensure that it is impossible to type a particular expression. For example, imagine if we were making a typesafe Abstract Syntax Tree of mathematical expressions:
{-# LANGUAGE GADTs #-}
data Expr t where
IntVal :: Int -> Expr Int
BoolVal :: Bool -> Expr Bool
Add :: Expr Int -> Expr Int -> Expr Int
-- ...
We might want to make sure that Add (BoolVal True) (IntVal 4)
is not well typed. However, we can't even compile code like this to put in a unit test! This is where should-not-typecheck
steps in.
Limitations
Unfortunately, we can only turn on deferred type errors for the entire test file rather than just specific expressions. This means that any type error will compile but fail at runtime. For example:
{-# OPTIONS_GHC -fdefer-type-errors #-}
-- ...
main :: IO ()
main = hspec $ do
decsribe 4 $ do -- Oops!
-- ...
Will create a warning at compile time but not an error. All of the ill-typed expressions we are testing will also produce warnings and it will hard to immediately see which ones matter. The upside is that the test-suite will still fail if there are errors.
Workaround
You can separate out the ill-typed expressions we are testing and test boilerplate into separate files and only turn on deferred type errors for the expressions. This means that type errors in test code will still be found at compile time. The downside is your tests may now be harder to read.