prim-uniq: Opaque unique identifiers in primitive state monads

This is a package candidate release! Here you can preview how this package release will appear once published to the main package index (which can be accomplished via the 'maintain' link below). Please note that once a package has been published to the main package index it cannot be undone! Please consult the package uploading documentation for more information.

[maintain] [Publish]

Opaque unique identifiers in primitive state monads and a GADT-like type using them as witnesses of type equality.


[Skip to Readme]

Properties

Versions 0.1, 0.1.0.1, 0.2, 0.2
Change log ChangeLog.md
Dependencies base (>=3 && <5), dependent-sum (>=0.7 && <0.8), primitive [details]
License LicenseRef-PublicDomain
Author James Cook <mokus@deepbondi.net>
Maintainer Obsidian Systems, LLC <maintainer@obsidian.systems>
Category Data, Dependent Types
Home page https://github.com/obsidiansystems/prim-uniq
Source repo head: git clone https://github.com/obsidiansystems/prim-uniq
Uploaded by BertramFelgenhauer at 2020-04-15T14:33:02Z

Modules

[Index] [Quick Jump]

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees


Readme for prim-uniq-0.2

[back to package description]

Build Status

Unique values and an ad-hoc "unique-tag GADT"

This library defines 2 types - Uniq and Tag.

Uniq is a traditional "unique value" type, extended with a state-token type parameter so it works in both IO and ST.

Tag is like Uniq with the addition of a phantom type parameter. The type of that parameter is fixed at the time the Tag is created, so the uniqueness of the tag means that equality of tag values witnesses equality of their phantom types. In other words, given two Tags, if they are equal then their phantom type parameters are the same - just like pattern matching on a GADT constructor. The GEq and GCompare classes from the dependent-sum package can be used to discover that type equality, allowing Tag to be used for a pretty cool semi-dynamic typing scheme. For example (using the dependent-map library):

import Data.Unique.Tag
import Data.Dependent.Map

main = do
    x <- newTag
    y <- newTag
    z <- newTag
    let m1 = fromList [x :=> 3,  y :=> "hello"]
        m2 = fromList [x :=> 17, z :=> (True, x)]
        -- the type checker would (rightly) reject this line:
        -- m3 = singleton y ("foo", "bar")
    
    print (m1 ! x)
    print (m1 ! y)
    print (m2 ! x)
    print (m1 ! snd (m2 ! z))

Which would print:

3
"hello"
17
3