-----------------------------------------------------------------------------
-- |
-- Module    : Data.SBV.RegExp
-- Copyright : (c) Levent Erkok
-- License   : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- A collection of regular-expression related utilities. The recommended
-- workflow is to import this module qualified as the names of the functions
-- are specificly chosen to be common identifiers. Also, it is recommended
-- you use the @OverloadedStrings@ extension to allow literal strings to be
-- used as symbolic-strings and regular-expressions when working with
-- this module.
-----------------------------------------------------------------------------

{-# LANGUAGE FlexibleInstances   #-}
{-# LANGUAGE OverloadedStrings   #-}
{-# LANGUAGE Rank2Types          #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications    #-}

{-# OPTIONS_GHC -Wall -Werror #-}

module Data.SBV.RegExp (
        -- * Regular expressions
        RegExp(..)
        -- * Matching
        -- $matching
        , RegExpMatchable(..)
        -- * Constructing regular expressions
        -- ** Literals
        , exactly
        -- ** A class of characters
        , oneOf
        -- ** Spaces
        , newline, whiteSpaceNoNewLine, whiteSpace
        -- ** Separators
        , tab, punctuation
        -- ** Letters
        , asciiLetter, asciiLower, asciiUpper
        -- ** Digits
        , digit, octDigit, hexDigit
        -- ** Numbers
        , decimal, octal, hexadecimal, floating
        -- ** Identifiers
        , identifier
        ) where

import Prelude hiding (length, take, elem, notElem, head)

import qualified Prelude   as P
import qualified Data.List as L

import Data.SBV.Core.Data
import Data.SBV.Core.Model () -- instances only

import Data.SBV.String
import qualified Data.Char as C

import Data.Proxy

-- For testing only
import Data.SBV.Char

-- For doctest use only
--
-- $setup
-- >>> import Prelude hiding (length, take, elem, notElem, head)
-- >>> import Data.SBV.Provers.Prover (prove, sat)
-- >>> import Data.SBV.Core.Model
-- >>> :set -XOverloadedStrings
-- >>> :set -XScopedTypeVariables

-- | Matchable class. Things we can match against a 'RegExp'.
-- (TODO: Currently SBV does *not* optimize this call if the input is a concrete string or
-- a character, but rather directly calls down to the solver. We might want to perform the
-- operation on the Haskell side for performance reasons, should this become important.)
--
-- For instance, you can generate valid-looking phone numbers like this:
--
-- >>> :set -XOverloadedStrings
-- >>> let dig09 = Range '0' '9'
-- >>> let dig19 = Range '1' '9'
-- >>> let pre   = dig19 * Loop 2 2 dig09
-- >>> let post  = dig19 * Loop 3 3 dig09
-- >>> let phone = pre * "-" * post
-- >>> sat $ \s -> (s :: SString) `match` phone
-- Satisfiable. Model:
--   s0 = "200-1000" :: String
class RegExpMatchable a where
   -- | @`match` s r@ checks whether @s@ is in the language generated by @r@.
   match :: a -> RegExp -> SBool

-- | Matching a character simply means the singleton string matches the regex.
instance RegExpMatchable SChar where
   match = match . singleton

-- | Matching symbolic strings.
instance RegExpMatchable SString where
   match input regExp = lift1 (StrInRe regExp) (Just (go regExp P.null)) input
     where -- This isn't super efficient, but it gets the job done.
           go :: RegExp -> (String -> Bool) -> String -> Bool
           go (Literal l)    k s      = l `L.isPrefixOf` s && k (P.drop (P.length l) s)
           go All            _ _      = True
           go None           _ _      = False
           go (Range _ _)    _ []     = False
           go (Range a b)    k (c:cs) = a <= c && c <= b && k cs
           go (Conc [])      k s      = k s
           go (Conc (r:rs))  k s      = go r (go (Conc rs) k) s
           go (KStar r)      k s      = k s || go r (smaller (P.length s) (go (KStar r) k)) s
           go (KPlus r)      k s      = go (Conc [r, KStar r]) k s
           go (Opt r)        k s      = k s || go r k s
           go (Loop i j r)   k s      = go (Conc (replicate i r ++ replicate (j - i) (Opt r))) k s
           go (Union [])     _ _      = False
           go (Union [x])    k s      = go x k s
           go (Union (x:xs)) k s      = go x k s || go (Union xs) k s
           go (Inter a b)    k s      = go a k s && go b k s

           -- In the KStar case, make sure the continuation is called with something
           -- smaller to avoid infinite recursion!
           smaller orig k inp = P.length inp < orig && k inp

-- | A literal regular-expression, matching the given string exactly. Note that
-- with @OverloadedStrings@ extension, you can simply use a Haskell
-- string to mean the same thing, so this function is rarely needed.
--
-- >>> prove $ \(s :: SString) -> s `match` exactly "LITERAL" .<=> s .== "LITERAL"
-- Q.E.D.
exactly :: String -> RegExp
exactly = Literal

-- | Helper to define a character class.
--
-- >>> prove $ \(c :: SChar) -> c `match` oneOf "ABCD" .<=> sAny (c .==) (map literal "ABCD")
-- Q.E.D.
oneOf :: String -> RegExp
oneOf xs = Union [exactly [x] | x <- xs]

-- | Recognize a newline. Also includes carriage-return and form-feed.
--
-- >>> newline
-- (re.union (str.to.re "\n") (str.to.re "\r") (str.to.re "\f"))
-- >>> prove $ \c -> c `match` newline .=> isSpace c
-- Q.E.D.
newline :: RegExp
newline = oneOf "\n\r\f"

-- | Recognize a tab.
--
-- >>> tab
-- (str.to.re "\x09")
-- >>> prove $ \c -> c `match` tab .=> c .== literal '\t'
-- Q.E.D.
tab :: RegExp
tab = oneOf "\t"

-- | Recognize white-space, but without a new line.
--
-- >>> whiteSpaceNoNewLine
-- (re.union (str.to.re "\x09") (re.union (str.to.re "\v") (str.to.re "\xa0") (str.to.re " ")))
-- >>> prove $ \c -> c `match` whiteSpaceNoNewLine .=> c `match` whiteSpace .&& c ./= literal '\n'
-- Q.E.D.
whiteSpaceNoNewLine :: RegExp
whiteSpaceNoNewLine = tab + oneOf "\v\160 "

-- | Recognize white space.
--
-- >>> prove $ \c -> c `match` whiteSpace .=> isSpace c
-- Q.E.D.
whiteSpace :: RegExp
whiteSpace = newline + whiteSpaceNoNewLine

-- | Recognize a punctuation character. Anything that satisfies the predicate 'isPunctuation' will
-- be accepted.  (TODO: Will need modification when we move to unicode.)
--
-- >>> prove $ \c -> c `match` punctuation .=> isPunctuation c
-- Q.E.D.
punctuation :: RegExp
punctuation = oneOf $ filter C.isPunctuation $ map C.chr [0..255]

-- | Recognize an alphabet letter, i.e., @A@..@Z@, @a@..@z@.
--
-- >>> asciiLetter
-- (re.union (re.range "a" "z") (re.range "A" "Z"))
-- >>> prove $ \c -> c `match` asciiLetter .<=> toUpper c `match` asciiLetter
-- Q.E.D.
-- >>> prove $ \c -> c `match` asciiLetter .<=> toLower c `match` asciiLetter
-- Q.E.D.
asciiLetter :: RegExp
asciiLetter = asciiLower + asciiUpper

-- | Recognize an ASCII lower case letter
--
-- >>> asciiLower
-- (re.range "a" "z")
-- >>> prove $ \c -> (c :: SChar) `match` asciiLower  .=> c `match` asciiLetter
-- Q.E.D.
-- >>> prove $ \c -> c `match` asciiLower  .=> toUpper c `match` asciiUpper
-- Q.E.D.
-- >>> prove $ \c -> c `match` asciiLetter .=> toLower c `match` asciiLower
-- Q.E.D.
asciiLower :: RegExp
asciiLower = Range 'a' 'z'

-- | Recognize an upper case letter
--
-- >>> asciiUpper
-- (re.range "A" "Z")
-- >>> prove $ \c -> (c :: SChar) `match` asciiUpper  .=> c `match` asciiLetter
-- Q.E.D.
-- >>> prove $ \c -> c `match` asciiUpper  .=> toLower c `match` asciiLower
-- Q.E.D.
-- >>> prove $ \c -> c `match` asciiLetter .=> toUpper c `match` asciiUpper
-- Q.E.D.
asciiUpper :: RegExp
asciiUpper = Range 'A' 'Z'

-- | Recognize a digit. One of @0@..@9@.
--
-- >>> digit
-- (re.range "0" "9")
-- >>> prove $ \c -> c `match` digit .<=> let v = digitToInt c in 0 .<= v .&& v .< 10
-- Q.E.D.
digit :: RegExp
digit = Range '0' '9'

-- | Recognize an octal digit. One of @0@..@7@.
--
-- >>> octDigit
-- (re.range "0" "7")
-- >>> prove $ \c -> c `match` octDigit .<=> let v = digitToInt c in 0 .<= v .&& v .< 8
-- Q.E.D.
-- >>> prove $ \(c :: SChar) -> c `match` octDigit .=> c `match` digit
-- Q.E.D.
octDigit :: RegExp
octDigit = Range '0' '7'

-- | Recognize a hexadecimal digit. One of @0@..@9@, @a@..@f@, @A@..@F@.
--
-- >>> hexDigit
-- (re.union (re.range "0" "9") (re.range "a" "f") (re.range "A" "F"))
-- >>> prove $ \c -> c `match` hexDigit .<=> let v = digitToInt c in 0 .<= v .&& v .< 16
-- Q.E.D.
-- >>> prove $ \(c :: SChar) -> c `match` digit .=> c `match` hexDigit
-- Q.E.D.
hexDigit :: RegExp
hexDigit = digit + Range 'a' 'f' + Range 'A' 'F'

-- | Recognize a decimal number.
--
-- >>> decimal
-- (re.+ (re.range "0" "9"))
-- >>> prove $ \s -> (s::SString) `match` decimal .=> sNot (s `match` KStar asciiLetter)
-- Q.E.D.
decimal :: RegExp
decimal = KPlus digit

-- | Recognize an octal number. Must have a prefix of the form @0o@\/@0O@.
--
-- >>> octal
-- (re.++ (re.union (str.to.re "0o") (str.to.re "0O")) (re.+ (re.range "0" "7")))
-- >>> prove $ \s -> s `match` octal .=> sAny (.== take 2 s) ["0o", "0O"]
-- Q.E.D.
octal :: RegExp
octal = ("0o" + "0O") * KPlus octDigit

-- | Recognize a hexadecimal number. Must have a prefix of the form @0x@\/@0X@.
--
-- >>> hexadecimal
-- (re.++ (re.union (str.to.re "0x") (str.to.re "0X")) (re.+ (re.union (re.range "0" "9") (re.range "a" "f") (re.range "A" "F"))))
-- >>> prove $ \s -> s `match` hexadecimal .=> sAny (.== take 2 s) ["0x", "0X"]
-- Q.E.D.
hexadecimal :: RegExp
hexadecimal = ("0x" + "0X") * KPlus hexDigit

-- | Recognize a floating point number. The exponent part is optional if a fraction
-- is present. The exponent may or may not have a sign.
--
-- >>> prove $ \s -> s `match` floating .=> length s .>= 3
-- Q.E.D.
floating :: RegExp
floating = withFraction + withoutFraction
  where withFraction    = decimal * "." * decimal * Opt expt
        withoutFraction = decimal * expt
        expt            = ("e" + "E") * Opt (oneOf "+-") * decimal

-- | For the purposes of this regular expression, an identifier consists of a letter
-- followed by zero or more letters, digits, underscores, and single quotes. The first
-- letter must be lowercase.
--
-- >>> prove $ \s -> s `match` identifier .=> isAsciiLower (head s)
-- Q.E.D.
-- >>> prove $ \s -> s `match` identifier .=> length s .>= 1
-- Q.E.D.
identifier :: RegExp
identifier = asciiLower * KStar (asciiLetter + digit + "_" + "'")

-- | Lift a unary operator over strings.
lift1 :: forall a b. (SymVal a, SymVal b) => StrOp -> Maybe (a -> b) -> SBV a -> SBV b
lift1 w mbOp a
  | Just cv <- concEval1 mbOp a
  = cv
  | True
  = SBV $ SVal k $ Right $ cache r
  where k = kindOf (Proxy @b)
        r st = do sva <- sbvToSV st a
                  newExpr st k (SBVApp (StrOp w) [sva])

-- | Concrete evaluation for unary ops
concEval1 :: (SymVal a, SymVal b) => Maybe (a -> b) -> SBV a -> Maybe (SBV b)
concEval1 mbOp a = literal <$> (mbOp <*> unliteral a)

-- | Quiet GHC about testing only imports
__unused :: a
__unused = undefined isSpace length take elem notElem head

{- $matching
A symbolic string or a character ('SString' or 'SChar') can be matched against a regular-expression. Note
that the regular-expression itself is not a symbolic object: It's a fully concrete representation, as
captured by the 'RegExp' class. The 'RegExp' class is an instance of the @IsString@ class, which makes writing
literal matches easier. The 'RegExp' type also has a (somewhat degenerate) 'Num' instance: Concatenation
corresponds to multiplication, union corresponds to addition, and @0@ corresponds to the empty language.

Note that since `match` is a method of 'RegExpMatchable' class, both 'SChar' and 'SString' can be used as
an argument for matching. In practice, this means you might have to disambiguate with a type-ascription
if it is not deducible from context.

>>> prove $ \s -> (s :: SString) `match` "hello" .<=> s .== "hello"
Q.E.D.
>>> prove $ \s -> s `match` Loop 2 5 "xyz" .=> length s .>= 6
Q.E.D.
>>> prove $ \s -> s `match` Loop 2 5 "xyz" .=> length s .<= 15
Q.E.D.
>>> prove $ \s -> match s (Loop 2 5 "xyz") .=> length s .>= 7
Falsifiable. Counter-example:
  s0 = "xyzxyz" :: String
>>> prove $ \s -> (s :: SString) `match` "hello" .=> s `match` ("hello" + "world")
Q.E.D.
>>> prove $ \s -> sNot $ (s::SString) `match` ("so close" * 0)
Q.E.D.
>>> prove $ \c -> (c :: SChar) `match` oneOf "abcd" .=> ord c .>= ord (literal 'a') .&& ord c .<= ord (literal 'd')
Q.E.D.
-}