relude-0.7.0.0: Safe, performant, user-friendly and lightweight Haskell Standard Library

Copyright(c) 2018-2020 Kowainik
LicenseMIT
MaintainerKowainik <xrom.xkov@gmail.com>
StabilityStable
PortabilityPortable
Safe HaskellSafe
LanguageHaskell2010

Relude.Foldable.Reexport

Contents

Description

Synopsis

Foldable reexports

class Foldable (t :: Type -> Type) where #

Data structures that can be folded.

For example, given a data type

data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)

a suitable instance would be

instance Foldable Tree where
   foldMap f Empty = mempty
   foldMap f (Leaf x) = f x
   foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r

This is suitable even for abstract types, as the monoid is assumed to satisfy the monoid laws. Alternatively, one could define foldr:

instance Foldable Tree where
   foldr f z Empty = z
   foldr f z (Leaf x) = f x z
   foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l

Foldable instances are expected to satisfy the following laws:

foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const  1)

sum, product, maximum, and minimum should all be essentially equivalent to foldMap forms, such as

sum = getSum . foldMap Sum

but may be less defined.

If the type is also a Functor instance, it should satisfy

foldMap f = fold . fmap f

which implies that

foldMap f . fmap g = foldMap (f . g)

Minimal complete definition

foldMap | foldr

Methods

fold :: Monoid m => t m -> m #

Combine the elements of a structure using a monoid.

foldMap :: Monoid m => (a -> m) -> t a -> m #

Map each element of the structure to a monoid, and combine the results.

foldr :: (a -> b -> b) -> b -> t a -> b #

Right-associative fold of a structure.

In the case of lists, foldr, when applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)

Note that, since the head of the resulting expression is produced by an application of the operator to the first element of the list, foldr can produce a terminating expression from an infinite list.

For a general Foldable structure this should be semantically identical to,

foldr f z = foldr f z . toList

foldl' :: (b -> a -> b) -> b -> t a -> b #

Left-associative fold of a structure but with strict application of the operator.

This ensures that each step of the fold is forced to weak head normal form before being applied, avoiding the collection of thunks that would otherwise occur. This is often what you want to strictly reduce a finite list to a single, monolithic result (e.g. length).

For a general Foldable structure this should be semantically identical to,

foldl f z = foldl' f z . toList

toList :: t a -> [a] #

List of elements of a structure, from left to right.

null :: t a -> Bool #

Test whether the structure is empty. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.

length :: t a -> Int #

Returns the size/length of a finite structure as an Int. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.

Instances
Foldable []

Since: base-2.1

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => [m] -> m #

foldMap :: Monoid m => (a -> m) -> [a] -> m #

foldr :: (a -> b -> b) -> b -> [a] -> b #

foldr' :: (a -> b -> b) -> b -> [a] -> b #

foldl :: (b -> a -> b) -> b -> [a] -> b #

foldl' :: (b -> a -> b) -> b -> [a] -> b #

foldr1 :: (a -> a -> a) -> [a] -> a #

foldl1 :: (a -> a -> a) -> [a] -> a #

toList :: [a] -> [a] #

null :: [a] -> Bool #

length :: [a] -> Int #

elem :: Eq a => a -> [a] -> Bool #

maximum :: Ord a => [a] -> a #

minimum :: Ord a => [a] -> a #

sum :: Num a => [a] -> a #

product :: Num a => [a] -> a #

Foldable Maybe

Since: base-2.1

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Maybe m -> m #

foldMap :: Monoid m => (a -> m) -> Maybe a -> m #

foldr :: (a -> b -> b) -> b -> Maybe a -> b #

foldr' :: (a -> b -> b) -> b -> Maybe a -> b #

foldl :: (b -> a -> b) -> b -> Maybe a -> b #

foldl' :: (b -> a -> b) -> b -> Maybe a -> b #

foldr1 :: (a -> a -> a) -> Maybe a -> a #

foldl1 :: (a -> a -> a) -> Maybe a -> a #

toList :: Maybe a -> [a] #

null :: Maybe a -> Bool #

length :: Maybe a -> Int #

elem :: Eq a => a -> Maybe a -> Bool #

maximum :: Ord a => Maybe a -> a #

minimum :: Ord a => Maybe a -> a #

sum :: Num a => Maybe a -> a #

product :: Num a => Maybe a -> a #

Foldable Par1

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Par1 m -> m #

foldMap :: Monoid m => (a -> m) -> Par1 a -> m #

foldr :: (a -> b -> b) -> b -> Par1 a -> b #

foldr' :: (a -> b -> b) -> b -> Par1 a -> b #

foldl :: (b -> a -> b) -> b -> Par1 a -> b #

foldl' :: (b -> a -> b) -> b -> Par1 a -> b #

foldr1 :: (a -> a -> a) -> Par1 a -> a #

foldl1 :: (a -> a -> a) -> Par1 a -> a #

toList :: Par1 a -> [a] #

null :: Par1 a -> Bool #

length :: Par1 a -> Int #

elem :: Eq a => a -> Par1 a -> Bool #

maximum :: Ord a => Par1 a -> a #

minimum :: Ord a => Par1 a -> a #

sum :: Num a => Par1 a -> a #

product :: Num a => Par1 a -> a #

Foldable Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

fold :: Monoid m => Complex m -> m #

foldMap :: Monoid m => (a -> m) -> Complex a -> m #

foldr :: (a -> b -> b) -> b -> Complex a -> b #

foldr' :: (a -> b -> b) -> b -> Complex a -> b #

foldl :: (b -> a -> b) -> b -> Complex a -> b #

foldl' :: (b -> a -> b) -> b -> Complex a -> b #

foldr1 :: (a -> a -> a) -> Complex a -> a #

foldl1 :: (a -> a -> a) -> Complex a -> a #

toList :: Complex a -> [a] #

null :: Complex a -> Bool #

length :: Complex a -> Int #

elem :: Eq a => a -> Complex a -> Bool #

maximum :: Ord a => Complex a -> a #

minimum :: Ord a => Complex a -> a #

sum :: Num a => Complex a -> a #

product :: Num a => Complex a -> a #

Foldable Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Min m -> m #

foldMap :: Monoid m => (a -> m) -> Min a -> m #

foldr :: (a -> b -> b) -> b -> Min a -> b #

foldr' :: (a -> b -> b) -> b -> Min a -> b #

foldl :: (b -> a -> b) -> b -> Min a -> b #

foldl' :: (b -> a -> b) -> b -> Min a -> b #

foldr1 :: (a -> a -> a) -> Min a -> a #

foldl1 :: (a -> a -> a) -> Min a -> a #

toList :: Min a -> [a] #

null :: Min a -> Bool #

length :: Min a -> Int #

elem :: Eq a => a -> Min a -> Bool #

maximum :: Ord a => Min a -> a #

minimum :: Ord a => Min a -> a #

sum :: Num a => Min a -> a #

product :: Num a => Min a -> a #

Foldable Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Max m -> m #

foldMap :: Monoid m => (a -> m) -> Max a -> m #

foldr :: (a -> b -> b) -> b -> Max a -> b #

foldr' :: (a -> b -> b) -> b -> Max a -> b #

foldl :: (b -> a -> b) -> b -> Max a -> b #

foldl' :: (b -> a -> b) -> b -> Max a -> b #

foldr1 :: (a -> a -> a) -> Max a -> a #

foldl1 :: (a -> a -> a) -> Max a -> a #

toList :: Max a -> [a] #

null :: Max a -> Bool #

length :: Max a -> Int #

elem :: Eq a => a -> Max a -> Bool #

maximum :: Ord a => Max a -> a #

minimum :: Ord a => Max a -> a #

sum :: Num a => Max a -> a #

product :: Num a => Max a -> a #

Foldable First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Foldable Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Foldable Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Option m -> m #

foldMap :: Monoid m => (a -> m) -> Option a -> m #

foldr :: (a -> b -> b) -> b -> Option a -> b #

foldr' :: (a -> b -> b) -> b -> Option a -> b #

foldl :: (b -> a -> b) -> b -> Option a -> b #

foldl' :: (b -> a -> b) -> b -> Option a -> b #

foldr1 :: (a -> a -> a) -> Option a -> a #

foldl1 :: (a -> a -> a) -> Option a -> a #

toList :: Option a -> [a] #

null :: Option a -> Bool #

length :: Option a -> Int #

elem :: Eq a => a -> Option a -> Bool #

maximum :: Ord a => Option a -> a #

minimum :: Ord a => Option a -> a #

sum :: Num a => Option a -> a #

product :: Num a => Option a -> a #

Foldable ZipList

Since: base-4.9.0.0

Instance details

Defined in Control.Applicative

Methods

fold :: Monoid m => ZipList m -> m #

foldMap :: Monoid m => (a -> m) -> ZipList a -> m #

foldr :: (a -> b -> b) -> b -> ZipList a -> b #

foldr' :: (a -> b -> b) -> b -> ZipList a -> b #

foldl :: (b -> a -> b) -> b -> ZipList a -> b #

foldl' :: (b -> a -> b) -> b -> ZipList a -> b #

foldr1 :: (a -> a -> a) -> ZipList a -> a #

foldl1 :: (a -> a -> a) -> ZipList a -> a #

toList :: ZipList a -> [a] #

null :: ZipList a -> Bool #

length :: ZipList a -> Int #

elem :: Eq a => a -> ZipList a -> Bool #

maximum :: Ord a => ZipList a -> a #

minimum :: Ord a => ZipList a -> a #

sum :: Num a => ZipList a -> a #

product :: Num a => ZipList a -> a #

Foldable Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

fold :: Monoid m => Identity m -> m #

foldMap :: Monoid m => (a -> m) -> Identity a -> m #

foldr :: (a -> b -> b) -> b -> Identity a -> b #

foldr' :: (a -> b -> b) -> b -> Identity a -> b #

foldl :: (b -> a -> b) -> b -> Identity a -> b #

foldl' :: (b -> a -> b) -> b -> Identity a -> b #

foldr1 :: (a -> a -> a) -> Identity a -> a #

foldl1 :: (a -> a -> a) -> Identity a -> a #

toList :: Identity a -> [a] #

null :: Identity a -> Bool #

length :: Identity a -> Int #

elem :: Eq a => a -> Identity a -> Bool #

maximum :: Ord a => Identity a -> a #

minimum :: Ord a => Identity a -> a #

sum :: Num a => Identity a -> a #

product :: Num a => Identity a -> a #

Foldable First

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Foldable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Foldable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Dual m -> m #

foldMap :: Monoid m => (a -> m) -> Dual a -> m #

foldr :: (a -> b -> b) -> b -> Dual a -> b #

foldr' :: (a -> b -> b) -> b -> Dual a -> b #

foldl :: (b -> a -> b) -> b -> Dual a -> b #

foldl' :: (b -> a -> b) -> b -> Dual a -> b #

foldr1 :: (a -> a -> a) -> Dual a -> a #

foldl1 :: (a -> a -> a) -> Dual a -> a #

toList :: Dual a -> [a] #

null :: Dual a -> Bool #

length :: Dual a -> Int #

elem :: Eq a => a -> Dual a -> Bool #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

sum :: Num a => Dual a -> a #

product :: Num a => Dual a -> a #

Foldable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Sum m -> m #

foldMap :: Monoid m => (a -> m) -> Sum a -> m #

foldr :: (a -> b -> b) -> b -> Sum a -> b #

foldr' :: (a -> b -> b) -> b -> Sum a -> b #

foldl :: (b -> a -> b) -> b -> Sum a -> b #

foldl' :: (b -> a -> b) -> b -> Sum a -> b #

foldr1 :: (a -> a -> a) -> Sum a -> a #

foldl1 :: (a -> a -> a) -> Sum a -> a #

toList :: Sum a -> [a] #

null :: Sum a -> Bool #

length :: Sum a -> Int #

elem :: Eq a => a -> Sum a -> Bool #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

sum :: Num a => Sum a -> a #

product :: Num a => Sum a -> a #

Foldable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Product m -> m #

foldMap :: Monoid m => (a -> m) -> Product a -> m #

foldr :: (a -> b -> b) -> b -> Product a -> b #

foldr' :: (a -> b -> b) -> b -> Product a -> b #

foldl :: (b -> a -> b) -> b -> Product a -> b #

foldl' :: (b -> a -> b) -> b -> Product a -> b #

foldr1 :: (a -> a -> a) -> Product a -> a #

foldl1 :: (a -> a -> a) -> Product a -> a #

toList :: Product a -> [a] #

null :: Product a -> Bool #

length :: Product a -> Int #

elem :: Eq a => a -> Product a -> Bool #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

sum :: Num a => Product a -> a #

product :: Num a => Product a -> a #

Foldable Down

Since: base-4.12.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Down m -> m #

foldMap :: Monoid m => (a -> m) -> Down a -> m #

foldr :: (a -> b -> b) -> b -> Down a -> b #

foldr' :: (a -> b -> b) -> b -> Down a -> b #

foldl :: (b -> a -> b) -> b -> Down a -> b #

foldl' :: (b -> a -> b) -> b -> Down a -> b #

foldr1 :: (a -> a -> a) -> Down a -> a #

foldl1 :: (a -> a -> a) -> Down a -> a #

toList :: Down a -> [a] #

null :: Down a -> Bool #

length :: Down a -> Int #

elem :: Eq a => a -> Down a -> Bool #

maximum :: Ord a => Down a -> a #

minimum :: Ord a => Down a -> a #

sum :: Num a => Down a -> a #

product :: Num a => Down a -> a #

Foldable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => NonEmpty m -> m #

foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldr :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldl :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldr1 :: (a -> a -> a) -> NonEmpty a -> a #

foldl1 :: (a -> a -> a) -> NonEmpty a -> a #

toList :: NonEmpty a -> [a] #

null :: NonEmpty a -> Bool #

length :: NonEmpty a -> Int #

elem :: Eq a => a -> NonEmpty a -> Bool #

maximum :: Ord a => NonEmpty a -> a #

minimum :: Ord a => NonEmpty a -> a #

sum :: Num a => NonEmpty a -> a #

product :: Num a => NonEmpty a -> a #

Foldable IntMap 
Instance details

Defined in Data.IntMap.Internal

Methods

fold :: Monoid m => IntMap m -> m #

foldMap :: Monoid m => (a -> m) -> IntMap a -> m #

foldr :: (a -> b -> b) -> b -> IntMap a -> b #

foldr' :: (a -> b -> b) -> b -> IntMap a -> b #

foldl :: (b -> a -> b) -> b -> IntMap a -> b #

foldl' :: (b -> a -> b) -> b -> IntMap a -> b #

foldr1 :: (a -> a -> a) -> IntMap a -> a #

foldl1 :: (a -> a -> a) -> IntMap a -> a #

toList :: IntMap a -> [a] #

null :: IntMap a -> Bool #

length :: IntMap a -> Int #

elem :: Eq a => a -> IntMap a -> Bool #

maximum :: Ord a => IntMap a -> a #

minimum :: Ord a => IntMap a -> a #

sum :: Num a => IntMap a -> a #

product :: Num a => IntMap a -> a #

Foldable Tree 
Instance details

Defined in Data.Tree

Methods

fold :: Monoid m => Tree m -> m #

foldMap :: Monoid m => (a -> m) -> Tree a -> m #

foldr :: (a -> b -> b) -> b -> Tree a -> b #

foldr' :: (a -> b -> b) -> b -> Tree a -> b #

foldl :: (b -> a -> b) -> b -> Tree a -> b #

foldl' :: (b -> a -> b) -> b -> Tree a -> b #

foldr1 :: (a -> a -> a) -> Tree a -> a #

foldl1 :: (a -> a -> a) -> Tree a -> a #

toList :: Tree a -> [a] #

null :: Tree a -> Bool #

length :: Tree a -> Int #

elem :: Eq a => a -> Tree a -> Bool #

maximum :: Ord a => Tree a -> a #

minimum :: Ord a => Tree a -> a #

sum :: Num a => Tree a -> a #

product :: Num a => Tree a -> a #

Foldable Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Seq m -> m #

foldMap :: Monoid m => (a -> m) -> Seq a -> m #

foldr :: (a -> b -> b) -> b -> Seq a -> b #

foldr' :: (a -> b -> b) -> b -> Seq a -> b #

foldl :: (b -> a -> b) -> b -> Seq a -> b #

foldl' :: (b -> a -> b) -> b -> Seq a -> b #

foldr1 :: (a -> a -> a) -> Seq a -> a #

foldl1 :: (a -> a -> a) -> Seq a -> a #

toList :: Seq a -> [a] #

null :: Seq a -> Bool #

length :: Seq a -> Int #

elem :: Eq a => a -> Seq a -> Bool #

maximum :: Ord a => Seq a -> a #

minimum :: Ord a => Seq a -> a #

sum :: Num a => Seq a -> a #

product :: Num a => Seq a -> a #

Foldable FingerTree 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => FingerTree m -> m #

foldMap :: Monoid m => (a -> m) -> FingerTree a -> m #

foldr :: (a -> b -> b) -> b -> FingerTree a -> b #

foldr' :: (a -> b -> b) -> b -> FingerTree a -> b #

foldl :: (b -> a -> b) -> b -> FingerTree a -> b #

foldl' :: (b -> a -> b) -> b -> FingerTree a -> b #

foldr1 :: (a -> a -> a) -> FingerTree a -> a #

foldl1 :: (a -> a -> a) -> FingerTree a -> a #

toList :: FingerTree a -> [a] #

null :: FingerTree a -> Bool #

length :: FingerTree a -> Int #

elem :: Eq a => a -> FingerTree a -> Bool #

maximum :: Ord a => FingerTree a -> a #

minimum :: Ord a => FingerTree a -> a #

sum :: Num a => FingerTree a -> a #

product :: Num a => FingerTree a -> a #

Foldable Digit 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Digit m -> m #

foldMap :: Monoid m => (a -> m) -> Digit a -> m #

foldr :: (a -> b -> b) -> b -> Digit a -> b #

foldr' :: (a -> b -> b) -> b -> Digit a -> b #

foldl :: (b -> a -> b) -> b -> Digit a -> b #

foldl' :: (b -> a -> b) -> b -> Digit a -> b #

foldr1 :: (a -> a -> a) -> Digit a -> a #

foldl1 :: (a -> a -> a) -> Digit a -> a #

toList :: Digit a -> [a] #

null :: Digit a -> Bool #

length :: Digit a -> Int #

elem :: Eq a => a -> Digit a -> Bool #

maximum :: Ord a => Digit a -> a #

minimum :: Ord a => Digit a -> a #

sum :: Num a => Digit a -> a #

product :: Num a => Digit a -> a #

Foldable Node 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Node m -> m #

foldMap :: Monoid m => (a -> m) -> Node a -> m #

foldr :: (a -> b -> b) -> b -> Node a -> b #

foldr' :: (a -> b -> b) -> b -> Node a -> b #

foldl :: (b -> a -> b) -> b -> Node a -> b #

foldl' :: (b -> a -> b) -> b -> Node a -> b #

foldr1 :: (a -> a -> a) -> Node a -> a #

foldl1 :: (a -> a -> a) -> Node a -> a #

toList :: Node a -> [a] #

null :: Node a -> Bool #

length :: Node a -> Int #

elem :: Eq a => a -> Node a -> Bool #

maximum :: Ord a => Node a -> a #

minimum :: Ord a => Node a -> a #

sum :: Num a => Node a -> a #

product :: Num a => Node a -> a #

Foldable Elem 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => Elem m -> m #

foldMap :: Monoid m => (a -> m) -> Elem a -> m #

foldr :: (a -> b -> b) -> b -> Elem a -> b #

foldr' :: (a -> b -> b) -> b -> Elem a -> b #

foldl :: (b -> a -> b) -> b -> Elem a -> b #

foldl' :: (b -> a -> b) -> b -> Elem a -> b #

foldr1 :: (a -> a -> a) -> Elem a -> a #

foldl1 :: (a -> a -> a) -> Elem a -> a #

toList :: Elem a -> [a] #

null :: Elem a -> Bool #

length :: Elem a -> Int #

elem :: Eq a => a -> Elem a -> Bool #

maximum :: Ord a => Elem a -> a #

minimum :: Ord a => Elem a -> a #

sum :: Num a => Elem a -> a #

product :: Num a => Elem a -> a #

Foldable ViewL 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => ViewL m -> m #

foldMap :: Monoid m => (a -> m) -> ViewL a -> m #

foldr :: (a -> b -> b) -> b -> ViewL a -> b #

foldr' :: (a -> b -> b) -> b -> ViewL a -> b #

foldl :: (b -> a -> b) -> b -> ViewL a -> b #

foldl' :: (b -> a -> b) -> b -> ViewL a -> b #

foldr1 :: (a -> a -> a) -> ViewL a -> a #

foldl1 :: (a -> a -> a) -> ViewL a -> a #

toList :: ViewL a -> [a] #

null :: ViewL a -> Bool #

length :: ViewL a -> Int #

elem :: Eq a => a -> ViewL a -> Bool #

maximum :: Ord a => ViewL a -> a #

minimum :: Ord a => ViewL a -> a #

sum :: Num a => ViewL a -> a #

product :: Num a => ViewL a -> a #

Foldable ViewR 
Instance details

Defined in Data.Sequence.Internal

Methods

fold :: Monoid m => ViewR m -> m #

foldMap :: Monoid m => (a -> m) -> ViewR a -> m #

foldr :: (a -> b -> b) -> b -> ViewR a -> b #

foldr' :: (a -> b -> b) -> b -> ViewR a -> b #

foldl :: (b -> a -> b) -> b -> ViewR a -> b #

foldl' :: (b -> a -> b) -> b -> ViewR a -> b #

foldr1 :: (a -> a -> a) -> ViewR a -> a #

foldl1 :: (a -> a -> a) -> ViewR a -> a #

toList :: ViewR a -> [a] #

null :: ViewR a -> Bool #

length :: ViewR a -> Int #

elem :: Eq a => a -> ViewR a -> Bool #

maximum :: Ord a => ViewR a -> a #

minimum :: Ord a => ViewR a -> a #

sum :: Num a => ViewR a -> a #

product :: Num a => ViewR a -> a #

Foldable Set 
Instance details

Defined in Data.Set.Internal

Methods

fold :: Monoid m => Set m -> m #

foldMap :: Monoid m => (a -> m) -> Set a -> m #

foldr :: (a -> b -> b) -> b -> Set a -> b #

foldr' :: (a -> b -> b) -> b -> Set a -> b #

foldl :: (b -> a -> b) -> b -> Set a -> b #

foldl' :: (b -> a -> b) -> b -> Set a -> b #

foldr1 :: (a -> a -> a) -> Set a -> a #

foldl1 :: (a -> a -> a) -> Set a -> a #

toList :: Set a -> [a] #

null :: Set a -> Bool #

length :: Set a -> Int #

elem :: Eq a => a -> Set a -> Bool #

maximum :: Ord a => Set a -> a #

minimum :: Ord a => Set a -> a #

sum :: Num a => Set a -> a #

product :: Num a => Set a -> a #

Foldable Hashed 
Instance details

Defined in Data.Hashable.Class

Methods

fold :: Monoid m => Hashed m -> m #

foldMap :: Monoid m => (a -> m) -> Hashed a -> m #

foldr :: (a -> b -> b) -> b -> Hashed a -> b #

foldr' :: (a -> b -> b) -> b -> Hashed a -> b #

foldl :: (b -> a -> b) -> b -> Hashed a -> b #

foldl' :: (b -> a -> b) -> b -> Hashed a -> b #

foldr1 :: (a -> a -> a) -> Hashed a -> a #

foldl1 :: (a -> a -> a) -> Hashed a -> a #

toList :: Hashed a -> [a] #

null :: Hashed a -> Bool #

length :: Hashed a -> Int #

elem :: Eq a => a -> Hashed a -> Bool #

maximum :: Ord a => Hashed a -> a #

minimum :: Ord a => Hashed a -> a #

sum :: Num a => Hashed a -> a #

product :: Num a => Hashed a -> a #

Foldable HashSet 
Instance details

Defined in Data.HashSet.Base

Methods

fold :: Monoid m => HashSet m -> m #

foldMap :: Monoid m => (a -> m) -> HashSet a -> m #

foldr :: (a -> b -> b) -> b -> HashSet a -> b #

foldr' :: (a -> b -> b) -> b -> HashSet a -> b #

foldl :: (b -> a -> b) -> b -> HashSet a -> b #

foldl' :: (b -> a -> b) -> b -> HashSet a -> b #

foldr1 :: (a -> a -> a) -> HashSet a -> a #

foldl1 :: (a -> a -> a) -> HashSet a -> a #

toList :: HashSet a -> [a] #

null :: HashSet a -> Bool #

length :: HashSet a -> Int #

elem :: Eq a => a -> HashSet a -> Bool #

maximum :: Ord a => HashSet a -> a #

minimum :: Ord a => HashSet a -> a #

sum :: Num a => HashSet a -> a #

product :: Num a => HashSet a -> a #

Foldable (Either a)

Since: base-4.7.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Either a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 #

toList :: Either a a0 -> [a0] #

null :: Either a a0 -> Bool #

length :: Either a a0 -> Int #

elem :: Eq a0 => a0 -> Either a a0 -> Bool #

maximum :: Ord a0 => Either a a0 -> a0 #

minimum :: Ord a0 => Either a a0 -> a0 #

sum :: Num a0 => Either a a0 -> a0 #

product :: Num a0 => Either a a0 -> a0 #

Foldable (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => V1 m -> m #

foldMap :: Monoid m => (a -> m) -> V1 a -> m #

foldr :: (a -> b -> b) -> b -> V1 a -> b #

foldr' :: (a -> b -> b) -> b -> V1 a -> b #

foldl :: (b -> a -> b) -> b -> V1 a -> b #

foldl' :: (b -> a -> b) -> b -> V1 a -> b #

foldr1 :: (a -> a -> a) -> V1 a -> a #

foldl1 :: (a -> a -> a) -> V1 a -> a #

toList :: V1 a -> [a] #

null :: V1 a -> Bool #

length :: V1 a -> Int #

elem :: Eq a => a -> V1 a -> Bool #

maximum :: Ord a => V1 a -> a #

minimum :: Ord a => V1 a -> a #

sum :: Num a => V1 a -> a #

product :: Num a => V1 a -> a #

Foldable (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => U1 m -> m #

foldMap :: Monoid m => (a -> m) -> U1 a -> m #

foldr :: (a -> b -> b) -> b -> U1 a -> b #

foldr' :: (a -> b -> b) -> b -> U1 a -> b #

foldl :: (b -> a -> b) -> b -> U1 a -> b #

foldl' :: (b -> a -> b) -> b -> U1 a -> b #

foldr1 :: (a -> a -> a) -> U1 a -> a #

foldl1 :: (a -> a -> a) -> U1 a -> a #

toList :: U1 a -> [a] #

null :: U1 a -> Bool #

length :: U1 a -> Int #

elem :: Eq a => a -> U1 a -> Bool #

maximum :: Ord a => U1 a -> a #

minimum :: Ord a => U1 a -> a #

sum :: Num a => U1 a -> a #

product :: Num a => U1 a -> a #

Foldable ((,) a)

Since: base-4.7.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (a, m) -> m #

foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m #

foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b #

foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b #

foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b #

foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b #

foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 #

toList :: (a, a0) -> [a0] #

null :: (a, a0) -> Bool #

length :: (a, a0) -> Int #

elem :: Eq a0 => a0 -> (a, a0) -> Bool #

maximum :: Ord a0 => (a, a0) -> a0 #

minimum :: Ord a0 => (a, a0) -> a0 #

sum :: Num a0 => (a, a0) -> a0 #

product :: Num a0 => (a, a0) -> a0 #

Foldable (Array i)

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Array i m -> m #

foldMap :: Monoid m => (a -> m) -> Array i a -> m #

foldr :: (a -> b -> b) -> b -> Array i a -> b #

foldr' :: (a -> b -> b) -> b -> Array i a -> b #

foldl :: (b -> a -> b) -> b -> Array i a -> b #

foldl' :: (b -> a -> b) -> b -> Array i a -> b #

foldr1 :: (a -> a -> a) -> Array i a -> a #

foldl1 :: (a -> a -> a) -> Array i a -> a #

toList :: Array i a -> [a] #

null :: Array i a -> Bool #

length :: Array i a -> Int #

elem :: Eq a => a -> Array i a -> Bool #

maximum :: Ord a => Array i a -> a #

minimum :: Ord a => Array i a -> a #

sum :: Num a => Array i a -> a #

product :: Num a => Array i a -> a #

Foldable (Arg a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Arg a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 #

toList :: Arg a a0 -> [a0] #

null :: Arg a a0 -> Bool #

length :: Arg a a0 -> Int #

elem :: Eq a0 => a0 -> Arg a a0 -> Bool #

maximum :: Ord a0 => Arg a a0 -> a0 #

minimum :: Ord a0 => Arg a a0 -> a0 #

sum :: Num a0 => Arg a a0 -> a0 #

product :: Num a0 => Arg a a0 -> a0 #

Foldable (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Proxy m -> m #

foldMap :: Monoid m => (a -> m) -> Proxy a -> m #

foldr :: (a -> b -> b) -> b -> Proxy a -> b #

foldr' :: (a -> b -> b) -> b -> Proxy a -> b #

foldl :: (b -> a -> b) -> b -> Proxy a -> b #

foldl' :: (b -> a -> b) -> b -> Proxy a -> b #

foldr1 :: (a -> a -> a) -> Proxy a -> a #

foldl1 :: (a -> a -> a) -> Proxy a -> a #

toList :: Proxy a -> [a] #

null :: Proxy a -> Bool #

length :: Proxy a -> Int #

elem :: Eq a => a -> Proxy a -> Bool #

maximum :: Ord a => Proxy a -> a #

minimum :: Ord a => Proxy a -> a #

sum :: Num a => Proxy a -> a #

product :: Num a => Proxy a -> a #

Foldable (Map k) 
Instance details

Defined in Data.Map.Internal

Methods

fold :: Monoid m => Map k m -> m #

foldMap :: Monoid m => (a -> m) -> Map k a -> m #

foldr :: (a -> b -> b) -> b -> Map k a -> b #

foldr' :: (a -> b -> b) -> b -> Map k a -> b #

foldl :: (b -> a -> b) -> b -> Map k a -> b #

foldl' :: (b -> a -> b) -> b -> Map k a -> b #

foldr1 :: (a -> a -> a) -> Map k a -> a #

foldl1 :: (a -> a -> a) -> Map k a -> a #

toList :: Map k a -> [a] #

null :: Map k a -> Bool #

length :: Map k a -> Int #

elem :: Eq a => a -> Map k a -> Bool #

maximum :: Ord a => Map k a -> a #

minimum :: Ord a => Map k a -> a #

sum :: Num a => Map k a -> a #

product :: Num a => Map k a -> a #

Foldable f => Foldable (MaybeT f) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

fold :: Monoid m => MaybeT f m -> m #

foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m #

foldr :: (a -> b -> b) -> b -> MaybeT f a -> b #

foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b #

foldl :: (b -> a -> b) -> b -> MaybeT f a -> b #

foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b #

foldr1 :: (a -> a -> a) -> MaybeT f a -> a #

foldl1 :: (a -> a -> a) -> MaybeT f a -> a #

toList :: MaybeT f a -> [a] #

null :: MaybeT f a -> Bool #

length :: MaybeT f a -> Int #

elem :: Eq a => a -> MaybeT f a -> Bool #

maximum :: Ord a => MaybeT f a -> a #

minimum :: Ord a => MaybeT f a -> a #

sum :: Num a => MaybeT f a -> a #

product :: Num a => MaybeT f a -> a #

Foldable (HashMap k) 
Instance details

Defined in Data.HashMap.Base

Methods

fold :: Monoid m => HashMap k m -> m #

foldMap :: Monoid m => (a -> m) -> HashMap k a -> m #

foldr :: (a -> b -> b) -> b -> HashMap k a -> b #

foldr' :: (a -> b -> b) -> b -> HashMap k a -> b #

foldl :: (b -> a -> b) -> b -> HashMap k a -> b #

foldl' :: (b -> a -> b) -> b -> HashMap k a -> b #

foldr1 :: (a -> a -> a) -> HashMap k a -> a #

foldl1 :: (a -> a -> a) -> HashMap k a -> a #

toList :: HashMap k a -> [a] #

null :: HashMap k a -> Bool #

length :: HashMap k a -> Int #

elem :: Eq a => a -> HashMap k a -> Bool #

maximum :: Ord a => HashMap k a -> a #

minimum :: Ord a => HashMap k a -> a #

sum :: Num a => HashMap k a -> a #

product :: Num a => HashMap k a -> a #

Foldable (Validation e) Source # 
Instance details

Defined in Relude.Extra.Validation

Methods

fold :: Monoid m => Validation e m -> m #

foldMap :: Monoid m => (a -> m) -> Validation e a -> m #

foldr :: (a -> b -> b) -> b -> Validation e a -> b #

foldr' :: (a -> b -> b) -> b -> Validation e a -> b #

foldl :: (b -> a -> b) -> b -> Validation e a -> b #

foldl' :: (b -> a -> b) -> b -> Validation e a -> b #

foldr1 :: (a -> a -> a) -> Validation e a -> a #

foldl1 :: (a -> a -> a) -> Validation e a -> a #

toList :: Validation e a -> [a] #

null :: Validation e a -> Bool #

length :: Validation e a -> Int #

elem :: Eq a => a -> Validation e a -> Bool #

maximum :: Ord a => Validation e a -> a #

minimum :: Ord a => Validation e a -> a #

sum :: Num a => Validation e a -> a #

product :: Num a => Validation e a -> a #

Foldable f => Foldable (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Rec1 f m -> m #

foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m #

foldr :: (a -> b -> b) -> b -> Rec1 f a -> b #

foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b #

foldl :: (b -> a -> b) -> b -> Rec1 f a -> b #

foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b #

foldr1 :: (a -> a -> a) -> Rec1 f a -> a #

foldl1 :: (a -> a -> a) -> Rec1 f a -> a #

toList :: Rec1 f a -> [a] #

null :: Rec1 f a -> Bool #

length :: Rec1 f a -> Int #

elem :: Eq a => a -> Rec1 f a -> Bool #

maximum :: Ord a => Rec1 f a -> a #

minimum :: Ord a => Rec1 f a -> a #

sum :: Num a => Rec1 f a -> a #

product :: Num a => Rec1 f a -> a #

Foldable (URec Char :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Char m -> m #

foldMap :: Monoid m => (a -> m) -> URec Char a -> m #

foldr :: (a -> b -> b) -> b -> URec Char a -> b #

foldr' :: (a -> b -> b) -> b -> URec Char a -> b #

foldl :: (b -> a -> b) -> b -> URec Char a -> b #

foldl' :: (b -> a -> b) -> b -> URec Char a -> b #

foldr1 :: (a -> a -> a) -> URec Char a -> a #

foldl1 :: (a -> a -> a) -> URec Char a -> a #

toList :: URec Char a -> [a] #

null :: URec Char a -> Bool #

length :: URec Char a -> Int #

elem :: Eq a => a -> URec Char a -> Bool #

maximum :: Ord a => URec Char a -> a #

minimum :: Ord a => URec Char a -> a #

sum :: Num a => URec Char a -> a #

product :: Num a => URec Char a -> a #

Foldable (URec Double :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Double m -> m #

foldMap :: Monoid m => (a -> m) -> URec Double a -> m #

foldr :: (a -> b -> b) -> b -> URec Double a -> b #

foldr' :: (a -> b -> b) -> b -> URec Double a -> b #

foldl :: (b -> a -> b) -> b -> URec Double a -> b #

foldl' :: (b -> a -> b) -> b -> URec Double a -> b #

foldr1 :: (a -> a -> a) -> URec Double a -> a #

foldl1 :: (a -> a -> a) -> URec Double a -> a #

toList :: URec Double a -> [a] #

null :: URec Double a -> Bool #

length :: URec Double a -> Int #

elem :: Eq a => a -> URec Double a -> Bool #

maximum :: Ord a => URec Double a -> a #

minimum :: Ord a => URec Double a -> a #

sum :: Num a => URec Double a -> a #

product :: Num a => URec Double a -> a #

Foldable (URec Float :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Float m -> m #

foldMap :: Monoid m => (a -> m) -> URec Float a -> m #

foldr :: (a -> b -> b) -> b -> URec Float a -> b #

foldr' :: (a -> b -> b) -> b -> URec Float a -> b #

foldl :: (b -> a -> b) -> b -> URec Float a -> b #

foldl' :: (b -> a -> b) -> b -> URec Float a -> b #

foldr1 :: (a -> a -> a) -> URec Float a -> a #

foldl1 :: (a -> a -> a) -> URec Float a -> a #

toList :: URec Float a -> [a] #

null :: URec Float a -> Bool #

length :: URec Float a -> Int #

elem :: Eq a => a -> URec Float a -> Bool #

maximum :: Ord a => URec Float a -> a #

minimum :: Ord a => URec Float a -> a #

sum :: Num a => URec Float a -> a #

product :: Num a => URec Float a -> a #

Foldable (URec Int :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Int m -> m #

foldMap :: Monoid m => (a -> m) -> URec Int a -> m #

foldr :: (a -> b -> b) -> b -> URec Int a -> b #

foldr' :: (a -> b -> b) -> b -> URec Int a -> b #

foldl :: (b -> a -> b) -> b -> URec Int a -> b #

foldl' :: (b -> a -> b) -> b -> URec Int a -> b #

foldr1 :: (a -> a -> a) -> URec Int a -> a #

foldl1 :: (a -> a -> a) -> URec Int a -> a #

toList :: URec Int a -> [a] #

null :: URec Int a -> Bool #

length :: URec Int a -> Int #

elem :: Eq a => a -> URec Int a -> Bool #

maximum :: Ord a => URec Int a -> a #

minimum :: Ord a => URec Int a -> a #

sum :: Num a => URec Int a -> a #

product :: Num a => URec Int a -> a #

Foldable (URec Word :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Word m -> m #

foldMap :: Monoid m => (a -> m) -> URec Word a -> m #

foldr :: (a -> b -> b) -> b -> URec Word a -> b #

foldr' :: (a -> b -> b) -> b -> URec Word a -> b #

foldl :: (b -> a -> b) -> b -> URec Word a -> b #

foldl' :: (b -> a -> b) -> b -> URec Word a -> b #

foldr1 :: (a -> a -> a) -> URec Word a -> a #

foldl1 :: (a -> a -> a) -> URec Word a -> a #

toList :: URec Word a -> [a] #

null :: URec Word a -> Bool #

length :: URec Word a -> Int #

elem :: Eq a => a -> URec Word a -> Bool #

maximum :: Ord a => URec Word a -> a #

minimum :: Ord a => URec Word a -> a #

sum :: Num a => URec Word a -> a #

product :: Num a => URec Word a -> a #

Foldable (URec (Ptr ()) :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec (Ptr ()) m -> m #

foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m #

foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b #

foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b #

foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b #

foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b #

foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a #

foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a #

toList :: URec (Ptr ()) a -> [a] #

null :: URec (Ptr ()) a -> Bool #

length :: URec (Ptr ()) a -> Int #

elem :: Eq a => a -> URec (Ptr ()) a -> Bool #

maximum :: Ord a => URec (Ptr ()) a -> a #

minimum :: Ord a => URec (Ptr ()) a -> a #

sum :: Num a => URec (Ptr ()) a -> a #

product :: Num a => URec (Ptr ()) a -> a #

Foldable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldr :: (a -> b -> b) -> b -> Const m a -> b #

foldr' :: (a -> b -> b) -> b -> Const m a -> b #

foldl :: (b -> a -> b) -> b -> Const m a -> b #

foldl' :: (b -> a -> b) -> b -> Const m a -> b #

foldr1 :: (a -> a -> a) -> Const m a -> a #

foldl1 :: (a -> a -> a) -> Const m a -> a #

toList :: Const m a -> [a] #

null :: Const m a -> Bool #

length :: Const m a -> Int #

elem :: Eq a => a -> Const m a -> Bool #

maximum :: Ord a => Const m a -> a #

minimum :: Ord a => Const m a -> a #

sum :: Num a => Const m a -> a #

product :: Num a => Const m a -> a #

Foldable f => Foldable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Ap f m -> m #

foldMap :: Monoid m => (a -> m) -> Ap f a -> m #

foldr :: (a -> b -> b) -> b -> Ap f a -> b #

foldr' :: (a -> b -> b) -> b -> Ap f a -> b #

foldl :: (b -> a -> b) -> b -> Ap f a -> b #

foldl' :: (b -> a -> b) -> b -> Ap f a -> b #

foldr1 :: (a -> a -> a) -> Ap f a -> a #

foldl1 :: (a -> a -> a) -> Ap f a -> a #

toList :: Ap f a -> [a] #

null :: Ap f a -> Bool #

length :: Ap f a -> Int #

elem :: Eq a => a -> Ap f a -> Bool #

maximum :: Ord a => Ap f a -> a #

minimum :: Ord a => Ap f a -> a #

sum :: Num a => Ap f a -> a #

product :: Num a => Ap f a -> a #

Foldable f => Foldable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Alt f m -> m #

foldMap :: Monoid m => (a -> m) -> Alt f a -> m #

foldr :: (a -> b -> b) -> b -> Alt f a -> b #

foldr' :: (a -> b -> b) -> b -> Alt f a -> b #

foldl :: (b -> a -> b) -> b -> Alt f a -> b #

foldl' :: (b -> a -> b) -> b -> Alt f a -> b #

foldr1 :: (a -> a -> a) -> Alt f a -> a #

foldl1 :: (a -> a -> a) -> Alt f a -> a #

toList :: Alt f a -> [a] #

null :: Alt f a -> Bool #

length :: Alt f a -> Int #

elem :: Eq a => a -> Alt f a -> Bool #

maximum :: Ord a => Alt f a -> a #

minimum :: Ord a => Alt f a -> a #

sum :: Num a => Alt f a -> a #

product :: Num a => Alt f a -> a #

Foldable f => Foldable (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

fold :: Monoid m => IdentityT f m -> m #

foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m #

foldr :: (a -> b -> b) -> b -> IdentityT f a -> b #

foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b #

foldl :: (b -> a -> b) -> b -> IdentityT f a -> b #

foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b #

foldr1 :: (a -> a -> a) -> IdentityT f a -> a #

foldl1 :: (a -> a -> a) -> IdentityT f a -> a #

toList :: IdentityT f a -> [a] #

null :: IdentityT f a -> Bool #

length :: IdentityT f a -> Int #

elem :: Eq a => a -> IdentityT f a -> Bool #

maximum :: Ord a => IdentityT f a -> a #

minimum :: Ord a => IdentityT f a -> a #

sum :: Num a => IdentityT f a -> a #

product :: Num a => IdentityT f a -> a #

Foldable f => Foldable (ErrorT e f) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

fold :: Monoid m => ErrorT e f m -> m #

foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m #

foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b #

foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b #

foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b #

foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b #

foldr1 :: (a -> a -> a) -> ErrorT e f a -> a #

foldl1 :: (a -> a -> a) -> ErrorT e f a -> a #

toList :: ErrorT e f a -> [a] #

null :: ErrorT e f a -> Bool #

length :: ErrorT e f a -> Int #

elem :: Eq a => a -> ErrorT e f a -> Bool #

maximum :: Ord a => ErrorT e f a -> a #

minimum :: Ord a => ErrorT e f a -> a #

sum :: Num a => ErrorT e f a -> a #

product :: Num a => ErrorT e f a -> a #

Foldable f => Foldable (ExceptT e f) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

fold :: Monoid m => ExceptT e f m -> m #

foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m #

foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b #

foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b #

foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b #

foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b #

foldr1 :: (a -> a -> a) -> ExceptT e f a -> a #

foldl1 :: (a -> a -> a) -> ExceptT e f a -> a #

toList :: ExceptT e f a -> [a] #

null :: ExceptT e f a -> Bool #

length :: ExceptT e f a -> Int #

elem :: Eq a => a -> ExceptT e f a -> Bool #

maximum :: Ord a => ExceptT e f a -> a #

minimum :: Ord a => ExceptT e f a -> a #

sum :: Num a => ExceptT e f a -> a #

product :: Num a => ExceptT e f a -> a #

Foldable (K1 i c :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => K1 i c m -> m #

foldMap :: Monoid m => (a -> m) -> K1 i c a -> m #

foldr :: (a -> b -> b) -> b -> K1 i c a -> b #

foldr' :: (a -> b -> b) -> b -> K1 i c a -> b #

foldl :: (b -> a -> b) -> b -> K1 i c a -> b #

foldl' :: (b -> a -> b) -> b -> K1 i c a -> b #

foldr1 :: (a -> a -> a) -> K1 i c a -> a #

foldl1 :: (a -> a -> a) -> K1 i c a -> a #

toList :: K1 i c a -> [a] #

null :: K1 i c a -> Bool #

length :: K1 i c a -> Int #

elem :: Eq a => a -> K1 i c a -> Bool #

maximum :: Ord a => K1 i c a -> a #

minimum :: Ord a => K1 i c a -> a #

sum :: Num a => K1 i c a -> a #

product :: Num a => K1 i c a -> a #

(Foldable f, Foldable g) => Foldable (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :+: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :+: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :+: g) a -> a #

toList :: (f :+: g) a -> [a] #

null :: (f :+: g) a -> Bool #

length :: (f :+: g) a -> Int #

elem :: Eq a => a -> (f :+: g) a -> Bool #

maximum :: Ord a => (f :+: g) a -> a #

minimum :: Ord a => (f :+: g) a -> a #

sum :: Num a => (f :+: g) a -> a #

product :: Num a => (f :+: g) a -> a #

(Foldable f, Foldable g) => Foldable (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :*: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :*: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :*: g) a -> a #

toList :: (f :*: g) a -> [a] #

null :: (f :*: g) a -> Bool #

length :: (f :*: g) a -> Int #

elem :: Eq a => a -> (f :*: g) a -> Bool #

maximum :: Ord a => (f :*: g) a -> a #

minimum :: Ord a => (f :*: g) a -> a #

sum :: Num a => (f :*: g) a -> a #

product :: Num a => (f :*: g) a -> a #

(Foldable f, Foldable g) => Foldable (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

fold :: Monoid m => Product f g m -> m #

foldMap :: Monoid m => (a -> m) -> Product f g a -> m #

foldr :: (a -> b -> b) -> b -> Product f g a -> b #

foldr' :: (a -> b -> b) -> b -> Product f g a -> b #

foldl :: (b -> a -> b) -> b -> Product f g a -> b #

foldl' :: (b -> a -> b) -> b -> Product f g a -> b #

foldr1 :: (a -> a -> a) -> Product f g a -> a #

foldl1 :: (a -> a -> a) -> Product f g a -> a #

toList :: Product f g a -> [a] #

null :: Product f g a -> Bool #

length :: Product f g a -> Int #

elem :: Eq a => a -> Product f g a -> Bool #

maximum :: Ord a => Product f g a -> a #

minimum :: Ord a => Product f g a -> a #

sum :: Num a => Product f g a -> a #

product :: Num a => Product f g a -> a #

(Foldable f, Foldable g) => Foldable (Sum f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

fold :: Monoid m => Sum f g m -> m #

foldMap :: Monoid m => (a -> m) -> Sum f g a -> m #

foldr :: (a -> b -> b) -> b -> Sum f g a -> b #

foldr' :: (a -> b -> b) -> b -> Sum f g a -> b #

foldl :: (b -> a -> b) -> b -> Sum f g a -> b #

foldl' :: (b -> a -> b) -> b -> Sum f g a -> b #

foldr1 :: (a -> a -> a) -> Sum f g a -> a #

foldl1 :: (a -> a -> a) -> Sum f g a -> a #

toList :: Sum f g a -> [a] #

null :: Sum f g a -> Bool #

length :: Sum f g a -> Int #

elem :: Eq a => a -> Sum f g a -> Bool #

maximum :: Ord a => Sum f g a -> a #

minimum :: Ord a => Sum f g a -> a #

sum :: Num a => Sum f g a -> a #

product :: Num a => Sum f g a -> a #

Foldable f => Foldable (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => M1 i c f m -> m #

foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m #

foldr :: (a -> b -> b) -> b -> M1 i c f a -> b #

foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b #

foldl :: (b -> a -> b) -> b -> M1 i c f a -> b #

foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b #

foldr1 :: (a -> a -> a) -> M1 i c f a -> a #

foldl1 :: (a -> a -> a) -> M1 i c f a -> a #

toList :: M1 i c f a -> [a] #

null :: M1 i c f a -> Bool #

length :: M1 i c f a -> Int #

elem :: Eq a => a -> M1 i c f a -> Bool #

maximum :: Ord a => M1 i c f a -> a #

minimum :: Ord a => M1 i c f a -> a #

sum :: Num a => M1 i c f a -> a #

product :: Num a => M1 i c f a -> a #

(Foldable f, Foldable g) => Foldable (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :.: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :.: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :.: g) a -> a #

toList :: (f :.: g) a -> [a] #

null :: (f :.: g) a -> Bool #

length :: (f :.: g) a -> Int #

elem :: Eq a => a -> (f :.: g) a -> Bool #

maximum :: Ord a => (f :.: g) a -> a #

minimum :: Ord a => (f :.: g) a -> a #

sum :: Num a => (f :.: g) a -> a #

product :: Num a => (f :.: g) a -> a #

(Foldable f, Foldable g) => Foldable (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

fold :: Monoid m => Compose f g m -> m #

foldMap :: Monoid m => (a -> m) -> Compose f g a -> m #

foldr :: (a -> b -> b) -> b -> Compose f g a -> b #

foldr' :: (a -> b -> b) -> b -> Compose f g a -> b #

foldl :: (b -> a -> b) -> b -> Compose f g a -> b #

foldl' :: (b -> a -> b) -> b -> Compose f g a -> b #

foldr1 :: (a -> a -> a) -> Compose f g a -> a #

foldl1 :: (a -> a -> a) -> Compose f g a -> a #

toList :: Compose f g a -> [a] #

null :: Compose f g a -> Bool #

length :: Compose f g a -> Int #

elem :: Eq a => a -> Compose f g a -> Bool #

maximum :: Ord a => Compose f g a -> a #

minimum :: Ord a => Compose f g a -> a #

sum :: Num a => Compose f g a -> a #

product :: Num a => Compose f g a -> a #

find :: Foldable t => (a -> Bool) -> t a -> Maybe a #

The find function takes a predicate and a structure and returns the leftmost element of the structure matching the predicate, or Nothing if there is no such element.

all :: Foldable t => (a -> Bool) -> t a -> Bool #

Determines whether all elements of the structure satisfy the predicate.

any :: Foldable t => (a -> Bool) -> t a -> Bool #

Determines whether any element of the structure satisfies the predicate.

or :: Foldable t => t Bool -> Bool #

or returns the disjunction of a container of Bools. For the result to be False, the container must be finite; True, however, results from a True value finitely far from the left end.

and :: Foldable t => t Bool -> Bool #

and returns the conjunction of a container of Bools. For the result to be True, the container must be finite; False, however, results from a False value finitely far from the left end.

concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #

Map a function over all the elements of a container and concatenate the resulting lists.

concat :: Foldable t => t [a] -> [a] #

The concatenation of all the elements of a container of lists.

asum :: (Foldable t, Alternative f) => t (f a) -> f a #

The sum of a collection of actions, generalizing concat.

asum [Just Hello, Nothing, Just World] Just Hello

sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #

Evaluate each monadic action in the structure from left to right, and ignore the results. For a version that doesn't ignore the results see sequence.

As of base 4.8.0.0, sequence_ is just sequenceA_, specialized to Monad.

sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () #

Evaluate each action in the structure from left to right, and ignore the results. For a version that doesn't ignore the results see sequenceA.

forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m () #

forM_ is mapM_ with its arguments flipped. For a version that doesn't ignore the results see forM.

As of base 4.8.0.0, forM_ is just for_, specialized to Monad.

mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m () #

Map each element of a structure to a monadic action, evaluate these actions from left to right, and ignore the results. For a version that doesn't ignore the results see mapM.

As of base 4.8.0.0, mapM_ is just traverse_, specialized to Monad.

for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #

for_ is traverse_ with its arguments flipped. For a version that doesn't ignore the results see for.

>>> for_ [1..4] print
1
2
3
4

traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #

Map each element of a structure to an action, evaluate these actions from left to right, and ignore the results. For a version that doesn't ignore the results see traverse.

foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #

Monadic fold over the elements of a structure, associating to the left, i.e. from left to right.

class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #

Functors representing data structures that can be traversed from left to right.

A definition of traverse must satisfy the following laws:

naturality
t . traverse f = traverse (t . f) for every applicative transformation t
identity
traverse Identity = Identity
composition
traverse (Compose . fmap g . f) = Compose . fmap (traverse g) . traverse f

A definition of sequenceA must satisfy the following laws:

naturality
t . sequenceA = sequenceA . fmap t for every applicative transformation t
identity
sequenceA . fmap Identity = Identity
composition
sequenceA . fmap Compose = Compose . fmap sequenceA . sequenceA

where an applicative transformation is a function

t :: (Applicative f, Applicative g) => f a -> g a

preserving the Applicative operations, i.e.

and the identity functor Identity and composition of functors Compose are defined as

  newtype Identity a = Identity a

  instance Functor Identity where
    fmap f (Identity x) = Identity (f x)

  instance Applicative Identity where
    pure x = Identity x
    Identity f <*> Identity x = Identity (f x)

  newtype Compose f g a = Compose (f (g a))

  instance (Functor f, Functor g) => Functor (Compose f g) where
    fmap f (Compose x) = Compose (fmap (fmap f) x)

  instance (Applicative f, Applicative g) => Applicative (Compose f g) where
    pure x = Compose (pure (pure x))
    Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)

(The naturality law is implied by parametricity.)

Instances are similar to Functor, e.g. given a data type

data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)

a suitable instance would be

instance Traversable Tree where
   traverse f Empty = pure Empty
   traverse f (Leaf x) = Leaf <$> f x
   traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r

This is suitable even for abstract types, as the laws for <*> imply a form of associativity.

The superclass instances should satisfy the following:

Minimal complete definition

traverse | sequenceA

Methods

traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #

Map each element of a structure to an action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see traverse_.

sequenceA :: Applicative f => t (f a) -> f (t a) #

Evaluate each action in the structure from left to right, and collect the results. For a version that ignores the results see sequenceA_.

mapM :: Monad m => (a -> m b) -> t a -> m (t b) #

Map each element of a structure to a monadic action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see mapM_.

sequence :: Monad m => t (m a) -> m (t a) #

Evaluate each monadic action in the structure from left to right, and collect the results. For a version that ignores the results see sequence_.

Instances
Traversable []

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> [a] -> f [b] #

sequenceA :: Applicative f => [f a] -> f [a] #

mapM :: Monad m => (a -> m b) -> [a] -> m [b] #

sequence :: Monad m => [m a] -> m [a] #

Traversable Maybe

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) #

Traversable Par1

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Par1 a -> f (Par1 b) #

sequenceA :: Applicative f => Par1 (f a) -> f (Par1 a) #

mapM :: Monad m => (a -> m b) -> Par1 a -> m (Par1 b) #

sequence :: Monad m => Par1 (m a) -> m (Par1 a) #

Traversable Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

traverse :: Applicative f => (a -> f b) -> Complex a -> f (Complex b) #

sequenceA :: Applicative f => Complex (f a) -> f (Complex a) #

mapM :: Monad m => (a -> m b) -> Complex a -> m (Complex b) #

sequence :: Monad m => Complex (m a) -> m (Complex a) #

Traversable Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Min a -> f (Min b) #

sequenceA :: Applicative f => Min (f a) -> f (Min a) #

mapM :: Monad m => (a -> m b) -> Min a -> m (Min b) #

sequence :: Monad m => Min (m a) -> m (Min a) #

Traversable Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Max a -> f (Max b) #

sequenceA :: Applicative f => Max (f a) -> f (Max a) #

mapM :: Monad m => (a -> m b) -> Max a -> m (Max b) #

sequence :: Monad m => Max (m a) -> m (Max a) #

Traversable First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Option a -> f (Option b) #

sequenceA :: Applicative f => Option (f a) -> f (Option a) #

mapM :: Monad m => (a -> m b) -> Option a -> m (Option b) #

sequence :: Monad m => Option (m a) -> m (Option a) #

Traversable ZipList

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> ZipList a -> f (ZipList b) #

sequenceA :: Applicative f => ZipList (f a) -> f (ZipList a) #

mapM :: Monad m => (a -> m b) -> ZipList a -> m (ZipList b) #

sequence :: Monad m => ZipList (m a) -> m (ZipList a) #

Traversable Identity

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Identity a -> f (Identity b) #

sequenceA :: Applicative f => Identity (f a) -> f (Identity a) #

mapM :: Monad m => (a -> m b) -> Identity a -> m (Identity b) #

sequence :: Monad m => Identity (m a) -> m (Identity a) #

Traversable First

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) #

sequence :: Monad m => Dual (m a) -> m (Dual a) #

Traversable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

Traversable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

Traversable Down

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Down a -> f (Down b) #

sequenceA :: Applicative f => Down (f a) -> f (Down a) #

mapM :: Monad m => (a -> m b) -> Down a -> m (Down b) #

sequence :: Monad m => Down (m a) -> m (Down a) #

Traversable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #

sequenceA :: Applicative f => NonEmpty (f a) -> f (NonEmpty a) #

mapM :: Monad m => (a -> m b) -> NonEmpty a -> m (NonEmpty b) #

sequence :: Monad m => NonEmpty (m a) -> m (NonEmpty a) #

Traversable IntMap 
Instance details

Defined in Data.IntMap.Internal

Methods

traverse :: Applicative f => (a -> f b) -> IntMap a -> f (IntMap b) #

sequenceA :: Applicative f => IntMap (f a) -> f (IntMap a) #

mapM :: Monad m => (a -> m b) -> IntMap a -> m (IntMap b) #

sequence :: Monad m => IntMap (m a) -> m (IntMap a) #

Traversable Tree 
Instance details

Defined in Data.Tree

Methods

traverse :: Applicative f => (a -> f b) -> Tree a -> f (Tree b) #

sequenceA :: Applicative f => Tree (f a) -> f (Tree a) #

mapM :: Monad m => (a -> m b) -> Tree a -> m (Tree b) #

sequence :: Monad m => Tree (m a) -> m (Tree a) #

Traversable Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Seq a -> f (Seq b) #

sequenceA :: Applicative f => Seq (f a) -> f (Seq a) #

mapM :: Monad m => (a -> m b) -> Seq a -> m (Seq b) #

sequence :: Monad m => Seq (m a) -> m (Seq a) #

Traversable FingerTree 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> FingerTree a -> f (FingerTree b) #

sequenceA :: Applicative f => FingerTree (f a) -> f (FingerTree a) #

mapM :: Monad m => (a -> m b) -> FingerTree a -> m (FingerTree b) #

sequence :: Monad m => FingerTree (m a) -> m (FingerTree a) #

Traversable Digit 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Digit a -> f (Digit b) #

sequenceA :: Applicative f => Digit (f a) -> f (Digit a) #

mapM :: Monad m => (a -> m b) -> Digit a -> m (Digit b) #

sequence :: Monad m => Digit (m a) -> m (Digit a) #

Traversable Node 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Node a -> f (Node b) #

sequenceA :: Applicative f => Node (f a) -> f (Node a) #

mapM :: Monad m => (a -> m b) -> Node a -> m (Node b) #

sequence :: Monad m => Node (m a) -> m (Node a) #

Traversable Elem 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Elem a -> f (Elem b) #

sequenceA :: Applicative f => Elem (f a) -> f (Elem a) #

mapM :: Monad m => (a -> m b) -> Elem a -> m (Elem b) #

sequence :: Monad m => Elem (m a) -> m (Elem a) #

Traversable ViewL 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> ViewL a -> f (ViewL b) #

sequenceA :: Applicative f => ViewL (f a) -> f (ViewL a) #

mapM :: Monad m => (a -> m b) -> ViewL a -> m (ViewL b) #

sequence :: Monad m => ViewL (m a) -> m (ViewL a) #

Traversable ViewR 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> ViewR a -> f (ViewR b) #

sequenceA :: Applicative f => ViewR (f a) -> f (ViewR a) #

mapM :: Monad m => (a -> m b) -> ViewR a -> m (ViewR b) #

sequence :: Monad m => ViewR (m a) -> m (ViewR a) #

Traversable (Either a)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a0 -> f b) -> Either a a0 -> f (Either a b) #

sequenceA :: Applicative f => Either a (f a0) -> f (Either a a0) #

mapM :: Monad m => (a0 -> m b) -> Either a a0 -> m (Either a b) #

sequence :: Monad m => Either a (m a0) -> m (Either a a0) #

Traversable (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> V1 a -> f (V1 b) #

sequenceA :: Applicative f => V1 (f a) -> f (V1 a) #

mapM :: Monad m => (a -> m b) -> V1 a -> m (V1 b) #

sequence :: Monad m => V1 (m a) -> m (V1 a) #

Traversable (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> U1 a -> f (U1 b) #

sequenceA :: Applicative f => U1 (f a) -> f (U1 a) #

mapM :: Monad m => (a -> m b) -> U1 a -> m (U1 b) #

sequence :: Monad m => U1 (m a) -> m (U1 a) #

Traversable ((,) a)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a0 -> f b) -> (a, a0) -> f (a, b) #

sequenceA :: Applicative f => (a, f a0) -> f (a, a0) #

mapM :: Monad m => (a0 -> m b) -> (a, a0) -> m (a, b) #

sequence :: Monad m => (a, m a0) -> m (a, a0) #

Ix i => Traversable (Array i)

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Array i a -> f (Array i b) #

sequenceA :: Applicative f => Array i (f a) -> f (Array i a) #

mapM :: Monad m => (a -> m b) -> Array i a -> m (Array i b) #

sequence :: Monad m => Array i (m a) -> m (Array i a) #

Traversable (Arg a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a0 -> f b) -> Arg a a0 -> f (Arg a b) #

sequenceA :: Applicative f => Arg a (f a0) -> f (Arg a a0) #

mapM :: Monad m => (a0 -> m b) -> Arg a a0 -> m (Arg a b) #

sequence :: Monad m => Arg a (m a0) -> m (Arg a a0) #

Traversable (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Proxy a -> f (Proxy b) #

sequenceA :: Applicative f => Proxy (f a) -> f (Proxy a) #

mapM :: Monad m => (a -> m b) -> Proxy a -> m (Proxy b) #

sequence :: Monad m => Proxy (m a) -> m (Proxy a) #

Traversable (Map k) 
Instance details

Defined in Data.Map.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Map k a -> f (Map k b) #

sequenceA :: Applicative f => Map k (f a) -> f (Map k a) #

mapM :: Monad m => (a -> m b) -> Map k a -> m (Map k b) #

sequence :: Monad m => Map k (m a) -> m (Map k a) #

Traversable f => Traversable (MaybeT f) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

traverse :: Applicative f0 => (a -> f0 b) -> MaybeT f a -> f0 (MaybeT f b) #

sequenceA :: Applicative f0 => MaybeT f (f0 a) -> f0 (MaybeT f a) #

mapM :: Monad m => (a -> m b) -> MaybeT f a -> m (MaybeT f b) #

sequence :: Monad m => MaybeT f (m a) -> m (MaybeT f a) #

Traversable (HashMap k) 
Instance details

Defined in Data.HashMap.Base

Methods

traverse :: Applicative f => (a -> f b) -> HashMap k a -> f (HashMap k b) #

sequenceA :: Applicative f => HashMap k (f a) -> f (HashMap k a) #

mapM :: Monad m => (a -> m b) -> HashMap k a -> m (HashMap k b) #

sequence :: Monad m => HashMap k (m a) -> m (HashMap k a) #

Traversable (Validation e) Source # 
Instance details

Defined in Relude.Extra.Validation

Methods

traverse :: Applicative f => (a -> f b) -> Validation e a -> f (Validation e b) #

sequenceA :: Applicative f => Validation e (f a) -> f (Validation e a) #

mapM :: Monad m => (a -> m b) -> Validation e a -> m (Validation e b) #

sequence :: Monad m => Validation e (m a) -> m (Validation e a) #

Traversable f => Traversable (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) #

sequenceA :: Applicative f0 => Rec1 f (f0 a) -> f0 (Rec1 f a) #

mapM :: Monad m => (a -> m b) -> Rec1 f a -> m (Rec1 f b) #

sequence :: Monad m => Rec1 f (m a) -> m (Rec1 f a) #

Traversable (URec Char :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Char a -> f (URec Char b) #

sequenceA :: Applicative f => URec Char (f a) -> f (URec Char a) #

mapM :: Monad m => (a -> m b) -> URec Char a -> m (URec Char b) #

sequence :: Monad m => URec Char (m a) -> m (URec Char a) #

Traversable (URec Double :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Double a -> f (URec Double b) #

sequenceA :: Applicative f => URec Double (f a) -> f (URec Double a) #

mapM :: Monad m => (a -> m b) -> URec Double a -> m (URec Double b) #

sequence :: Monad m => URec Double (m a) -> m (URec Double a) #

Traversable (URec Float :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Float a -> f (URec Float b) #

sequenceA :: Applicative f => URec Float (f a) -> f (URec Float a) #

mapM :: Monad m => (a -> m b) -> URec Float a -> m (URec Float b) #

sequence :: Monad m => URec Float (m a) -> m (URec Float a) #

Traversable (URec Int :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Int a -> f (URec Int b) #

sequenceA :: Applicative f => URec Int (f a) -> f (URec Int a) #

mapM :: Monad m => (a -> m b) -> URec Int a -> m (URec Int b) #

sequence :: Monad m => URec Int (m a) -> m (URec Int a) #

Traversable (URec Word :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Word a -> f (URec Word b) #

sequenceA :: Applicative f => URec Word (f a) -> f (URec Word a) #

mapM :: Monad m => (a -> m b) -> URec Word a -> m (URec Word b) #

sequence :: Monad m => URec Word (m a) -> m (URec Word a) #

Traversable (URec (Ptr ()) :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec (Ptr ()) a -> f (URec (Ptr ()) b) #

sequenceA :: Applicative f => URec (Ptr ()) (f a) -> f (URec (Ptr ()) a) #

mapM :: Monad m => (a -> m b) -> URec (Ptr ()) a -> m (URec (Ptr ()) b) #

sequence :: Monad m => URec (Ptr ()) (m a) -> m (URec (Ptr ()) a) #

Traversable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) #

Traversable f => Traversable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Ap f a -> f0 (Ap f b) #

sequenceA :: Applicative f0 => Ap f (f0 a) -> f0 (Ap f a) #

mapM :: Monad m => (a -> m b) -> Ap f a -> m (Ap f b) #

sequence :: Monad m => Ap f (m a) -> m (Ap f a) #

Traversable f => Traversable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Alt f a -> f0 (Alt f b) #

sequenceA :: Applicative f0 => Alt f (f0 a) -> f0 (Alt f a) #

mapM :: Monad m => (a -> m b) -> Alt f a -> m (Alt f b) #

sequence :: Monad m => Alt f (m a) -> m (Alt f a) #

Traversable f => Traversable (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

traverse :: Applicative f0 => (a -> f0 b) -> IdentityT f a -> f0 (IdentityT f b) #

sequenceA :: Applicative f0 => IdentityT f (f0 a) -> f0 (IdentityT f a) #

mapM :: Monad m => (a -> m b) -> IdentityT f a -> m (IdentityT f b) #

sequence :: Monad m => IdentityT f (m a) -> m (IdentityT f a) #

Traversable f => Traversable (ErrorT e f) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ErrorT e f a -> f0 (ErrorT e f b) #

sequenceA :: Applicative f0 => ErrorT e f (f0 a) -> f0 (ErrorT e f a) #

mapM :: Monad m => (a -> m b) -> ErrorT e f a -> m (ErrorT e f b) #

sequence :: Monad m => ErrorT e f (m a) -> m (ErrorT e f a) #

Traversable f => Traversable (ExceptT e f) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ExceptT e f a -> f0 (ExceptT e f b) #

sequenceA :: Applicative f0 => ExceptT e f (f0 a) -> f0 (ExceptT e f a) #

mapM :: Monad m => (a -> m b) -> ExceptT e f a -> m (ExceptT e f b) #

sequence :: Monad m => ExceptT e f (m a) -> m (ExceptT e f a) #

Traversable (K1 i c :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> K1 i c a -> f (K1 i c b) #

sequenceA :: Applicative f => K1 i c (f a) -> f (K1 i c a) #

mapM :: Monad m => (a -> m b) -> K1 i c a -> m (K1 i c b) #

sequence :: Monad m => K1 i c (m a) -> m (K1 i c a) #

(Traversable f, Traversable g) => Traversable (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) #

sequenceA :: Applicative f0 => (f :+: g) (f0 a) -> f0 ((f :+: g) a) #

mapM :: Monad m => (a -> m b) -> (f :+: g) a -> m ((f :+: g) b) #

sequence :: Monad m => (f :+: g) (m a) -> m ((f :+: g) a) #

(Traversable f, Traversable g) => Traversable (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) #

sequenceA :: Applicative f0 => (f :*: g) (f0 a) -> f0 ((f :*: g) a) #

mapM :: Monad m => (a -> m b) -> (f :*: g) a -> m ((f :*: g) b) #

sequence :: Monad m => (f :*: g) (m a) -> m ((f :*: g) a) #

(Traversable f, Traversable g) => Traversable (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Product f g a -> f0 (Product f g b) #

sequenceA :: Applicative f0 => Product f g (f0 a) -> f0 (Product f g a) #

mapM :: Monad m => (a -> m b) -> Product f g a -> m (Product f g b) #

sequence :: Monad m => Product f g (m a) -> m (Product f g a) #

(Traversable f, Traversable g) => Traversable (Sum f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Sum f g a -> f0 (Sum f g b) #

sequenceA :: Applicative f0 => Sum f g (f0 a) -> f0 (Sum f g a) #

mapM :: Monad m => (a -> m b) -> Sum f g a -> m (Sum f g b) #

sequence :: Monad m => Sum f g (m a) -> m (Sum f g a) #

Traversable f => Traversable (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> M1 i c f a -> f0 (M1 i c f b) #

sequenceA :: Applicative f0 => M1 i c f (f0 a) -> f0 (M1 i c f a) #

mapM :: Monad m => (a -> m b) -> M1 i c f a -> m (M1 i c f b) #

sequence :: Monad m => M1 i c f (m a) -> m (M1 i c f a) #

(Traversable f, Traversable g) => Traversable (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) #

sequenceA :: Applicative f0 => (f :.: g) (f0 a) -> f0 ((f :.: g) a) #

mapM :: Monad m => (a -> m b) -> (f :.: g) a -> m ((f :.: g) b) #

sequence :: Monad m => (f :.: g) (m a) -> m ((f :.: g) a) #

(Traversable f, Traversable g) => Traversable (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Compose f g a -> f0 (Compose f g b) #

sequenceA :: Applicative f0 => Compose f g (f0 a) -> f0 (Compose f g a) #

mapM :: Monad m => (a -> m b) -> Compose f g a -> m (Compose f g b) #

sequence :: Monad m => Compose f g (m a) -> m (Compose f g a) #

mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c) #

The mapAccumR function behaves like a combination of fmap and foldr; it applies a function to each element of a structure, passing an accumulating parameter from right to left, and returning a final value of this accumulator together with the new structure.

mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c) #

The mapAccumL function behaves like a combination of fmap and foldl; it applies a function to each element of a structure, passing an accumulating parameter from left to right, and returning a final value of this accumulator together with the new structure.

forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) #

forM is mapM with its arguments flipped. For a version that ignores the results see forM_.

Bi reexports

bifind :: Bifoldable t => (a -> Bool) -> t a a -> Maybe a #

The bifind function takes a predicate and a structure and returns the leftmost element of the structure matching the predicate, or Nothing if there is no such element.

Since: base-4.10.0.0

biall :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool #

Determines whether all elements of the structure satisfy their appropriate predicate argument.

Since: base-4.10.0.0

biany :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool #

Determines whether any element of the structure satisfies its appropriate predicate argument.

Since: base-4.10.0.0

bior :: Bifoldable t => t Bool Bool -> Bool #

bior returns the disjunction of a container of Bools. For the result to be False, the container must be finite; True, however, results from a True value finitely far from the left end.

Since: base-4.10.0.0

biand :: Bifoldable t => t Bool Bool -> Bool #

biand returns the conjunction of a container of Bools. For the result to be True, the container must be finite; False, however, results from a False value finitely far from the left end.

Since: base-4.10.0.0

bielem :: (Bifoldable t, Eq a) => a -> t a a -> Bool #

Does the element occur in the structure?

Since: base-4.10.0.0

bilength :: Bifoldable t => t a b -> Int #

Returns the size/length of a finite structure as an Int.

Since: base-4.10.0.0

binull :: Bifoldable t => t a b -> Bool #

Test whether the structure is empty.

Since: base-4.10.0.0

biList :: Bifoldable t => t a a -> [a] #

Collects the list of elements of a structure, from left to right.

Since: base-4.10.0.0

biasum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a #

The sum of a collection of actions, generalizing biconcat.

Since: base-4.10.0.0

bisequence_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f () #

Evaluate each action in the structure from left to right, and ignore the results. For a version that doesn't ignore the results, see bisequence.

Since: base-4.10.0.0

bifor_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f () #

As bitraverse_, but with the structure as the primary argument. For a version that doesn't ignore the results, see bifor.

>>> > bifor_ ('a', "bc") print (print . reverse)
'a'
"cb"

Since: base-4.10.0.0

bitraverse_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f () #

Map each element of a structure using one of two actions, evaluate these actions from left to right, and ignore the results. For a version that doesn't ignore the results, see bitraverse.

Since: base-4.10.0.0

bifoldlM :: (Bifoldable t, Monad m) => (a -> b -> m a) -> (a -> c -> m a) -> a -> t b c -> m a #

Left associative monadic bifold over a structure.

Since: base-4.10.0.0

bifoldl' :: Bifoldable t => (a -> b -> a) -> (a -> c -> a) -> a -> t b c -> a #

As bifoldl, but strict in the result of the reduction functions at each step.

This ensures that each step of the bifold is forced to weak head normal form before being applied, avoiding the collection of thunks that would otherwise occur. This is often what you want to strictly reduce a finite structure to a single, monolithic result (e.g., bilength).

Since: base-4.10.0.0

bifoldrM :: (Bifoldable t, Monad m) => (a -> c -> m c) -> (b -> c -> m c) -> c -> t a b -> m c #

Right associative monadic bifold over a structure.

Since: base-4.10.0.0

bifoldr' :: Bifoldable t => (a -> c -> c) -> (b -> c -> c) -> c -> t a b -> c #

As bifoldr, but strict in the result of the reduction functions at each step.

Since: base-4.10.0.0

class Bifoldable (p :: Type -> Type -> Type) where #

Bifoldable identifies foldable structures with two different varieties of elements (as opposed to Foldable, which has one variety of element). Common examples are Either and '(,)':

instance Bifoldable Either where
  bifoldMap f _ (Left  a) = f a
  bifoldMap _ g (Right b) = g b

instance Bifoldable (,) where
  bifoldr f g z (a, b) = f a (g b z)

A minimal Bifoldable definition consists of either bifoldMap or bifoldr. When defining more than this minimal set, one should ensure that the following identities hold:

bifoldbifoldMap id id
bifoldMap f g ≡ bifoldr (mappend . f) (mappend . g) mempty
bifoldr f g z t ≡ appEndo (bifoldMap (Endo . f) (Endo . g) t) z

If the type is also a Bifunctor instance, it should satisfy:

'bifoldMap' f g ≡ 'bifold' . 'bimap' f g

which implies that

'bifoldMap' f g . 'bimap' h i ≡ 'bifoldMap' (f . h) (g . i)

Since: base-4.10.0.0

Minimal complete definition

bifoldr | bifoldMap

Methods

bifold :: Monoid m => p m m -> m #

Combines the elements of a structure using a monoid.

bifoldbifoldMap id id

Since: base-4.10.0.0

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> p a b -> m #

Combines the elements of a structure, given ways of mapping them to a common monoid.

bifoldMap f g
     ≡ bifoldr (mappend . f) (mappend . g) mempty

Since: base-4.10.0.0

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c #

Combines the elements of a structure in a right associative manner. Given a hypothetical function toEitherList :: p a b -> [Either a b] yielding a list of all elements of a structure in order, the following would hold:

bifoldr f g z ≡ foldr (either f g) z . toEitherList

Since: base-4.10.0.0

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> p a b -> c #

Combines the elements of a structure in a left associative manner. Given a hypothetical function toEitherList :: p a b -> [Either a b] yielding a list of all elements of a structure in order, the following would hold:

bifoldl f g z
     ≡ foldl (acc -> either (f acc) (g acc)) z . toEitherList

Note that if you want an efficient left-fold, you probably want to use bifoldl' instead of bifoldl. The reason is that the latter does not force the "inner" results, resulting in a thunk chain which then must be evaluated from the outside-in.

Since: base-4.10.0.0

Instances
Bifoldable Either

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => Either m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Either a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Either a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Either a b -> c #

Bifoldable (,)

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (a, b) -> c #

Bifoldable Arg

Since: base-4.10.0.0

Instance details

Defined in Data.Semigroup

Methods

bifold :: Monoid m => Arg m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Arg a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Arg a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Arg a b -> c #

Bifoldable Validation Source # 
Instance details

Defined in Relude.Extra.Validation

Methods

bifold :: Monoid m => Validation m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Validation a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Validation a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Validation a b -> c #

Bifoldable ((,,) x)

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (x, m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (x, a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (x, a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (x, a, b) -> c #

Bifoldable (Const :: Type -> Type -> Type)

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => Const m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Const a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Const a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Const a b -> c #

Bifoldable (K1 i :: Type -> Type -> Type)

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => K1 i m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> K1 i a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> K1 i a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> K1 i a b -> c #

Bifoldable ((,,,) x y)

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (x, y, m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (x, y, a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (x, y, a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (x, y, a, b) -> c #

Bifoldable ((,,,,) x y z)

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (x, y, z, m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (x, y, z, a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (x, y, z, a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (x, y, z, a, b) -> c #

Bifoldable ((,,,,,) x y z w)

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (x, y, z, w, m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (x, y, z, w, a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (x, y, z, w, a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (x, y, z, w, a, b) -> c #

Bifoldable ((,,,,,,) x y z w v)

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (x, y, z, w, v, m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (x, y, z, w, v, a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (x, y, z, w, v, a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (x, y, z, w, v, a, b) -> c #

bifoldMapDefault :: (Bitraversable t, Monoid m) => (a -> m) -> (b -> m) -> t a b -> m #

A default definition of bifoldMap in terms of the Bitraversable operations.

bifoldMapDefault f g ≡
    getConst . bitraverse (Const . f) (Const . g)

Since: base-4.10.0.0

bimapDefault :: Bitraversable t => (a -> b) -> (c -> d) -> t a c -> t b d #

A default definition of bimap in terms of the Bitraversable operations.

bimapDefault f g ≡
     runIdentity . bitraverse (Identity . f) (Identity . g)

Since: base-4.10.0.0

bifor :: (Bitraversable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f (t c d) #

bifor is bitraverse with the structure as the first argument. For a version that ignores the results, see bifor_.

Since: base-4.10.0.0

bisequence :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b) #

Sequences all the actions in a structure, building a new structure with the same shape using the results of the actions. For a version that ignores the results, see bisequence_.

bisequencebitraverse id id

Since: base-4.10.0.0

class (Bifunctor t, Bifoldable t) => Bitraversable (t :: Type -> Type -> Type) where #

Bitraversable identifies bifunctorial data structures whose elements can be traversed in order, performing Applicative or Monad actions at each element, and collecting a result structure with the same shape.

As opposed to Traversable data structures, which have one variety of element on which an action can be performed, Bitraversable data structures have two such varieties of elements.

A definition of bitraverse must satisfy the following laws:

naturality
bitraverse (t . f) (t . g) ≡ t . bitraverse f g for every applicative transformation t
identity
bitraverse Identity IdentityIdentity
composition
Compose . fmap (bitraverse g1 g2) . bitraverse f1 f2 ≡ traverse (Compose . fmap g1 . f1) (Compose . fmap g2 . f2)

where an applicative transformation is a function

t :: (Applicative f, Applicative g) => f a -> g a

preserving the Applicative operations:

t (pure x) = pure x
t (f <*> x) = t f <*> t x

and the identity functor Identity and composition functors Compose are defined as

newtype Identity a = Identity { runIdentity :: a }

instance Functor Identity where
  fmap f (Identity x) = Identity (f x)

instance Applicative Identity where
  pure = Identity
  Identity f <*> Identity x = Identity (f x)

newtype Compose f g a = Compose (f (g a))

instance (Functor f, Functor g) => Functor (Compose f g) where
  fmap f (Compose x) = Compose (fmap (fmap f) x)

instance (Applicative f, Applicative g) => Applicative (Compose f g) where
  pure = Compose . pure . pure
  Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)

Some simple examples are Either and '(,)':

instance Bitraversable Either where
  bitraverse f _ (Left x) = Left <$> f x
  bitraverse _ g (Right y) = Right <$> g y

instance Bitraversable (,) where
  bitraverse f g (x, y) = (,) <$> f x <*> g y

Bitraversable relates to its superclasses in the following ways:

bimap f g ≡ runIdentity . bitraverse (Identity . f) (Identity . g)
bifoldMap f g = getConst . bitraverse (Const . f) (Const . g)

These are available as bimapDefault and bifoldMapDefault respectively.

Since: base-4.10.0.0

Minimal complete definition

Nothing

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> t a b -> f (t c d) #

Evaluates the relevant functions at each element in the structure, running the action, and builds a new structure with the same shape, using the results produced from sequencing the actions.

bitraverse f g ≡ bisequenceA . bimap f g

For a version that ignores the results, see bitraverse_.

Since: base-4.10.0.0

Instances
Bitraversable Either

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Either a b -> f (Either c d) #

Bitraversable (,)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (a, b) -> f (c, d) #

Bitraversable Arg

Since: base-4.10.0.0

Instance details

Defined in Data.Semigroup

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Arg a b -> f (Arg c d) #

Bitraversable Validation Source # 
Instance details

Defined in Relude.Extra.Validation

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Validation a b -> f (Validation c d) #

Bitraversable ((,,) x)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, a, b) -> f (x, c, d) #

Bitraversable (Const :: Type -> Type -> Type)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) #

Bitraversable (K1 i :: Type -> Type -> Type)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> K1 i a b -> f (K1 i c d) #

Bitraversable ((,,,) x y)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, a, b) -> f (x, y, c, d) #

Bitraversable ((,,,,) x y z)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, z, a, b) -> f (x, y, z, c, d) #

Bitraversable ((,,,,,) x y z w)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, z, w, a, b) -> f (x, y, z, w, c, d) #

Bitraversable ((,,,,,,) x y z w v)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> (x, y, z, w, v, a, b) -> f (x, y, z, w, v, c, d) #