Copyright | (c) Levent Erkok |
---|---|
License | BSD3 |
Maintainer | erkokl@gmail.com |
Stability | experimental |
Safe Haskell | None |
Language | Haskell2010 |
A collection of regular-expression related utilities. The recommended
workflow is to import this module qualified as the names of the functions
are specificly chosen to be common identifiers. Also, it is recommended
you use the OverloadedStrings
extension to allow literal strings to be
used as symbolic-strings and regular-expressions when working with
this module.
Synopsis
- data RegExp
- class RegExpMatchable a where
- exactly :: String -> RegExp
- oneOf :: String -> RegExp
- newline :: RegExp
- whiteSpaceNoNewLine :: RegExp
- whiteSpace :: RegExp
- tab :: RegExp
- punctuation :: RegExp
- asciiLetter :: RegExp
- asciiLower :: RegExp
- asciiUpper :: RegExp
- digit :: RegExp
- octDigit :: RegExp
- hexDigit :: RegExp
- decimal :: RegExp
- octal :: RegExp
- hexadecimal :: RegExp
- floating :: RegExp
- identifier :: RegExp
Regular expressions
Regular expressions. Note that regular expressions themselves are
concrete, but the match
function from the RegExpMatchable
class
can check membership against a symbolic string/character. Also, we
are preferring a datatype approach here, as opposed to coming up with
some string-representation; there are way too many alternatives
already so inventing one isn't a priority. Please get in touch if you
would like a parser for this type as it might be easier to use.
Literal String | Precisely match the given string |
All | Accept every string |
None | Accept no strings |
Range Char Char | Accept range of characters |
Conc [RegExp] | Concatenation |
KStar RegExp | Kleene Star: Zero or more |
KPlus RegExp | Kleene Plus: One or more |
Opt RegExp | Zero or one |
Loop Int Int RegExp | From |
Union [RegExp] | Union of regular expressions |
Inter RegExp RegExp | Intersection of regular expressions |
Instances
Eq RegExp Source # | |
Num RegExp Source # | Regular expressions as a |
Ord RegExp Source # | |
Show RegExp Source # | Show instance for |
IsString RegExp Source # | With overloaded strings, we can have direct literal regular expressions. |
Defined in Data.SBV.Core.Symbolic fromString :: String -> RegExp # |
Matching
A symbolic string or a character (SString
or SChar
) can be matched against a regular-expression. Note
that the regular-expression itself is not a symbolic object: It's a fully concrete representation, as
captured by the RegExp
class. The RegExp
class is an instance of the IsString
class, which makes writing
literal matches easier. The RegExp
type also has a (somewhat degenerate) Num
instance: Concatenation
corresponds to multiplication, union corresponds to addition, and 0
corresponds to the empty language.
Note that since match
is a method of RegExpMatchable
class, both SChar
and SString
can be used as
an argument for matching. In practice, this means you might have to disambiguate with a type-ascription
if it is not deducible from context.
>>>
prove $ \s -> (s :: SString) `match` "hello" .<=> s .== "hello"
Q.E.D.>>>
prove $ \s -> s `match` Loop 2 5 "xyz" .=> length s .>= 6
Q.E.D.>>>
prove $ \s -> s `match` Loop 2 5 "xyz" .=> length s .<= 15
Q.E.D.>>>
prove $ \s -> match s (Loop 2 5 "xyz") .=> length s .>= 7
Falsifiable. Counter-example: s0 = "xyzxyz" :: String>>>
prove $ \s -> (s :: SString) `match` "hello" .=> s `match` ("hello" + "world")
Q.E.D.>>>
prove $ \s -> sNot $ (s::SString) `match` ("so close" * 0)
Q.E.D.>>>
prove $ \c -> (c :: SChar) `match` oneOf "abcd" .=> ord c .>= ord (literal 'a') .&& ord c .<= ord (literal 'd')
Q.E.D.
class RegExpMatchable a where Source #
Matchable class. Things we can match against a RegExp
.
(TODO: Currently SBV does *not* optimize this call if the input is a concrete string or
a character, but rather directly calls down to the solver. We might want to perform the
operation on the Haskell side for performance reasons, should this become important.)
For instance, you can generate valid-looking phone numbers like this:
>>>
:set -XOverloadedStrings
>>>
let dig09 = Range '0' '9'
>>>
let dig19 = Range '1' '9'
>>>
let pre = dig19 * Loop 2 2 dig09
>>>
let post = dig19 * Loop 3 3 dig09
>>>
let phone = pre * "-" * post
>>>
sat $ \s -> (s :: SString) `match` phone
Satisfiable. Model: s0 = "200-1000" :: String
Instances
RegExpMatchable SString Source # | Matching symbolic strings. |
RegExpMatchable SChar Source # | Matching a character simply means the singleton string matches the regex. |
Constructing regular expressions
Literals
exactly :: String -> RegExp Source #
A literal regular-expression, matching the given string exactly. Note that
with OverloadedStrings
extension, you can simply use a Haskell
string to mean the same thing, so this function is rarely needed.
>>>
prove $ \(s :: SString) -> s `match` exactly "LITERAL" .<=> s .== "LITERAL"
Q.E.D.
A class of characters
oneOf :: String -> RegExp Source #
Helper to define a character class.
>>>
prove $ \(c :: SChar) -> c `match` oneOf "ABCD" .<=> sAny (c .==) (map literal "ABCD")
Q.E.D.
Spaces
Recognize a newline. Also includes carriage-return and form-feed.
>>>
newline
(re.union (str.to.re "\n") (str.to.re "\r") (str.to.re "\f"))>>>
prove $ \c -> c `match` newline .=> isSpace c
Q.E.D.
whiteSpaceNoNewLine :: RegExp Source #
Recognize white-space, but without a new line.
>>>
whiteSpaceNoNewLine
(re.union (str.to.re "\x09") (re.union (str.to.re "\v") (str.to.re "\xa0") (str.to.re " ")))>>>
prove $ \c -> c `match` whiteSpaceNoNewLine .=> c `match` whiteSpace .&& c ./= literal '\n'
Q.E.D.
whiteSpace :: RegExp Source #
Recognize white space.
>>>
prove $ \c -> c `match` whiteSpace .=> isSpace c
Q.E.D.
Separators
Recognize a tab.
>>>
tab
(str.to.re "\x09")>>>
prove $ \c -> c `match` tab .=> c .== literal '\t'
Q.E.D.
punctuation :: RegExp Source #
Recognize a punctuation character. Anything that satisfies the predicate isPunctuation
will
be accepted. (TODO: Will need modification when we move to unicode.)
>>>
prove $ \c -> c `match` punctuation .=> isPunctuation c
Q.E.D.
Letters
asciiLetter :: RegExp Source #
Recognize an alphabet letter, i.e., A
..Z
, a
..z
.
>>>
asciiLetter
(re.union (re.range "a" "z") (re.range "A" "Z"))>>>
prove $ \c -> c `match` asciiLetter .<=> toUpper c `match` asciiLetter
Q.E.D.>>>
prove $ \c -> c `match` asciiLetter .<=> toLower c `match` asciiLetter
Q.E.D.
asciiLower :: RegExp Source #
Recognize an ASCII lower case letter
>>>
asciiLower
(re.range "a" "z")>>>
prove $ \c -> (c :: SChar) `match` asciiLower .=> c `match` asciiLetter
Q.E.D.>>>
prove $ \c -> c `match` asciiLower .=> toUpper c `match` asciiUpper
Q.E.D.>>>
prove $ \c -> c `match` asciiLetter .=> toLower c `match` asciiLower
Q.E.D.
asciiUpper :: RegExp Source #
Recognize an upper case letter
>>>
asciiUpper
(re.range "A" "Z")>>>
prove $ \c -> (c :: SChar) `match` asciiUpper .=> c `match` asciiLetter
Q.E.D.>>>
prove $ \c -> c `match` asciiUpper .=> toLower c `match` asciiLower
Q.E.D.>>>
prove $ \c -> c `match` asciiLetter .=> toUpper c `match` asciiUpper
Q.E.D.
Digits
Recognize a digit. One of 0
..9
.
>>>
digit
(re.range "0" "9")>>>
prove $ \c -> c `match` digit .<=> let v = digitToInt c in 0 .<= v .&& v .< 10
Q.E.D.
Recognize an octal digit. One of 0
..7
.
>>>
octDigit
(re.range "0" "7")>>>
prove $ \c -> c `match` octDigit .<=> let v = digitToInt c in 0 .<= v .&& v .< 8
Q.E.D.>>>
prove $ \(c :: SChar) -> c `match` octDigit .=> c `match` digit
Q.E.D.
Recognize a hexadecimal digit. One of 0
..9
, a
..f
, A
..F
.
>>>
hexDigit
(re.union (re.range "0" "9") (re.range "a" "f") (re.range "A" "F"))>>>
prove $ \c -> c `match` hexDigit .<=> let v = digitToInt c in 0 .<= v .&& v .< 16
Q.E.D.>>>
prove $ \(c :: SChar) -> c `match` digit .=> c `match` hexDigit
Q.E.D.
Numbers
Recognize a decimal number.
>>>
decimal
(re.+ (re.range "0" "9"))>>>
prove $ \s -> (s::SString) `match` decimal .=> sNot (s `match` KStar asciiLetter)
Q.E.D.
Recognize an octal number. Must have a prefix of the form 0o
/0O
.
>>>
octal
(re.++ (re.union (str.to.re "0o") (str.to.re "0O")) (re.+ (re.range "0" "7")))>>>
prove $ \s -> s `match` octal .=> sAny (.== take 2 s) ["0o", "0O"]
Q.E.D.
hexadecimal :: RegExp Source #
Recognize a hexadecimal number. Must have a prefix of the form 0x
/0X
.
>>>
hexadecimal
(re.++ (re.union (str.to.re "0x") (str.to.re "0X")) (re.+ (re.union (re.range "0" "9") (re.range "a" "f") (re.range "A" "F"))))>>>
prove $ \s -> s `match` hexadecimal .=> sAny (.== take 2 s) ["0x", "0X"]
Q.E.D.
Recognize a floating point number. The exponent part is optional if a fraction is present. The exponent may or may not have a sign.
>>>
prove $ \s -> s `match` floating .=> length s .>= 3
Q.E.D.
Identifiers
identifier :: RegExp Source #
For the purposes of this regular expression, an identifier consists of a letter followed by zero or more letters, digits, underscores, and single quotes. The first letter must be lowercase.
>>>
prove $ \s -> s `match` identifier .=> isAsciiLower (head s)
Q.E.D.>>>
prove $ \s -> s `match` identifier .=> length s .>= 1
Q.E.D.