random-cycle: Uniform draws of partitions and cycle-partitions, with thinning.

[ gpl, graphs, library, math ] [ Propose Tags ]

A Haskell library for efficient uniform random sampling of cycle partition graphs on sets of vertices, and partitions of lists or vectors. Selection can be subject to conditions.


[Skip to Readme]

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

Versions [RSS] 0.1.0.0, 0.1.0.1, 0.1.1.0, 0.1.2.0
Change log CHANGELOG.md
Dependencies base (>=4.14.3.0 && <4.18.0.0), mwc-random, primitive, random, vector [details]
License GPL-3.0-or-later
Copyright Brendan R. Brown, 2023
Author Brendan Brown
Maintainer brendanrbrown@runbox.com
Category Math, Graphs
Home page https://sr.ht/~brendanrbrown/random-cycle
Bug tracker https://todo.sr.ht/~brendanrbrown/random-cycle
Uploaded by brendanrbrown at 2023-11-19T15:37:31Z
Distributions
Downloads 153 total (2 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs uploaded by user
Build status unknown [no reports yet]

Readme for random-cycle-0.1.2.0

[back to package description]

builds.sr.ht status

Summary

A Haskell library for efficient uniform random sampling of cycle partition graphs on sets of vertices, and partitions of lists or vectors. Selection can be subject to conditions.

Cycle partitions

A cycle partition graph on a set of vertices V is a directed graph G = (E, V) such that for each i in V there exists a unique j in V such that (i, j) in E. In other words, it is a partition of V into a graph with disjoint cycle graphs.

Define C(V) to be the set of cycle partitions graphs of V. uniformCyclePartition samples from the uniform distribution on C(V), in O(|V|) time.

To do so, it relies on the fact that

σ -> (i, σ(i)) , for i = 1..|V|

defines a bijective map between the permutations σ on |V| distinct elements and the edge sets of C(V). Therefore, sampling a uniform cycle partition without conditions is as simple as sampling a uniform permutation.

Note self-loops are allowed in the possible configurations.

uniformCyclePartitionThin samples uniformly from the set of cycle partition graphs satisfying a predicate, in O(n/p) time on average, where p is the proportion of cycle partition graphs satisfying the predicate. It works by rejection sampling, so the user is asked to provide a maximum number of sampling attempts to guarantee termination.

List or vector partitions

This package provides functions to draw uniform samples from all 2^(n-1) possible partitions of an ordered list (or vector). uniformPartition selects a single element uniformly across all possible partitions in O(n) time, and uniformPartitionThin samples uniformly conditional on a predicate in O(n/p) time on average, where p is the proportion of elements for which the predicate is True.

Only the partitioning is randomized: Input list order is preserved.

The samplers randomize the placement of each breakpoint in the partition. In other words the sample space is viewed as a perfect binary tree, and random selection is a random walk from root to leaf. The implementation samples a bit array to determine the walk path instead of creating an actual tree structure, for efficiency.

At the moment, the uniformPartitionThin is implemented only for lists.

Short-circuiting

The predicate provided to uniformPartitionThin checks each partition element, a chunk of elements in the original list, in turn. Since partitions are built lazily, the sampler will short-circuit and start sampling a new partition after the first partition element for which the predicate is False. This is just a consequence of the short-circuiting in base package function all.

Similarly, if the predicate itself is short-circuiting, the sampler will short-circuit.

Contributing

Tickets

Send by email, without need for an account, to ~brendanrbrown/random-cycle@todo.sr.ht

Man pages for tickets on SourceHut, particularly the "Email access" section.

Patches

Man pages for sending patches upstream.