Safe Haskell | None |
---|---|
Language | Haskell2010 |
Synopsis
- interpret :: FirstOrder e "interpret" => (forall x rInitial. e (Sem rInitial) x -> Sem r x) -> Sem (e ': r) a -> Sem r a
- intercept :: (Member e r, FirstOrder e "intercept") => (forall x rInitial. e (Sem rInitial) x -> Sem r x) -> Sem r a -> Sem r a
- reinterpret :: forall e1 e2 r a. FirstOrder e1 "reinterpret" => (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': r) x) -> Sem (e1 ': r) a -> Sem (e2 ': r) a
- reinterpret2 :: forall e1 e2 e3 r a. FirstOrder e1 "reinterpret2" => (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': (e3 ': r)) x) -> Sem (e1 ': r) a -> Sem (e2 ': (e3 ': r)) a
- reinterpret3 :: forall e1 e2 e3 e4 r a. FirstOrder e1 "reinterpret3" => (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': (e3 ': (e4 ': r))) x) -> Sem (e1 ': r) a -> Sem (e2 ': (e3 ': (e4 ': r))) a
- rewrite :: forall e1 e2 r a. (forall rInitial x. e1 (Sem rInitial) x -> e2 (Sem rInitial) x) -> Sem (e1 ': r) a -> Sem (e2 ': r) a
- transform :: forall e1 e2 r a. Member e2 r => (forall rInitial x. e1 (Sem rInitial) x -> e2 (Sem rInitial) x) -> Sem (e1 ': r) a -> Sem r a
- interpretH :: (forall x rInitial. e (Sem rInitial) x -> Tactical e (Sem rInitial) r x) -> Sem (e ': r) a -> Sem r a
- interceptH :: Member e r => (forall x rInitial. e (Sem rInitial) x -> Tactical e (Sem rInitial) r x) -> Sem r a -> Sem r a
- reinterpretH :: forall e1 e2 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': r) x) -> Sem (e1 ': r) a -> Sem (e2 ': r) a
- reinterpret2H :: forall e1 e2 e3 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': (e3 ': r)) x) -> Sem (e1 ': r) a -> Sem (e2 ': (e3 ': r)) a
- reinterpret3H :: forall e1 e2 e3 e4 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': (e3 ': (e4 ': r))) x) -> Sem (e1 ': r) a -> Sem (e2 ': (e3 ': (e4 ': r))) a
- interceptUsing :: FirstOrder e "interceptUsing" => ElemOf e r -> (forall x rInitial. e (Sem rInitial) x -> Sem r x) -> Sem r a -> Sem r a
- interceptUsingH :: ElemOf e r -> (forall x rInitial. e (Sem rInitial) x -> Tactical e (Sem rInitial) r x) -> Sem r a -> Sem r a
- stateful :: (forall x m. e m x -> s -> Sem r (s, x)) -> s -> Sem (e ': r) a -> Sem r (s, a)
- lazilyStateful :: (forall x m. e m x -> s -> Sem r (s, x)) -> s -> Sem (e ': r) a -> Sem r (s, a)
First order
:: FirstOrder e "interpret" | |
=> (forall x rInitial. e (Sem rInitial) x -> Sem r x) | A natural transformation from the handled effect to other effects
already in |
-> Sem (e ': r) a | |
-> Sem r a |
The simplest way to produce an effect handler. Interprets an effect e
by
transforming it into other effects inside of r
.
:: (Member e r, FirstOrder e "intercept") | |
=> (forall x rInitial. e (Sem rInitial) x -> Sem r x) | A natural transformation from the handled effect to other effects
already in |
-> Sem r a | |
-> Sem r a |
Like interpret
, but instead of handling the effect, allows responding to
the effect while leaving it unhandled. This allows you, for example, to
intercept other effects and insert logic around them.
:: forall e1 e2 r a. FirstOrder e1 "reinterpret" | |
=> (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': r) x) | A natural transformation from the handled effect to the new effect. |
-> Sem (e1 ': r) a | |
-> Sem (e2 ': r) a |
Like interpret
, but instead of removing the effect e
, reencodes it in
some new effect f
. This function will fuse when followed by
runState
, meaning it's free to reinterpret
in terms of
the State
effect and immediately run it.
:: forall e1 e2 e3 r a. FirstOrder e1 "reinterpret2" | |
=> (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': (e3 ': r)) x) | A natural transformation from the handled effect to the new effects. |
-> Sem (e1 ': r) a | |
-> Sem (e2 ': (e3 ': r)) a |
Like reinterpret
, but introduces two intermediary effects.
:: forall e1 e2 e3 e4 r a. FirstOrder e1 "reinterpret3" | |
=> (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': (e3 ': (e4 ': r))) x) | A natural transformation from the handled effect to the new effects. |
-> Sem (e1 ': r) a | |
-> Sem (e2 ': (e3 ': (e4 ': r))) a |
Like reinterpret
, but introduces three intermediary effects.
rewrite :: forall e1 e2 r a. (forall rInitial x. e1 (Sem rInitial) x -> e2 (Sem rInitial) x) -> Sem (e1 ': r) a -> Sem (e2 ': r) a Source #
Rewrite an effect e1
directly into e2
, and put it on the top of the
effect stack.
Since: 1.2.3.0
transform :: forall e1 e2 r a. Member e2 r => (forall rInitial x. e1 (Sem rInitial) x -> e2 (Sem rInitial) x) -> Sem (e1 ': r) a -> Sem r a Source #
Transform an effect e1
into an effect e2
that is already somewhere
inside of the stack.
Since: 1.2.3.0
Higher order
:: Member e r | |
=> (forall x rInitial. e (Sem rInitial) x -> Tactical e (Sem rInitial) r x) | A natural transformation from the handled effect to other effects
already in |
-> Sem r a | Unlike |
-> Sem r a |
:: forall e1 e2 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': r) x) | A natural transformation from the handled effect to the new effect. |
-> Sem (e1 ': r) a | |
-> Sem (e2 ': r) a |
Like reinterpret
, but for higher-order effects.
See the notes on Tactical
for how to use this function.
:: forall e1 e2 e3 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': (e3 ': r)) x) | A natural transformation from the handled effect to the new effects. |
-> Sem (e1 ': r) a | |
-> Sem (e2 ': (e3 ': r)) a |
Like reinterpret2
, but for higher-order effects.
See the notes on Tactical
for how to use this function.
:: forall e1 e2 e3 e4 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': (e3 ': (e4 ': r))) x) | A natural transformation from the handled effect to the new effects. |
-> Sem (e1 ': r) a | |
-> Sem (e2 ': (e3 ': (e4 ': r))) a |
Like reinterpret3
, but for higher-order effects.
See the notes on Tactical
for how to use this function.
Conditional
:: FirstOrder e "interceptUsing" | |
=> ElemOf e r | A proof that the handled effect exists in |
-> (forall x rInitial. e (Sem rInitial) x -> Sem r x) | A natural transformation from the handled effect to other effects
already in |
-> Sem r a | |
-> Sem r a |
A variant of intercept
that accepts an explicit proof that the effect
is in the effect stack rather then requiring a Member
constraint.
This is useful in conjunction with tryMembership
in order to conditionally perform intercept
.
Since: 1.3.0.0
:: ElemOf e r | A proof that the handled effect exists in |
-> (forall x rInitial. e (Sem rInitial) x -> Tactical e (Sem rInitial) r x) | A natural transformation from the handled effect to other effects
already in |
-> Sem r a | Unlike |
-> Sem r a |
A variant of interceptH
that accepts an explicit proof that the effect
is in the effect stack rather then requiring a Member
constraint.
This is useful in conjunction with tryMembership
in order to conditionally perform interceptH
.
See the notes on Tactical
for how to use this function.
Since: 1.3.0.0